Implementing Linux Software RAID1 on HPE ProLiant Servers

Abstract

This document describes how to use HPE value-added software, using in-distro open-source tools, to configure and build a two-disk RAID1 redundant boot volume in UEFI mode for major operating systems including: Red Hat Enterprise Linux 7.2, SuSE Linux Enterprise Server 12.1, and Ubuntu Server 14.04.4/16.04.

Part Number: 872217-001
October 2016
Edition: 1
Table of Contents

Introduction ..7

Prerequisites ...7
 - About this task ..7
 - PXE server information ..7
 - TFTP server information ...8
 - DHCP server information ..8

Minnow Software ...9

OS specific installation scripts ...9

HPE Scripting Toolkit ...9

Minnow Value Added software ..10

OS Deployment ..11

Single machine deployment ...11
 - RHEL 7.2 ...12
 - SLES 12.1 ...12
 - Ubuntu 14.04.4 ...13
 - Ubuntu 16.04 ...13

Multiple machine OS deployment with the HPE Scripting Toolkit (STK) ...14
 - RHEL 7.2 ...15
 - SLES 12.1 ...16
 - Ubuntu 14.04.4 ...16
 - Ubuntu 16.04 ...17

Checking system status ...19

Minnow Service Status ...19
 - Checking system status ...19
 - Minnow service start, stop, and restart commands ..20

Hard drive thermal information ..20

Checking RAID status ..20

Faulty disk replacement ...22
 - Replacing a faulty disk using the hot-swap method ..22
Replacing a faulty disk using the cold-swap method ... 23

Verification ... 23

Known Issues and Limitations ... 24

The LED on the hard drive tray doesn’t work... 24

Only RAID1 with two hard drives in the AHCI controller is supported, other AHCI/SATA ports cannot be used.. 25

The replacement hard drive should not contain any MD metadata or partition information 25

Minnow service should not be stopped or restarted before RAID is fully recovered and status is clean ... 25

In Ubuntu 14.04.4, user should not manually start the minnow service 25

For the RAID auto-recovery, the space of replacement disk should be the same as the faulty one; replacement disks with larger space are not supported ... 25

If the /boot/efi is empty after auto-recovery, user should reboot the system before making any changes to the ESP (such as upgrading kernel, modify grub settings, etc) 25

Appendix A: Creating redundant boot strategy for software RAID1 in Linux................. 26

Basic configuration .. 26

Setting AHCI mode ... 26

UEFI partitioning scheme ... 27

Red Hat Enterprise Linux (RHEL) 7.2 .. 28

Manually Partitioning through Rescue mode ... 28

Normal Installation Process ... 29

Specifying the ESP .. 30

Specifying the swap directory ... 31

Creating root disk as RAID1 ... 32

Create a RAID1 root partition .. 33

Creating the Redundant ESP .. 34

Creating a New Entry in UEFI Boot Manager .. 34

Recovering a failed disk and repairing Software RAID .. 36

Recover the RAID system ... 37

Complete the recovery process .. 37

SuSE Linux Enterprise Server (SLES) 12 SP1 .. 39
Installation process ... 39
Partitioning drives for SLES ... 39
Creating the Redundant ESP .. 43
Creating a New Entry in the UEFI Boot Manager 43
Recovering a failed disk and repairing Software RAID 46
Examine the RAID status .. 46
Add two additional kernel parameters to allow booting from the second disk .. 47
Recovering the failed partition .. 48
Complete the recovery process .. 49
Ubuntu Server 14.04.4 .. 50
 Installation Process ... 50
 Partitioning drives for Ubuntu .. 50
 Creating the Redundant ESP .. 54
 Creating a New Entry in UEFI Boot Manager 54
 Recovering a failed disk and repairing Software RAID 56
 Completing the recovery process .. 58
Ubuntu Server 16.04 .. 59
 Installation Process ... 59
 Partitioning drives for Ubuntu .. 59
 Creating the Redundant ESP .. 63
 Creating a New Entry in UEFI Boot Manager 63
 Recovering a failed disk and repairing Software RAID 66
 Completing the recovery process .. 68
Appendix B: Example server configurations 70
 PXE server configuration ... 70
 TFTP server configuration .. 72
 DHCP server configuration ... 72
Appendix C: Example OS-specific installation scripts 74
 KickStart Script ... 74
 Modifying the KickStart script for RHEL 7.2 74
Introduction

Minnow (Redundant Boot Strategy for Software RAID1 in Linux) is a solution that uses in-distro open-source software to build and create a two-disk RAID1 redundant boot volume in UEFI mode.

This document describes how to create, manage, and recover the RAID system using the Minnow value-added software provided by Hewlett Packard Enterprise.

Appendix A shows the manual steps to create a redundant boot system without our value-added software.

Minnow provides:

- **Installation Scripts**: For deployment on a single or multiple servers including basic RAID1 configurations and system setup.
- **Boot Auto-Failover**: If the first drive fails, the system can boot to the second drive automatically.
- **RAID Auto-Recovery**: When a faulty driver is replaced by the new one, the system will rebuild the RAID automatically.
- **Advanced Hard Drive Thermal information**: The system reports the thermal information of the hard drive on the RAID system.

Prerequisites

About this task

These tasks must be performed before moving to the OS installation procedures. In the included example, the services are installed on a CentOS 7.2 machine.

1. Prepare a PXE server.
2. Prepare a TFTP server.
3. Prepare a DHCP server.

PXE server information

The PXE server in this example is **xinetd v2.3.15**. You can use a different version or different software, but you must note the differences accordingly.

For instructions on how to install PXE/TFTP server on the server, see https://wiki.centos.org/HowTos/PXE/PXE_Setup.

For an example PXE server configuration, see “PXE server configuration.”
TFTP server information

In this example, **TFTP v5.2** is installed on the CentOS 7.2 system. You can use a different version of or different software, but you must note the differences accordingly.

Reference to https://wiki.centos.org/HowTos/PXE/PXE_Setup

For instructions on how to install PXE/TFTP server on the server, see https://wiki.centos.org/HowTos/PXE/PXE_Setup.

For example configuration, see “**TFTP server configuration**.”

DHCP server information

The DHCP server in this example uses **DHCPv v4.2.5**. You can use a different version of or different software, but you must note the differences accordingly.

For an example DHCP server configuration, see “**DHCP server configuration**.”
Minnow Software

OS specific installation scripts

The BootScripts repository contains the boot scripts for KickStart, AutoYast, and Preseed. The boot scripts were designed to perform integrated installation for all steps described in this document. They can be found at http://downloads.linux.hpe.com/SDR/project/minnow/current/.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHEL7_2_RAID1_ks.cfg</td>
<td>Installation script for RHEL 7.2 unattended mode</td>
</tr>
<tr>
<td>SLES12SP1_RAID1_autoinst.xml</td>
<td>Installation script for SLES 12 SP1 unattended mode</td>
</tr>
<tr>
<td>Ubuntu_14.04.4_RAID1_preseed.cfg</td>
<td>Installation script for Ubuntu 14.04.4 unattended mode</td>
</tr>
<tr>
<td>Ubuntu_16.04_RAID1_preseed.cfg</td>
<td>Installation script for Ubuntu 16.04 unattended mode</td>
</tr>
</tbody>
</table>

HPE Scripting Toolkit

The HPE Scripting Toolkit (STK) is used to perform a deployment on multiple servers. OS specific STK files can be obtained from the links below.

<table>
<thead>
<tr>
<th>Linux Distro</th>
<th>Download Link</th>
</tr>
</thead>
</table>
Minnow Value Added software

The automated scripts are packed in the rpm package for RHEL and SLES, and the deb package for Ubuntu 16.04 and Ubuntu 14.04. Once installation is complete, the following files will be available on the system:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-minnow.rules</td>
<td>/etc/udev/rules.d</td>
<td>The udev rule file that directs the udev subsystem to invoke Minnow md_auto_reync.py script when a replacement disk is inserted.</td>
</tr>
<tr>
<td>minnow.service</td>
<td>/etc/systemd/system</td>
<td>Minnow systemd service for RHEL 7.2, SLES 12.1 and Ubuntu 16.04</td>
</tr>
<tr>
<td>minnowd</td>
<td>/etc/init</td>
<td>Minnow service for Ubuntu 14.04.4</td>
</tr>
<tr>
<td>HPEsdtemplog</td>
<td>/etc/logrotate.d</td>
<td>The logrotate config file for advanced thermal reporting</td>
</tr>
<tr>
<td>HPEtemp.sh</td>
<td>/opt/hpe/minnow/bin</td>
<td>Script for advanced thermal reporting</td>
</tr>
<tr>
<td>md_auto_resync.py</td>
<td>/opt/hpe/minnow/bin</td>
<td>The script that periodically checks the existence of the recovery key file. If there is a key file, the recovery process will be executed.</td>
</tr>
<tr>
<td>md_resync_trigger.py</td>
<td>/opt/hpe/minnow/bin</td>
<td>Invoked by udev when a new disk is inserted to the system, this script checks whether the conditions (e.g. disk size) satisfy the criteria for the RAID1 recover. If all conditions were met, a key file will be generated as a signal for the auto recovery script to take recovery process.</td>
</tr>
<tr>
<td>minnow.sh</td>
<td>/opt/hpe/minnow/bin</td>
<td>Script for executing Minnow scripts</td>
</tr>
</tbody>
</table>
OS Deployment

Single machine deployment

This section describes the integrated workflow for the RAID1 Redundant Boot Strategy for Software RAID in Linux solution. The integrated flow starts with the pre-installation RAID setup, followed by OS installation. It ends with post-installation setup.

Existing installation facilities offered by the OS are leveraged to perform unattended mode installation to deploy the solution

- KickStart in RHEL
- AutoYast in SLES
- Preseed in Ubuntu

Figure 1 illustrates the single machine deployment scenario. In the system, we provide installation script for each OS we support: RHEL, SLES and Ubuntu.

Before deploying Minnow, enable the AHCI hard drive controller. For instructions, see “Setting AHCI mode” in Appendix A.

Single machine deployments for RHEL 7.2, SUSE 12.1, Ubuntu 14.04.1, and Ubuntu 16.04 are described below.
RHEL 7.2

To begin with the install, upload the KickStart file to the TFTP server and add an entry to the PXE server:

Example PXE entry:

```
# For RHEL7.2 single machine deploy
image=/RHEL/RHEL-7.2Server-x86_64/vmlinuz
label=RHEL-7.2Server-x86_64_ks
description = "RHEL 7.2 Server RAID1 kickstart"
initrd=/RHEL/RHEL-7.2Server-x86_64/initrd.img
append="ipv6.disable=1
inst.ks=http://172.1.1.100/answers/RHEL7_2_RAID1_ks.cfg" #The place to change file path.
```

In the above example, the RHEL7_2_RAID1_ks.cfg file is placed on the TFTP server (172.1.1.100), in the folder 'answer'.

The RHEL7.2 installation files are in the mrepo/RHEL-7.2Server-x86_64 folder on the same server.

The installation begins when boot from the PXE entry. The detail of the KickStart script can be found in Appendix C-1.

SLES 12.1

To begin with the install, upload the AutoYast file to the TFTP server and add an entry to the PXE server.

Example PXE entry:

```
# For SLES 12 SP1 single machine deploy
image=/SLE/SLE-12-SP1-Server-x86_64/linux
label=SLE-12-SP1-Server-x86_64_ks
description = "SLES 12 SP1 RAID1 ks"
initrd=/SLE/SLE-12-SP1-Server-x86_64/initrd
append="vga=normal netdev=eth1
autoyast=http://172.1.1.100/answers/SLES12SP1_RAID1_autoinst.xml
install=http://172.1.1.100/mrepo/SLE-12-SP1-Server-x86_64/disc1" #The place to change file path.
```

In the above example, the SLES12SP1_RAID1_autoinst.xml file is placed on the TFTP server (172.1.1.100), in the folder 'answer'. The SLES12SP1 installation files are in the mrepo/SLE-12-SP1-Server_x86/disc1 folder on the same server.
The installation begins when boot from the PXE entry. The detail of the AutoYast script can be found in Appendix C-2.

Ubuntu 14.04.4

To begin with the install, upload the Preseed file to the TFTP server and add an entry to the PXE server.

Example PXE entry:

```bash
# For Ubuntu 14.04.4 single machine deploy
image=/ubuntu/trusty-ubuntu-installer/amd64/14.04.4/linux
label=Ubuntu-trusty-14.04.4-amd64_ks
description = "Ubuntu Trusty 14.04.4 RAID1 auto-install"
initrd=/ubuntu/trusty-ubuntu-installer/amd64/14.04.4/initrd.gz
append="vga=normal ipv6.disable=1 root=/dev/ram rw"
preseed/url=http://172.1.1.100/answers/Ubuntu_14.04.4_RAID1_preseed.cfg

In the above example, the Ubuntu_14.04.4_RAID1_preseed.cfg file is placed on the TFTP server (172.1.1.100), in the folder ‘answer’. The Ubuntu 14.04.4 installation files are in the mrepo/UBUNTU-14.04.4-Server-x86_64/install/filesystem.squashfs folder on the same server.

The installation begins when boot from the PXE entry. The detail of the Preseed script can be found in Appendix C-3.

**Ubuntu 16.04**

To begin with the install, upload the Preseed file to the TFTP server and add an entry to the PXE server.

Example PXE entry:

```bash
For Ubuntu 16.04 single machine deploy
image=/ubuntu/xenial-debian-installer/amd64/16.04/linux
label=Ubuntu-xenial-16.04-amd64_ks
description = "Ubuntu Xenial 16.04 RAID1 auto-install"
initrd=/ubuntu/xenial-debian-installer/amd64/16.04/initrd.gz
```
append="vga=normal ipv6.disable=1 ramdisk_size=1083840
root=/dev/ram rw
preseed/url=http://172.1.1.100/answers/Ubuntu_16.04_RAID1_preseed
d.cfg debian-installer/locale=en_US keyboard-
configuration/layoutcode=us localechooser/translation/warn-
light=true localechooser/translation/warn-severe=true
netcfg/choose_interface=auto netcfg/get_hostname=ubuntu live-
installer/net-
image=http://172.1.1.100/mrepo/UBUNTU-16.04-
Server-x86_64/install/filesystem.squashfs" #The place to change
file path.

In the above example, the Ubuntu_16.04_RAID1_preseed.cfg file
is placed on the TFTP server (172.1.1.100), in the folder ‘answer’. The Ubuntu 16.04 installation files are in the
mrepo/UBUNTU-16.04-Server-X86_64 folder on the same server.

The installation begins when boot from the PXE entry. The detail of the Preseed script can be
found in Appendix C-3.

**Multiple machine OS deployment with the HPE Scripting Toolkit (STK)**

The multiple machine OS deployment method may fit certain environments where there are
hundreds or even thousands of machines that require deployment.

In this scenario, the hard disk controller settings in RBSU are changed from the default (B140i in
Gen9 or B150i for Gen10) to AHCI for all machines under deployment. This should be done
before proceeding to the network deployments described in “Single machine deployment.” To
do this, use the HPE Scripting ToolKit (STK). STK supports the ‘conrep’ command that can
modify the RBSU settings programmatically.

**Figure 2** Illustrates the scenario for Multiple Machine Deployment. The HPE Scripting Toolkit
(HPE STK) is use for enabling ACHI mode programmatically. After enabled AHCI mode, the
installation proceeds with the same method as in the single machine deployment.
To begin the installation, put the HPE STK on the TFTP server, and add an entry for it to the PXE server.

Example PXE entry:

```
image=/tools/toolkit10.40/vmlinux
toolkit10.40
label=toolkit10.40
description = "HP Scripting Toolkit 10.40 nfs"
intrd=/tools/toolkit10.40/initrd.img
append="root=/dev/ram0 rw ramdisk_size=785612 quiet=1 sstk_nic=eth1 network=1 media=net numa=off sstk_conf=toolkit.conf
sstk_script=/deploy.sh sstk_tgz=http://172.1.1.100/answers/STK/hpe-scripting-toolkit-linux-10.40-rhel7_2.tar.gz"
```

The KickStart script can be specified in the grub.cfg in the install folder in the STK.

```
menuentry 'Install Red Hat Enterprise Linux 7.2' --class fedora --class gnu-linux --class gnu --class os {
linuxefi /efi/boot/vmlinux
inst.ks=http://172.1.1.100/answers/RHEL7_2_RAID1_ks.cfg
initrddefi /efi/boot/initrd.img
}
```

To modify the grub.cfg, unpack the tarball, modify the file, and the pack the tarball.
SLES 12.1

To begin with the installation, put the HPE STK on the TFTP server and add an entry for it to the PXE server.

Example PXE entry:

```plaintext
image=/tools/toolkit10.40/vmlinuz
label=toolkit10.40
description = "HP Scripting Toolkit 10.40 nfs"
initrd=/tools/toolkit10.40/initrd.img
append="root=/dev/ram0 rw ramdisk_size=785612 quiet=1 sstk_nic=eth1 network=1 media=net numa=off sstk_conf=toolkit.conf sstk_script=/deploy.sh sstk_tgz=http://172.1.1.100/answers/STK/hpe-scripting-toolkit-linux-10.40-sle12sp1.tar.gz"
```

The AutoYast script can be specified in the grub.cfg in the install folder in the STK.

```plaintext
menuentry 'Install SUSE 12SP1' {
 linuxefi /efi/boot/linux vga=normal netdev=eth1
 autoyast=http://172.1.1.100/answers/SLES12SP1_RAID1_autoinst.xml
 install=http://172.1.1.100/mrepo/SLE-12-SP1-Server-x86_64/disc1
 initrddefi /efi/boot/initrd
}
```

To modify the grub.cfg, unpack the tarball, modify the file, and the pack the tarball.

Ubuntu 14.04.4

To begin the installation, put the HPE STK on the TFTP server and add an entry for it to the PXE server.

Example PXE entry:

```plaintext
image=/tools/toolkit10.40/vmlinuz
label=toolkit10.40
description = "HP Scripting Toolkit 10.40 nfs"
initrd=/tools/toolkit10.40/initrd.img
append="root=/dev/ram0 rw ramdisk_size=785612 quiet=1 sstk_nic=eth1 network=1 media=net numa=off sstk_conf=toolkit.conf sstk_script=/deploy.sh sstk_tgz=http://172.1.1.100/answers/STK/hpe-scripting-toolkit-linux-10.40-ubuntu14.04.4.tar.gz"
```

The Preseed script can be specified in the grub.cfg in the install folder in the STK.

```plaintext
menuentry 'Install Ubuntu 14.04.4' {
```
To modify the grub.cfg, unpack the tarball, modify the file, and pack the tarball.

Ubuntu 16.04

To begin the installation, put the HPE STK on the TFTP server and add an entry for it to the PXE server.

Example PXE entry:

    image=/tools/toolkit10.40/vmlinuz
    label=toolkit10.40
    description = "HP Scripting Toolkit 10.40 nfs"
    initrd=/tools/toolkit10.40/initrd.img
    append="root=/dev/ram0 rw ramdisk_size=785612 quiet=1 sstk_nic=eth1 network=1 media=nfs numa=off sstk_conf=toolkit.conf sstk_script=/deploy.sh sstk_tgz=http://172.1.1.100/answers/STK/hpe-scripting-toolkit-linux-10.40-ubuntu16.04.tar.gz"

The Preseed script can be specified in the grub.cfg in the install folder in the STK.

    menuentry 'Install Ubuntu 16.04' {

Page 17
installer/net-image=http://172.1.1.100/mrepo/UBUNTU-16.04-Server-
x86_64/install/filesystem.squashfs
    initrd defi /efi/boot/initrd.gz
}

To modify the grub.cfg, unpack the tarball, modify the file, and pack the tarball.
Checking system status

Minnow Service Status

Minnow is a systemd service on RHEL7.2, SLES 12.1 and Ubuntu 16.04. Therefore, it can be used to check, start, stop, and restart the service. Any operations (except status) of the minnow service can only be done when the RAID status is clean. For more information, see “Known Issues and Limitations.”

On Ubuntu 14.04.4, it is an UpStart service that will be started when system start.

Checking system status

On RHEL 7.2, SLES 12.1 and Ubuntu 16.04

Use the following command to check the Minnow service status:

```
systemctl status minnow.service
```

Two processes will be running: one is the auto-resync process (md_auto_resync.py), and the other is the hard drive temperature reporting process (HPEtemp.sh).

Example service status:

```
root@ubuntu:~ # systemctl status minnow.service
minnow.service - Minnow
 Loaded: loaded (/etc/systemd/system/minnow.service; enabled; vendor preset: enabled)
 Active: active (running) since Thu 2016-10-13 16:55:10 CDT; 3min 35s ago
 Process: 871 ExecStart=/opt/hpe/minnow/bin/minnow.sh (code=exited, status=0/SUCCESS)
 CGroup: /system.slice/minnow.service
 └─ 871 /usr/bin/python /opt/hpe/minnow/bin/md_auto_resync.py
 075 /bin/bash /opt/hpe/minnow/bin/HPEtemp.sh
 1001 sleep 600
Oct 13 16:55:10 ubuntu systemd[11]: Starting Minnow...
Oct 13 16:55:29 ubuntu minnow.sh[8711]: 4976640 records in
Oct 13 16:55:29 ubuntu minnow.sh[8711]: 4976640 records out
```

On Ubuntu 14.04.4

Use the following command to check the Minnow service status:

```
ps -aux | grep minnow
```

Two processes will be running, one is the auto-resync process (md_auto_resync.py), another one is the hard drive temperature reporting process (HPEtemp.sh).

Example service status:
Minnow service start, stop, and restart commands

On RHEL7.2, SLES12.1 and Ubuntu 16.04

- Use the following command to start the service.
  ```shell
 systemctl start minnow.service
  ```
- Use the following command to stop the service.
  ```shell
 systemctl stop minnow.service
  ```
- Use the following command to restart the service.
  ```shell
 systemctl restart minnow.service
  ```

On Ubuntu 14.04.4

On Ubuntu 14.04.4, the stop and restart commands are not supported and will be ignored. Do not manually start the service in the command line prompt. See “Known Issues and Limitations” for details.

Hard drive thermal information

The minnow service captures drive temperatures for all SATA disks on the system every 10 minutes and adds reported temperatures to the `/var/log/HPEsdtemp.log` file. It also reports URGENT messages in the same log if any disk temperature passes 60°C, which is considered critical point.

For log recycling, it uses the Linux logrotate utility set in `/etc/logrotate.d/HPEsdtemplog` config file on the system. This log (`/var/log/HPEsdtemp.log`) will rotate every 4 weeks, similar to other system logs to avoid filesystem becoming full.

To find the drive thermal information, type the command:

```bash
cat /var/log/HPEsdtemp.log
```

Checking RAID status

To check the RAID device on the system, type the command:

```bash
cat /proc/mdstat
```
The above screenshot indicates there is only one RAID device in the system. To check the RAID status for md0, type the command:

```
mdadm --detail /dev/md0
```

Here /dev/md0 is the RAID device on the system.

The above screenshot indicates “clean” in the State. It is the normal state of the RAID system. If State reports as “degraded”, the RAID system is degraded, and one of the disk became faulty.
Faulty disk replacement

To replace a faulty drive, use either the hot-swap method or the cold-swap method.

Replacing a faulty disk using the hot-swap method

In the hot-swap method, the system doesn’t need to shut down. Simply unplug the faulty drive and replace it with a new one. The system will automatically rebuild the RAID system with the new hard drive.

Type the following command to check the rebuild program.

```
mdadm --detail /dev/md0
```

Here `md0` is the RAID device on the system.

The screenshot indicates the progress of the rebuild, which is 1%. The time to complete a rebuild depends on the size of the hard drive. Once it reaches 100%, the rebuild process completes and the State indicates “clean”.

![Screenshot of the command output](image-url)
Replacing a faulty disk using the cold-swap method

In the cold-swap method, the system will be shut down. After the machine is completely shut down, replace the faulty drive with the new one. During the next boot, the RAID rebuild process is triggered.

Type the following command to check the rebuild progress:

```
mdadm -detail /dev/md0
```

Here md0 is the RAID device on the system.

The screenshot indicates the progress of the rebuild, which is 1%. The time to complete a rebuild depends on the size of the hard drive. Once it reaches 100%, the rebuild process completes and the State indicates “clean”.

Verification

Type the following command to verify the RAID system:

```
mdadm -detail /dev/md0
```
Here `md0` is the RAID device on the system.

The above screenshot indicates “clean” in the State. It is the normal state of the RAID system.

**Known Issues and Limitations**

**The LED on the hard drive tray doesn’t work**

The LED on the hard driver tray doesn’t work in this version. The LED indicates the health state of the drive. To examine the health state of the hard drive, refer to “Cheking RAID status” section.
Only RAID1 with two hard drives in the AHCI controller is supported, other AHCI/SATA ports cannot be used

Only two hard drive boot volumes are supported at this moment. Other AHCI/SATA ports cannot be used.

The replacement hard drive should not contain any MD metadata or partition information

The RAID metadata or partition information on the replacement hard drive should be wiped before inserting to the system.

Minnow service should not be stopped or restarted before RAID is fully recovered and status is clean

When the RAID is degraded and the recovery is in progress, the Minnow service should not be stopped or restarted.

In Ubuntu 14.04.4, user should not manually start the minnow service

The Minnow service will start automatically at boot time. Do not manually start it in the command line.

For the RAID auto-recovery, the space of replacement disk should be the same as the faulty one; replacement disks with larger space are not supported

Only auto-recovery with same size hard drive replacement is supported for RAID recovery.

If the /boot/efi is empty after auto-recovery, user should reboot the system before making any changes to the ESP (such as upgrading kernel, modify grub settings, etc)

To check if the /boot/efi folder is empty, type the following command:

```
ls -la /boot/efi
```
Appendix A: Creating redundant boot strategy for software RAID1 in Linux

Introduction
The Redundant Boot Strategy for Software RAID1 in Linux operates with the UEFI mode only. This document describes the process to configure Software RAID in major Linux operating systems including:

- Red Hat Enterprise Linux,
- SuSE Linux Enterprise Server and
- Ubuntu Server

It covers the following topics:

- Installation
- Configuration
- Recovery steps when a disk fails

Basic configuration

This procedure will be completed using HPE iLO. For more information, see the *HPE iLO 4 User Guide* in the Hewlett Packard Enterprise Information Library ([www.hpe.com/info/docs](http://www.hpe.com/info/docs)),

Setting AHCI mode

1. In RBSU > System Options > SATA Controller Options > Embedded SATA Configuration.
2. Make sure that “Enable SATA AHCI Support” is enabled.
UEFI partitioning scheme

The following partition scheme is used throughout this document to describe the process.

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>File System Type</th>
<th>Mount Point</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>First disk</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/dev/sda1</td>
<td>200MB</td>
<td>FAT</td>
<td>/boot/efi</td>
</tr>
<tr>
<td>/dev/sda2</td>
<td>16GB</td>
<td>Swap</td>
<td>Swap</td>
</tr>
<tr>
<td>/dev/sda3</td>
<td>Rest of the disk</td>
<td>Ext4</td>
<td>None</td>
</tr>
<tr>
<td><strong>Second Disk</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Size</td>
<td>File System Type</td>
<td>Mount Point</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>/dev/sdb1</td>
<td>200MB</td>
<td>FAT</td>
<td>None</td>
</tr>
<tr>
<td>/dev/sdb2</td>
<td>16GB</td>
<td>Swap</td>
<td>None</td>
</tr>
<tr>
<td>/dev/sdb3</td>
<td>Rest of the disk</td>
<td>Ext4</td>
<td>None</td>
</tr>
</tbody>
</table>

* In the outlined configuration, the disk size is 500GB. The partition size for sda3 and sdb3 is roughly 460GB.

**Red Hat Enterprise Linux (RHEL) 7.2**

**Manually Partitioning through Rescue mode**

Partition the disk manually in Rescue mode before proceeding to the normal installation process. Do not use the RHEL GUI installer.

1. Boot from the RHEL DVD image.
2. Select **Troubleshooting > Rescue a Red Hat Enterprise Linux system.**
3. Select **1) Continue.**

The following prompt is displayed:
4. To create partitions on the first disk (/dev/sda), type the following commands.
   `parted /dev/sda mklabel gpt`

5. Type “Yes” to confirm changes are made to the exist disk label.
   The following is displayed:
   `parted /dev/sda mkpart primary fat32 0 200MiB`

6. Type “Ignore” to ignore the size mismatch.
   The following is displayed:
   `parted /dev/sda mkpart primary ext2 200MiB 16GiB`
   `parted /dev/sda print`

7. Refer to the screenshot for detail partitioning instruction and information for /dev/sda.

8. Repeat step 5 for the second disk (/dev/sdb).
   Refer to the screenshot for detail partitioning instruction and information for /dev/sdb.

9. Reboot to proceed with RedHat installation.

**Normal Installation Process**

The software RAID installation differs from the normal installation process only in the “Installation Destination” step. In the “Installation Destination”, specify the ESP, swap and root
partition respectively. In the “Installation Destination” step, make sure both disks are selected, and “I will configure partitioning” is selected.

### Specifying the ESP

The ESP is the partition that contains the boot loaders used by the UEFI firmware.

1. Select sda1 under Unknown in the left pane.
3. In the Mount Point field, enter /boot/efi.
4. Click Update Settings.
Specifying the swap directory

1. Select **sda2** in the “Unknown” section.
2. In the File System dropdown, select **swap** and check Reformat.
3. Click **Update Settings**.
Creating root disk as RAID1

1. Click “+”.
2. To choose the root directory, enter “/” as mount point.
3. Enter “1000GB” in Desired Capacity.
   The system will calculate the correct size.
4. Click Add mount point.
Create a RAID1 root partition

1. Select / rhel-root in the left pane.
2. Select RAID in Device Type.
3. Choose xfs or other desired file system.
4. Make sure RAID1 (Redundancy) in RAID Level is selected.
5. Click Update Settings.
   The system will calculate the final size for the RAID partition.
   The system will create a new md device in /dev/md/root.
6. In the Name field, type “root”.

7. Continue the installation by clicking Done.
   The system will show a warning message.
   This message can be ignored.
Creating the Redundant ESP

1. Log in to Redhat.
2. To clone the ESP partition from /dev/sda1 to /dev/sdb1, enter the following command.

   ```sh
dd if=/dev/sda1 of=/dev/sdb1
 ``

 “If” means the input and “of” is the output.

Creating a New Entry in UEFI Boot Manager

Before creating a new entry for the Redundant ESP for /dev/sdb1, examine the current EFI boot manager. Make sure the contents of the new entry match the existing entry for RHEL.

1. To list the entries in the EFI boot manager, type the following command.

   ```sh
efibootmgr -v
   ```

 The screenshot shows that entry Boot0011 is the RHEL entry created by the installer.

2. Create a new entry and name it “rhel-redundant” using the following command.

   ```sh
efibootmgr -c -d /dev/sdb -p 1 -l \EFI\redhat\shim.efi -L "rhel-redundant"
   ```
3. The “rhel-redundant” entry is created as Boot0012. It is selected as the first boot option. It should be moved to second boot option.

```bash
efibootmgr -o
0011,0012,0002,0000,0001,0003,0004,0005,0006,0007,0008,000A,0009,
000C,000B
```

4. The actual number for entries depends on the system configuration. Check the system configuration by typing:

```bash
efibootmgr -v
```

5. Verify the boot entry by rebooting the system.
 a. Press **F11** to go to the boot menu.
 b. Choose **rhel-redundant** from the boot menu.

6. Log in to the system.
Recovering a failed disk and repairing Software RAID

In the event of a failed disk, it is necessary to recover the failed partition and restore the software RAID. Logging in to the system through the second disk is possible when the EFI boot entries are set properly.

1. Examine the status of the RAID configuration using the following command.
   ```bash
   mdadm --detail /dev/md/root
   ```
 - Total Devices report “1”.
 - State reports as "clean, degraded".
 - `/dev/sdb3` has become `/dev/sda3`

 It is the only available disk.
Recover the RAID system

1. Prepare a new disk, partitioned as previously described.
2. From the boot menu, choose `rhel-redundant`.
 The new disk is shown as `/dev/sda`.
 The original second disk will appear as `/dev/sdb`.
3. Type the following command to add the new `/dev/sda3` to rebuild the RAID.
   ```bash
   mdadm --add /dev/md/root /dev/sda3
   ```
4. Enter `mdadm --detail /dev/md/root`
 The State will change to “clean, degraded, recovering” and the Rebuild Status will report “75% complete” (or other progress number).
5. Once the rebuild has completed, State will report as “clean”.
6. The recovery is complete.

Complete the recovery process

Repeat the process described in “Creating the Redundant ESP” to make a redundant copy of the ESP, and add a new entry to EFI Boot Manager to complete the recovery process.
1. To replicate the ESP from /dev/sdb1 back to /dev/sda1, enter the following command.

```
dd –if=/dev/sdb1 –of=/dev/sda1
```

2. To remove the existing RHEL boot entry, enter the following command.

```
efibootmgr -b 11 -B
```

3. Create new entry for the replicated ESP by entering the following command:

```
efibootmgr -c -d /dev/sda -p 1 -l \"EFI\"\"\redhat\"\"\shim.efi -L rhel-redundant2
```

4. Reorder boot sequence by entering the following command:

```
efibootmgr -o
0012, 0011, 0002, 0000, 0001, 0003, 0004, 0005, 0006, 0007, 0008, 000A, 0009, 000C, 000B
```
SuSE Linux Enterprise Server (SLES) 12 SP1

Installation process

Only the partition scheme is different in the Software RAID installation process compare to the standard installation process.

Partitioning drives for SLES

1. From the Suggested Partitioning screen, select Expert Partitioner...
2. Delete the Expert Partitioner default partition scheme.

3. Partition /dev/sda as follows:

 /dev/sda1, size = 200MB, mount point = /boot/efi, format as “FAT”

 /dev/sda2, size = 16GB, format as “Swap”

 /dev/sda3, size = rest of the disk space.

4. After successfully partitioning the first disk, use Expert > Clone this disk... function to clone the partition scheme to the second disk.
5. In the RAID section, create a RAID1 that includes /dev/sda3 and /dev/sdb3:
 a. Click RAID.
 b. Choose RAID1 (mirroring).
 c. Select each partition and click Add to move them to Selected Devices.
6. Accept default setting such as 4KB Chunk Size, format as XFS and mount it to “/” (root).

7. Click Finish.

Examine the Device Graph. It should match the screenshot.

8. Examine the Mount Graph. It should match the screenshot.
9. Proceed to finish the installation

Creating the Redundant ESP

1. Log in to SLES.
2. To clone the ESP partition from /dev/sda1 to /dev/sdb1, type the following command.

   ```
   dd if=/dev/sda1 of=/dev/sdb1
   ```
3. “If” means the input, and “of” is the output.

Creating a New Entry in the UEFI Boot Manager

Before creating a new entry for the Redundant ESP for /dev/sdb1, examine the current EFI boot manager. Make sure the contents of the new entry match the existing entry for Ubuntu.

1. To list the entries in the EFI boot manager, type the following command.

   ```
   efibootmgr -v
   ```
2. The following screenshot shows that entry Boot0011 is the SLES entry created by the installer.
3. Create a new entry and name it ‘sles-secureboot2’.

 efibootmgr -c -d /dev/sdb -p 1 -l \EFI\sles\shim.efi -L “sles-secureboot2”
4. The "sles-secureboot2" entry will be created as Boot0012. This process will place it as the first boot option. Move it to the second boot option.

```bash
efibootmgr -o
0011,0012,0002,0000,0003,0004,0005,0006,0007,0008,0009,
000C,0001,000A,000B,000D
```

5. The actual number of entries depends on the system configuration. Check the entries by entering:

```bash
efibootmgr -v
```

6. Verify the boot entry by rebooting the system, press F11 to the boot menu. "sles-secureboot2" should be in the boot menu.

7. Boot in to the system to verify it works.

8. Log in the system.
Recovering a failed disk and repairing Software RAID

In the event of a failed disk, it is necessary to recover the failed partition and restore the software RAID. Logging in to the system through the second disk is possible when the EFI boot entries are set properly.

Examine the RAID status

1. To examine the status of the RAID configuration, enter the following:

 `mdadm --detail /dev/md0`

 - Total Devices became “1”.
 - State changed to “clean, degraded”.
 - Disk `/dev/sdb3` has become `/dev/sda3`.
 It is the only available disk.
Add two additional kernel parameters to allow booting from the second disk

In SLES, if the first disk fails two additional kernel parameters must be added to allow the system to successfully boot from the second disk.

1. From the GRUB menu, press the e key to edit the kernel parameter.
2. Find the line end with `crashkernel=72M,low`
3. Append `rd.shell rd.debug`
4. Press Ctrl-x or F10 to boot with the new setting.
 This is a one-time setting only. It will not impact subsequent boots.

After a few minutes, the screen will enter a rescue shell.
Recovering the failed partition

1. Prepare a new disk portioned as described in “Partitioning a drive for SLES.”
2. Boot from the “sles-secureboot2.”
 Make sure proper kernel parameters (rd.shell rd.debug) were added to enter the rescue shell.
 The new disk will be shown as /dev/sda, and the original second disk will appear as /dev/sdb.
 To add the new /dev/sda3 to rebuild the RAID, type the following command in the rescue shell.

   ```bash
   mdadm --add /dev/md0 /dev/sda3
   ```
3. Enter `mdadm --detail /dev/md0`
 The State will change to "clean, degraded, recovering" and the Rebuild Status “75% complete” (or other progress number).
4. Once the rebuild has completed, the State will change to “clean”,
 The recovery is complete.
Complete the recovery process

To make a redundant copy of the ESP, repeat the process described in “Creating a redundant ESP.”

Add a new entry to EFI Boot Manager to complete the recovery process.

1. Replicate the ESP from /dev/sdb1 back to /dev/sda1.

   ```
   dd -if=/dev/sdb1 -of=/dev/sda1
   ```

2. Remove the existing SLES boot entry:

   ```
   efibootmgr -b 11 -B
   ```

3. Create new entry for the replicated ESP:

   ```
   efibootmgr -c -d /dev/sda -p 1 -l \"EFI\"/sles/shim.efi -L "sles-secureboot2"
   ```

4. Reorder the boot sequence:
Ubuntu Server 14.04.4

Installation Process

Use the server installation DVD to perform the installation. Configure Software RAID through the installation process.

Only the partition scheme is different in the Software RAID installation process compare to the standard installation process.

Partitioning drives for Ubuntu

1. Select Manual in “Partition disks”
2. To create the ESP partition, choose **FREE SPACE**.

3. Select **Create a new partition**.

4. For the partition size, enter “200MB”.
5. Select **Beginning**.

6. Select **Use as: EFI boot partition**.

7. Partition `/dev/sda2` as swap. Make it 16GB and use it as “swap”.
8. Partition `/dev/sda3` as ext4. Leave the rest of the disk to it.
9. Repeat the partition until `/dev/sda` and `/dev/sdb` are fully partitioned. Refer to screenshot for what they should look like.
10. Configure Software RAID by selecting **Configure software RAID**.
11. Select **Create MD Device**.
12. Select **RAID1**.
13. Set 2 as the number of active devices for the RAID1 array.
14. Set 0 as the number of spare devices for the RAID1 array.
15. Select `/dev/sda3` and `/dev/sdb3` in the partition disks.
16. Click **Finish** to finish the MD setup.

One RAID1 device will appear in the “Partition disks” section
17. Use the RAID1 partition as Ext4 and mount it as “/”.

![Partition disks](image)
18. Finish partitioning and continue the installation.

Creating the Redundant ESP

1. Log in to Ubuntu.
2. To clone the ESP partition from /dev/sda1 to /dev/sdb1, enter the following command.

   ```
   dd if=/dev/sda1 of=/dev/sdb1
   ```

 “if” means the input and “of” is the output.

Creating a New Entry in UEFI Boot Manager

Before creating a new entry for the Redundant ESP for /dev/sdb1, first examine the current EFI boot manager. Make sure the contents of the new entry match the existing entry for Ubuntu.

1. To list the entries in the EFI boot manager, type the following command.

   ```
   efibootmgr -v
   ```

 The screenshot shows that entry Boot0011 is the Ubuntu entry created by the installer.

2. Create a new entry and name it “ubuntu-redundant” using the following command.

   ```
   efibootmgr -c -d /dev/sdb -p 1 -l \\EFI\\ubuntu\\shimx64.efi -L “ubuntu-redundant”
   ```
3. The "ubuntu-redundant" entry is created as Boot0012. It is selected as the first boot option. It should be moved to second boot option.

```bash
efibootmgr -o
0011,0012,0002,0000,0001,0003,0004,0005,0006,0007,0008,000A,0009,000C,000B
```

4. The actual number for entries depends on the system configuration. Check the system configuration by typing:

```bash
efibootmgr -v
```

5. Verify the boot entry by rebooting the system.
 a. To go to the boot menu, press **F11**.
 b. Choose **ubuntu-redundant** from the boot menu.
Recovering a failed disk and repairing Software RAID

In the event of a failed disk, it is necessary to recover the failed partition and restore the software RAID. Logging in to the system through the second disk is possible when the EFI boot entries are set properly.

With EFI boot entries set properly, you can log in the system through the second disk.

1. To examine the status of the RAID configuration enter:

   ```
   mdadm --detail /dev/md0
   ```

 - “Total Devices” reports “1”
 - “State” reports as “clean, degraded”
 - Disk /dev/sdb3 changes to /dev/sda3 since it is the only available disk.
To recover the RAID system, first prepare a new disk partitioned as previously described in “Partitioning drives for Ubuntu.”

1. Boot from the “ubuntu-redundant”.
 The new disk be reported as /dev/sda, and the original second disk will appear as /dev/sdb.
2. Type the following command to add the new /dev/sda3 to rebuild the RAID.
   ```
   mdadm --add /dev/md0 /dev/sda3
   ```
3. Type “mdadm --detail /dev/md0”. The State should report as “clean, degraded, recovering” and the Rebuild Status “75% complete” (or other progress number).
4. Once the rebuild has completed, the State should report as “clean”, the recovery is complete.
Completing the recovery process

Repeat the process described in “Creating the Redundant ESP” to make a redundant copy of the ESP, and add a new entry to EFI Boot Manager to complete the recovery process.

1. Replicate the ESP from /dev/sdb1 back to /dev/sda1

   ```
   dd -if=/dev/sdb1 -of=/dev/sda1
   ```

2. Remove the existing Ubuntu boot entry.

   ```
   efibootmgr -b 11 -B
   ```

3. Create new entry for the replicated ESP:

   ```
   efibootmgr -c -d /dev/sda -p 1 -l \EFI\ubuntu\shimx64.efi -L rhel-redundant2
   ```

4. Reorder boot sequence:

   ```
   efibootmgr -o
   0012,0011,0002,0000,0003,0004,0005,0006,0007,0008,0009,000C,0001,000A,000B,000D
   ```
Ubuntu Server 16.04

Installation Process

Use the server installation DVD to perform the installation. Configure Software RAID through the installation process.

Only the partition scheme is different in the Software RAID installation process compare to the standard installation process.

Partitioning drives for Ubuntu

1. Select Manual in “Partition disks”
2. Let’s create empty partition table for both sda and sdb.

3. To create the ESP partition, choose **FREE SPACE**.

4. Select **Create a new partition**.
5. For the partition size, enter “200MB”.

6. Select **Beginning**.

7. Select **Use as: EFI boot partition**.

8. Partition /dev/sda2 as swap. Make it 16GB and use it as “swap”.

9. Partition /dev/sda3 as ext4. Leave the rest of the disk to it.
10. Repeat the partition until /dev/sda and /dev/sdb are fully partitioned. Refer to screenshot for what they should look like.

11. Configure Software RAID by selecting **Configure software RAID**.
12. Select **Create MD device**.
13. Select **RAID1**.
14. Set 2 as the number of active devices for the RAID1 array.
15. Set 0 as the number of spare devices for the RAID1 array.
16. Select /dev/sda3 and /dev/sdb3 in the partition disks.
17. Click **Finish** to finish the MD setup.
 One RAID1 device will appear in the “Partition disks” section
18. Use the RAID1 partition as Ext4 and mount it as “/”.
19. Finish partitioning and continue the installation.

Creating the Redundant ESP

1. Log in to Ubuntu.
2. To clone the ESP partition from /dev/sda1 to /dev/sdb1, enter the following command.

   ```bash
   dd if=/dev/sda1 of=/dev/sdb1
   ```

 “If” means the input and “of” is the output.

Creating a New Entry in UEFI Boot Manager

Before creating a new entry for the Redundant ESP for /dev/sdb1, first examine the current EFI boot manager. Make sure the contents of the new entry match the existing entry for Ubuntu.

1. To list the entries in the EFI boot manager, type the following command.

   ```bash
   efibootmgr -v
   ```

 The screenshot shows that entry Boot0011 is the Ubuntu entry created by the installer.
2. Create a new entry and name it “ubuntu-redundant” using the following command.

 `efibootmgr -c -d /dev/sdb -p 1 -l \"EFI\ubuntu\shimx64.efi -L "ubuntu-redundant\"`

3. The “ubuntu-redundant” entry is created as Boot0012.
 It is selected as the first boot option.
 It should be moved to second boot option.

 `efibootmgr -o 0011,0012,0002,0000,0001,0003,0004,0005,0006,0007,0008,000A,0009,000C,000B`
4. The actual number for entries depends on the system configuration. Check the system configuration by typing:

```
$ efibootmgr -v
```

5. Verify the boot entry by rebooting the system.
 e. To go to the boot menu, press **F11**.
 f. Choose **ubuntu-redundant** from the boot menu.
Recovering a failed disk and repairing Software RAID

In the event of a failed disk, it is necessary to recover the failed partition and restore the software RAID. Logging in to the system through the second disk is possible when the EFI boot entries are set properly.

With EFI boot entries set properly, you can log in to the system through the second disk.

1. To examine the status of the RAID configuration enter:

   ```bash
   mdadm --detail /dev/md0
   ```

 - “Total Devices” reports “1”
 - “State” reports as “clean, degraded”
 - Disk /dev/sdb3 becomes /dev/sda3 since it is the only available disk.
To recover the RAID system, first prepare a new disk partitioned as previously described in “Partitioning drives for Ubuntu.”

1. Boot from the “ubuntu-redundant”.
 The new disk be reported as /dev/sda, and the original second disk will appear as /dev/sdb.
2. Type the following command to add the new /dev/sda3 to rebuild the RAID.

   ```bash
   mdadm --add /dev/md0 /dev/sda3
   ```
3. Type “mdadm --detail /dev/md0”. The State should report as “clean, degraded, recovering” and the Rebuild Status “75% complete” (or other progress number).
4. Once the rebuild has completed, the state should report as “clean”, the recovery is complete.
Completing the recovery process

Since the disk is new, we can repeat the process described in “Creating the redundant ESP” to make a redundant copy of the ESP, and add a new entry to EFI Boot Manager to complete the recovery process.

1. Replicate the ESP from /dev/sdb1 back to /dev/sda1

 \[
 \text{dd \ -if=/dev/sdb1 \ -of=/dev/sda1}
 \]

2. Remove the existing Ubuntu boot entry.

 \[
 \text{efibootmgr \ -b \ 11 \ -B}
 \]

3. Create new entry for the replicated ESP:

 \[
 \text{efibootmgr \ -c \ -d \ /dev/sda \ -p \ 1 \ -l \ \"EFI\"/\ubuntu/shimx64.efi \ -L \ \"rhel-redundant2\"
 }
 \]

4. Reorder boot sequence:

 \[
 \text{efibootmgr \ -o \ 0012,0011,0002,0000,0003,0004,0005,0006,0007,0008,0009,000C,0001,000A,000B,000D}
 \]
Appendix B: Example server configurations

PXE server configuration

The PXE configuration file is located in `/data/tftpboot/EFI/eilo.cfg`. It may be in a different location in your environment.

The following sample configuration shows how to specify the default entry, timeout, etc. As you proceed, you will create additional PXE entries in this file.

```plaintext
chooser=simple # This setting will directly boot into default entry for mass deployment use. If you want to manually select, you can modify to textmenu.
#message=textmenu-message.msg
prompt
delay=0
timeout=10 # Time out (second)
default=toolkit10.40.RHEL7.2 # The default boot entry.

# For RHEL7.2 Multiple Servers Deployment
image=/tools/toolkit10.40/vmlinuz
label=toolkit10.40.RHEL7.2
description = "HPE Scripting Toolkit 10.40 RHEL7.2"
initrd=/tools/toolkit10.40/initrd.img
append="root=/dev/ram0 rw ramdisk_size=785612 quiet=1 stsk_nic=eth0
network=1 media=net numa=off stsk_conf=toolkit.conf
stsk_script=/deploy.sh stsk_tgz=http://172.1.1.100/answers/STK/hpe-scripting-toolkit-linux-10.40-rhel7.2.tar.gz" # The place to change file path.

# For Ubuntu 14.04.4 Multiple Server Deployment
image=/tools/toolkit10.40/vmlinuz
label=toolkit10.40.Ubuntu.14.04.4
description = "HP Scripting Toolkit 10.40 Ubuntu 14.04.4"
initrd=/tools/toolkit10.40/initrd.img
append="root=/dev/ram0 rw ramdisk_size=785612 quiet=1 stsk_nic=eth0
network=1 media=net numa=off stsk_conf=toolkit.conf
stsk_script=/deploy.sh stsk_tgz=http://172.1.1.100/answers/STK/hpe-scripting-toolkit-linux-10.40-ubuntu14.04.4.tar.gz" # The place to change file path.

# For Ubuntu 16.04 Multiple Server Deployment
image=/tools/toolkit10.40/vmlinuz
label=toolkit10.40.Ubuntu.16.04
description = "HP Scripting Toolkit 10.40 Ubuntu 16.04"
initrd=/tools/toolkit10.40/initrd.img
append="root=/dev/ram0 rw ramdisk_size=785612 quiet=1 stsk_nic=eth0
network=1 media=net numa=off stsk_conf=toolkit.conf
```

For SLES 12 SP1 Multiple Server Deployment
image=/tools/toolkit10.40/vmlinuz
label=toolkit10.40.SLE12SP1
description = "HP Scripting Toolkit 10.40 SUSE 12 SP1"
initrd=/tools/toolkit10.40/initrd.img
append="root=/dev/ram0 rw ramdisk_size=785612 quiet=1 sstk_nic=eth0
network=1 media=net numa=off sstk_conf=toolkit.conf
sstk_script=/deploy.sh sstk_tgz=https://172.1.1.100/answers/STK/hpe-scripting-toolkit-linux-10.40-sle12sp1.tar.gz" #The place to change file path.

For RHEL7.2 Single Machine Deployment
image=/RHEL/RHEL-7.2Server-x86_64/vmlinuz
label=RHEL-7.2Server-x86_64_ks
description = "RHEL 7.2 Server RAID1 kickstart"
initrd=/RHEL/RHEL-7.2Server-x86_64/initrd.img
append="ipv6.disable=1
inst.ks=https://172.1.1.100/answers/RHEL7_2_RAID1_ks.cfg" #The place to change file path.

For SLES 12 SP1 Single Machine Deployment
image=/SLE/SLE-12-SP1-Server-x86_64/linux
label=SLE-12-SP1-Server-x86_64_ks
description = "SLES 12 SP1 RAID1 ks"
initrd=/SLE/SLE-12-SP1-Server-x86_64/initrd.gz
append="vga=normal netdev=eth1
autoyast=https://172.1.1.100/answers/SLES12SP1_RAID1_autoinst.xml
install=http://172.1.1.100/mrepo/SLE-12-SP1-Server-x86_64/disc1" #The place to change file path.

For Ubuntu 14.04.4 Single Machine Deployment
image=/ubuntu/trusty-ubuntu-installer/amd64/14.04.4/linux
label=Ubuntu-trusty-14.04.4-amd64_ks
description = "Ubuntu Trusty 14.04.4 RAID1 auto-install"
intr.gz=ubuntu-trusty-ubuntu-installer/amd64/14.04.4/initrd.gz
append="vga=normal ipv6.disable=1 ramdisk_size=1083840 root=/dev/ram
rw
preseed/url=https://172.1.1.100/answers/Ubuntu_14.04.4_RAID1_preseed.cfg
debian-installer/locale=en_US keyboard-configuration/layoutcode=us
localechooser/translation/warn-light=true
localechooser/translation/warn-severe=true
netcfg/choose_interface=auto netcfg/get_hostname=ubuntu live-
installer/net/image=https://172.1.1.100/mrepo/UBUNTU-14.04.4-Server-
x86_64/install/filesystem.squashfs" #The place to change file path.

For Ubuntu 16.04 Single Machine Deployment
image=/ubuntu/xenial-debian-installer/amd64/16.04/linux
TFTP server configuration

The TFTP configuration file is located in /etc/xinetd.d/tftp.

```bash
# default: off
# description: The tftp server serves files using the trivial file transfer \\
# protocol. The tftp protocol is often used to boot diskless \\
# workstations, download configuration files to network-aware printers, \\
# and to start the installation process for some operating systems.

service tftp {
  socket_type = dgram
  protocol = udp
  wait = yes
  user = root
  server = /usr/sbin/in.tftpd
  server_args = -s /data/tftpboot #Where your tftp root directory
  path
    disable = no
    per_source = 11
    cps = 100 2
    flags = IPv4
}
```

DHCP server configuration

The DHCP configuration file can be found in:

```bash
# # DHCP Server Configuration file.
# see /usr/share/doc/dhcp*/dhcpcd.conf.example
# see dhcpcd.conf(5) man page
#```
ddns-update-style none;
ignore client-updates;
default-lease-time 259200;
max-lease-time 518400;

option routers 172.1.1.100;  #Where you DHCP server IP
option domain-name "tw-linux.rdlab";
option space PXE;
option PXE.mtftp-ip code 1 = ip-address;
option PXE.mtftp-cport code 2 = unsigned integer 16;
option PXE.mtftp-sport code 3 = unsigned integer 16;
option PXE.mtftp-tmout code 4 = unsigned integer 8;
option PXE.mtftp-delay code 5 = unsigned integer 8;
option arch code 93 = unsigned integer 16;  # RFC4578
allow booting;
allow bootp;
authoritative;
#option option-128 code 128 = string;
#option option-129 code 129 = text;
#next-server 172.1.1.254;
#filename "pxelinux.0"

class "pxe-clients" {
    match if substring (option vendor-class-identifier, 0, 9) = "PXEClient";
    next-server 172.1.1.100;  #Where you tftp server IP
    if option arch = 00:07 {
        filename "EFI/bootx64.efi";
    } else {
        filename "pxelinux.0";
    }
}

subnet 172.1.1.0 netmask 255.255.255.0 {
    range 172.1.1.101 172.1.1.200;  #Where you DHCP IP range.
}
Appendix C: Example OS-specific installation scripts

KickStart Script

For the example KickStart script, see
http://downloads.linux.hpe.com/SDR/project/minnow/current/RHEL7.2_RAID1_ks.cfg

Place the script in your local TFTP server where your PXE installation can connect to it.

In RHEL 7.2, you will need one extra package, which is can be downloaded from:
http://downloads.linux.hpe.com/SDR/project/minnow/current/minnow-1.0.0-1.noarch.rpm

Download it from the above URL and place on your local TFTP server, and specify them in the installation script.

Modifying the KickStart script for RHEL 7.2

In the KickStart script, there are configurable parameters that user should adjust to fit the deployment environments.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description and Example</th>
</tr>
</thead>
</table>
| url            | The URL for the RHEL installation media  
url -url “http://172.1.1.100/mrepo/RHEL-7.2Server-x86_64/disc1/” |
| rootpw         | The password for the root user  
rootpw -plaintext “Passw0rd” |
| %packages …   | Packages to install  
%packages  
@base  
@core  
wget  
net-tools  
dhcp  
mdadm  
gdisk | %end
<table>
<thead>
<tr>
<th>smartmontools</th>
</tr>
</thead>
<tbody>
<tr>
<td>%end</td>
</tr>
</tbody>
</table>

**part**

Disk partition information. The example create a 256 MB ESP partition, a 16384RAID MB swap partition and a raid volume that takes the rest area.

```
part /boot/efi --fstype=efi --ondisk=sd[01] --size=256
part swap --fstype=swap --ondisk=sd[02] --size=16384
part raid.01 --fstype=raid --ondisk=sd[03] --size=1 --grow
part none.01 --fstype=efi --ondisk=sdb --size=256
part none.02 --fstype=vfat --ondisk=sdb --size=16384
part raid.02 --fstype=raid
```

**raid**

RAID configuration

```
raid / --device=md0 --fstype=xfs --level=1 raid.01
raid.02
```

**%post**

Specify the log path for the post-install scripts

```
%post --interpreter /bin/bah --log
/var/log/ks.cfg.log
```

**wget**

The path to get the RPM package

```
wget -P /tmp
http://172.1.1.100/answers/mdsync/minnow-1.0.0-1.noarch.rpm
```

---

**AutoYast Script**

For the example AutoYast script, see

http://downloads.linux.hpe.com/SDR/project/minnow/current/SLES12SP1_RAID1_autoinst.xml

Place the script in your local TFTP server where your PXE installation can connect to it.

In SLES 12.1, you will need one extra package, which can be downloaded from:

http://downloads.linux.hpe.com/SDR/project/minnow/current/minnow-1.0.0-1.noarch.rpm

Download it from the above URL and place on your local TFTP server, and specify them in the installation script.
Modifying the AutoYast script for SLES 12.1

In the AutoYast script, there are configurable parameters that user should adjust to fit the deployment environments.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description and Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>wget</td>
<td>The path to get the RPM package.</td>
</tr>
<tr>
<td>wget -P /tmp <a href="http://172.1.1.100/answers/mdsync/minnow-1.0.0-1.noarch.rpm">http://172.1.1.100/answers/mdsync/minnow-1.0.0-1.noarch.rpm</a></td>
<td></td>
</tr>
<tr>
<td>&lt;drive&gt; ... /&lt;/drive&gt;</td>
<td>Hard drive configuration. Please check the AutoYast file. The example is for two identical 500GB hard drives. Each driver is partitioned as 1) 187 MB ESP partition; 2) 16 GB of swap partition; 3) remaining 482 GB for data.</td>
</tr>
<tr>
<td></td>
<td>The RAID device /dev/md0 will be create to include /dev/sda3 and /dev/sdb3.</td>
</tr>
<tr>
<td></td>
<td>&lt;drive&gt; # Where to modify HD partitions. Default is for the two 500G HDs.</td>
</tr>
<tr>
<td></td>
<td>&lt;device&gt;/dev/md0&lt;/device&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;disklabel&gt;msdos&lt;/disklabel&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;enable_snapshots config:type=&quot;boolean&quot;&gt;true&lt;/enable_snapshots&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;initialize config:type=&quot;boolean&quot;&gt;true&lt;/initialize&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;partitions config:type=&quot;list&quot;&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;partition&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;create config:type=&quot;boolean&quot;&gt;true&lt;/create&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;crypt_fs config:type=&quot;boolean&quot;&gt;false&lt;/crypt_fs&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;filesystem config:type=&quot;symbol&quot;&gt;xfs&lt;/filesystem&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;format config:type=&quot;boolean&quot;&gt;true&lt;/format&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;loop_fs config:type=&quot;boolean&quot;&gt;false&lt;/loop_fs&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;mount&gt;/&lt;/mount&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;mountby config:type=&quot;symbol&quot;&gt;uuid&lt;/mountby&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;partition_nr config:type=&quot;integer&quot;&gt;0&lt;/partition_nr&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;raid_options&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;device_order config:type=&quot;list&quot;&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;device&gt;/dev/sda3&lt;/device&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;device&gt;/dev/sdb3&lt;/device&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;/device_order&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;persistent_superblock config:type=&quot;boolean&quot;&gt;false&lt;/persistent_superblock&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;raid_type&gt;raid1&lt;/raid_type&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;/raid_options&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;resize config:type=&quot;boolean&quot;&gt;false&lt;/resize&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;/partition&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;/partitions&gt;</td>
</tr>
</tbody>
</table>
<drive>
  <device>/dev/sda</device>
  <disklabel>gpt</disklabel>
  <enable_snapshots config:type="boolean">true</enable_snapshots>
  <initialize config:type="boolean">true</initialize>
  <partitions config:type="list">
    <partition>
      <create config:type="boolean">true</create>
      <crypt_fs config:type="boolean">false</crypt_fs>
      <filesystem config:type="symbol">vfat</filesystem>
      <format config:type="boolean">true</format>
      <fstopt>umask=0002,utf8=true</fstopt>
      <loop_fs config:type="boolean">false</loop_fs>
      <mount>/boot/efi</mount>
      <mountby config:type="symbol">uuid</mountby>
      <partition_id config:type="integer">259</partition_id>
      <partition_nr config:type="integer">1</partition_nr>
      <resize config:type="boolean">false</resize>
      <size>196247040</size>
    </partition>
    <partition>
      <create config:type="boolean">true</create>
      <crypt_fs config:type="boolean">false</crypt_fs>
      <filesystem config:type="symbol">swap</filesystem>
      <format config:type="boolean">true</format>
      <loop_fs config:type="boolean">false</loop_fs>
      <mount>swap</mount>
      <mountby config:type="symbol">uuid</mountby>
      <partition_id config:type="integer">130</partition_id>
      <partition_nr config:type="integer">2</partition_nr>
      <resize config:type="boolean">false</resize>
      <size>17174789632</size>
    </partition>
    <partition>
      <create config:type="boolean">true</create>
      <crypt_fs config:type="boolean">false</crypt_fs>
      <format config:type="boolean">false</format>
      <loop_fs config:type="boolean">false</loop_fs>
      <mountby config:type="symbol">device</mountby>
      <partition_id config:type="integer">253</partition_id>
      <partition_nr config:type="integer">3</partition_nr>
      <raid_name>/dev/md0</raid_name>
      <resize config:type="boolean">false</resize>
      <size>482711076352</size>
    </partition>
  </partitions>
</drive>
<drive>
  <device>/dev/sdb</device>
  <disklabel>gpt</disklabel>
  <enable_snapshots config:type="boolean">true</enable_snapshots>
  <initialize config:type="boolean">true</initialize>
  <partitions config:type="list">
    <partition>
      <create config:type="boolean">true</create>
      <crypt_fs config:type="boolean">false</crypt_fs>
      <filesystem config:type="symbol">vfat</filesystem>
      <format config:type="boolean">true</format>
      <fstopt>umask=0002,utf8=true</fstopt>
      <loop_fs config:type="boolean">false</loop_fs>
      <mount>/boot/efi</mount>
      <mountby config:type="symbol">uuid</mountby>
      <partition_id config:type="integer">259</partition_id>
      <partition_nr config:type="integer">1</partition_nr>
      <resize config:type="boolean">false</resize>
      <size>196247040</size>
    </partition>
    <partition>
      <create config:type="boolean">true</create>
      <crypt_fs config:type="boolean">false</crypt_fs>
      <filesystem config:type="symbol">swap</filesystem>
      <format config:type="boolean">true</format>
      <loop_fs config:type="boolean">false</loop_fs>
      <mount>swap</mount>
      <mountby config:type="symbol">uuid</mountby>
      <partition_id config:type="integer">130</partition_id>
      <partition_nr config:type="integer">2</partition_nr>
      <resize config:type="boolean">false</resize>
      <size>17174789632</size>
    </partition>
    <partition>
      <create config:type="boolean">true</create>
      <crypt_fs config:type="boolean">false</crypt_fs>
      <format config:type="boolean">false</format>
      <loop_fs config:type="boolean">false</loop_fs>
      <mountby config:type="symbol">device</mountby>
      <partition_id config:type="integer">253</partition_id>
      <partition_nr config:type="integer">3</partition_nr>
      <raid_name>/dev/md0</raid_name>
      <resize config:type="boolean">false</resize>
      <size>482711076352</size>
    </partition>
  </partitions>
</drive>
<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;pesize/&gt;</code></td>
<td>CT_DISK</td>
</tr>
<tr>
<td><code>&lt;type config:type=&quot;symbol&quot;&gt;CT_DISK&lt;/type&gt;</code></td>
<td><code>&lt;use&gt;all&lt;/use&gt;</code></td>
</tr>
<tr>
<td><code>&lt;drive&gt;</code></td>
<td>The http proxy used in the deployment environment.</td>
</tr>
<tr>
<td><code>&lt;http_proxy&gt;</code></td>
<td><code>&lt;http_proxy&gt;http://proxy:port&lt;/http_proxy&gt;</code></td>
</tr>
<tr>
<td><code>&lt;software&gt;</code></td>
<td>The software packages to install.</td>
</tr>
<tr>
<td><code>...</code></td>
<td><code>&lt;software&gt;</code></td>
</tr>
<tr>
<td><code>&lt;/software&gt;</code></td>
<td><code>&lt;image/&gt;</code></td>
</tr>
<tr>
<td><code>&lt;instsource/&gt;</code></td>
<td><code>&lt;packages config:type=&quot;list&quot;&gt;</code></td>
</tr>
<tr>
<td><code>&lt;/packages&gt;</code></td>
<td><code>&lt;pattern&gt;apparmor&lt;/pattern&gt;</code></td>
</tr>
<tr>
<td><code>&lt;/patterns&gt;</code></td>
<td><code>&lt;pattern&gt;x11&lt;/pattern&gt;</code></td>
</tr>
<tr>
<td><code>&lt;/patterns&gt;</code></td>
<td><code>&lt;pattern&gt;documentation&lt;/pattern&gt;</code></td>
</tr>
<tr>
<td><code>&lt;/patterns&gt;</code></td>
<td><code>&lt;pattern&gt;base&lt;/pattern&gt;</code></td>
</tr>
<tr>
<td><code>&lt;/patterns&gt;</code></td>
<td><code>&lt;pattern&gt;gnome-basic&lt;/pattern&gt;</code></td>
</tr>
<tr>
<td><code>&lt;/patterns&gt;</code></td>
<td><code>&lt;pattern&gt;Minimal&lt;/pattern&gt;</code></td>
</tr>
<tr>
<td><code>&lt;/patterns&gt;</code></td>
<td><code>&lt;pattern&gt;32bit&lt;/pattern&gt;</code></td>
</tr>
<tr>
<td><code>&lt;users&gt;</code></td>
<td>The users described in this section will be created. In the example, user 'hpe' will be created with password 'Passw0rd.'</td>
</tr>
</tbody>
</table>
Preseed Script

Preseed Script for Ubuntu 14.04.4

For the example Preseed script for Ubuntu 14.04.4, see http://downloads.linux.hpe.com/SDR/project/minnow/current/Ubuntu_14.04.4_RAID1_preseed.cfg

Place the script in your local TFTP server where your PXE installation can connect to it.

In Ubuntu 14.04.4, you will need one extra scripts and one deb file, which can be downloaded from:

http://downloads.linux.hpe.com/SDR/project/minnow/current/create_redundant_boot.sh
http://downloads.linux.hpe.com/SDR/project/minnow/current/minnow-1.0.0-1trusty_all.deb

You should download them from the above URL and put them on your local TFTP server, and specify them in the installation script.

Modifying the Preseed script for Ubuntu 14.04.4

In the Preseed script, there are configurable parameters that user should adjust to fit the deployment environments.

<table>
<thead>
<tr>
<th>Section Name</th>
<th>Description and Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirror</td>
<td>Specify the installation media.</td>
</tr>
<tr>
<td></td>
<td>d-i mirror/http/hostname string 172.1.1.100</td>
</tr>
<tr>
<td></td>
<td>d-i mirror/http/directory string /mrepo/UBUNTU-14.04.4-Server-x86_64</td>
</tr>
<tr>
<td></td>
<td>d-i mirror/http/proxy string <a href="http://proxy:port">http://proxy:port</a></td>
</tr>
<tr>
<td></td>
<td>d-i live-installer/net-image string <a href="http://172.1.1.100/mrepo/UBUNTU-14.04.4-Server-x86_64/install/filesystem.squashfs">http://172.1.1.100/mrepo/UBUNTU-14.04.4-Server-x86_64/install/filesystem.squashfs</a></td>
</tr>
<tr>
<td>Partition</td>
<td>The hard drive partition scheme here is 1) 256 MB for the ESP; 2) 8000 MB for the swap area at the end of the disk; 3) the rest for the RAID.</td>
</tr>
<tr>
<td></td>
<td>d-i partman-auto/expert_recipe string</td>
</tr>
<tr>
<td></td>
<td>multiraid ::</td>
</tr>
<tr>
<td></td>
<td>256 10 256 fat32</td>
</tr>
<tr>
<td></td>
<td>$gptonly{ }</td>
</tr>
<tr>
<td></td>
<td>$primary{ }</td>
</tr>
<tr>
<td></td>
<td>$lvmignore{ }</td>
</tr>
<tr>
<td></td>
<td>method{ efi }</td>
</tr>
<tr>
<td></td>
<td>format{ }</td>
</tr>
<tr>
<td>Package</td>
<td>Specify packages to install.</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td># Package selection</td>
<td>tasksel tasksel/first multiselect standard</td>
</tr>
<tr>
<td># Individual additional packages to install</td>
<td>d-i pkgsel/include string openssh-server vim python gdisk smartmontools sg3-utils</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User and Password</th>
<th>Specify the password for root.</th>
</tr>
</thead>
<tbody>
<tr>
<td># Root password, either in clear text</td>
<td>d-i passwd/root-password password Passw0rd</td>
</tr>
<tr>
<td>d-i passwd/root-password-again password Passw0rd</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post Install</th>
<th>Post installation script. The URL path of the create_redundant_boot.sh and minnow-1.0.0-1trusty_all.deb should be changed accordingly.</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-i preseed/late_command string</td>
<td>\n in-target sync ; \n in-target /bin/dd if=/dev/sdal of=/dev/sdb1 ; \n in-target wget -P /tmp/<a href="http://172.1.1.100/answers/mdsync/create_redundant_boot.sh">http://172.1.1.100/answers/mdsync/create_redundant_boot.sh</a> ; \n in-target chmod +x /tmp/create_redundant_boot.sh ; \n in-target bash /tmp/create_redundant_boot.sh ; \n in-target wget -P /tmp/<a href="http://172.1.1.100/answers/mdsync/minnow-1.0.0-1trusty_all.deb">http://172.1.1.100/answers/mdsync/minnow-1.0.0-1trusty_all.deb</a> ; \n in-target dpkg -i /tmp/minnow-1.0.0-1trusty_all.deb ; \n</td>
</tr>
</tbody>
</table>
Preseed Script for Ubuntu 16.04

For example Preseed script for Ubuntu 16.04, see
http://downloads.linux.hpe.com/SDR/project/minnow/current/Ubuntu_16.04_RAID1_preseed.cfg

You should put the script to your local TFTP server, where your PXE installation can connect to.

Note that in Ubuntu 14.04.4, you will need one extra scripts and one deb file, which are:
http://downloads.linux.hpe.com/SDR/project/minnow/current/create_redundant_boot.sh
http://downloads.linux.hpe.com/SDR/project/minnow/current/minnow-1.0.0-1xenial_all.deb

Download it from the above URL and place on your local TFTP server, and specify them in the installation script.

Modifying the Preseed script for Ubuntu 16.04

In the Preseed script, there are configurable parameters that user should adjust to fit the deployment environments.

<table>
<thead>
<tr>
<th>Section Name</th>
<th>Description and Example</th>
</tr>
</thead>
<tbody>
<tr>
<td># Mirror</td>
<td>Specify the installation media.</td>
</tr>
<tr>
<td></td>
<td>d-i mirror/http/hostname string 172.1.1.100</td>
</tr>
<tr>
<td></td>
<td>d-i mirror/http/directory string /mrepo/UBUNTU-14.04.4-Server-x86_64</td>
</tr>
<tr>
<td></td>
<td>d-i mirror/http/proxy string <a href="http://proxy:port">http://proxy:port</a></td>
</tr>
<tr>
<td></td>
<td>d-i live-installer/net-image string <a href="http://172.1.1.100/mrepo/UBUNTU-14.04.4-Server-x86_64/install/filesystem.squashfs">http://172.1.1.100/mrepo/UBUNTU-14.04.4-Server-x86_64/install/filesystem.squashfs</a></td>
</tr>
<tr>
<td># Partition</td>
<td>The hard drive partition scheme here is 1) 256 MB for the ESP; 2) 8000 MB for the swap area at the end of the disk; 3) the rest for the RAID.</td>
</tr>
<tr>
<td></td>
<td>d-i partman-auto/expert_recipe string</td>
</tr>
<tr>
<td></td>
<td>multiraid ::</td>
</tr>
<tr>
<td></td>
<td>256 10 256 fat32</td>
</tr>
<tr>
<td></td>
<td>$gptonly{}</td>
</tr>
<tr>
<td></td>
<td>$primary{}</td>
</tr>
<tr>
<td></td>
<td>$lvmignore{}</td>
</tr>
<tr>
<td></td>
<td>method{ efi }</td>
</tr>
<tr>
<td></td>
<td>format{}</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>500 10000 -1 raid</td>
</tr>
<tr>
<td></td>
<td>$primary{}</td>
</tr>
<tr>
<td></td>
<td>$lvmignore{}</td>
</tr>
<tr>
<td></td>
<td>method{ raid }</td>
</tr>
<tr>
<td></td>
<td>raidid{ 1 }</td>
</tr>
</tbody>
</table>
# Package

Specify packages to install.

## Package selection

tasksel tasksel/first multiselect standard

## Individual additional packages to install

d-i pkgsel/include string openssh-server vim python gdisk smartmontools sg3-utils

# Users and Password

Specify the password for root.

## Root password, either in clear text

d-i passwd/root-password password Passw0rd
d-i passwd/root-password-again password Passw0rd

# Post Install

Post installation script. The URL path of the `create_redundant_boot.sh` and `mminnow-1.0.0-1trusty_all.deb` should be changed accordingly.

## Update repo

d-i preseed/late_command string \
\nin-target wget -P /etc/default/ \n\nhttp://172.1.1.100/answers/grub_ubuntu16.04 ; \n\nin-target rm /etc/apt/sources.list ; \n\nin-target wget -P /etc/apt/ \n\nhttp://172.1.1.100/answers/Ubuntu/Apt_source_16.04/sources.list ; \n\n## Update grub parameter

in-target sed -i 's/GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"/GRUB_CMDLINE_LINUX_DEFAULT=""/g' /etc/default/grub ; \n\nin-target update-grub ; \n
## RAID config

in-target sync ; \n\nin-target dd if=/dev/sda1 of=/dev/sdb1 ; \n
in-target wget -P /tmp/ http://172.1.1.100/answers/mdsync/create_redundant_boot.sh ; \n
in-target chmod +x /tmp/create_redundant_boot.sh ; \
in-target bash /tmp/create_redundant_boot.sh ; \
in-target wget -P /tmp http://172.1.1.100/answers/mdsync/minnow-1.0.0-1xenial_all.deb ; \
in-target dpkg -i /tmp/minnow-1.0.0-1xenial_all.deb ; \