Abstract

This document is for the person who installs, administers, and troubleshoots servers and storage systems. Hewlett Packard Enterprise assumes you are qualified in the servicing of computer equipment and trained in recognizing hazards in products with hazardous energy levels.
Contents

Component identification .. 6
- Front panel components .. 6
- Front panel LEDs and buttons ... 8
- Access the Systems Insight Display ... 9
- Systems Insight Display LEDs .. 10
- Systems Insight Display LED combinations .. 11
- Rear panel components .. 12
- Rear panel LEDs and buttons .. 13
- Non-hot-plug PCIe riser board slot definitions ... 13
- System board components .. 14
 - System maintenance switch .. 15
 - NMI functionality ... 16
 - DIMM slot locations .. 16
- SAS and SATA device numbers .. 16
- Hot-plug drive LED definitions .. 18
- PCIe riser cage LED .. 18
- FBWC module LEDs (P222, P420, P421) .. 19
- Hot-plug fans .. 20

Operations ... 22
- Power up the server .. 22
- Power down the server .. 22
- Extend the server from the rack .. 22
- Remove the server from the rack ... 23
- Remove the access panel ... 24
- Install the access panel ... 24
- Access the product rear panel .. 24
 - Opening the cable management arm ... 24
- Remove the fan cage .. 25
- Remove the hot-plug fan ... 26
- Remove the full-length expansion board .. 27
- Remove the primary PCIe riser cage ... 28
- Remove the secondary PCIe riser cage .. 29
- Install the primary PCIe riser cage .. 30
- Secure the primary PCIe riser cage full-length expansion board retainer 31
- Secure the secondary PCIe riser cage full-length expansion board retainer 32
- Remove the air baffle .. 33

Setup .. 35
- Optional services .. 35
- Rack planning resources ... 35
- Optimum environment .. 35
 - Space and airflow requirements ... 35
 - Temperature requirements ... 36
 - Power requirements .. 36
 - Electrical grounding requirements .. 37
 - Connecting a DC power cable to a DC power source .. 37
- Rack warnings ... 38
- Identifying the contents of the server shipping carton .. 39
- Installing hardware options .. 39
- Installing the server into the rack ... 39
- Installing the operating system ... 41
- Powering on and selecting boot options ... 41
- Registering the product ... 42
Component identification

Front panel components

- 8 drive SFF configuration

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Video connector</td>
</tr>
<tr>
<td>2</td>
<td>Quick release levers (2)</td>
</tr>
<tr>
<td>3</td>
<td>SATA optical drive bay</td>
</tr>
<tr>
<td>4</td>
<td>SFF drive bays</td>
</tr>
<tr>
<td>5</td>
<td>Serial number label</td>
</tr>
<tr>
<td>6</td>
<td>USB connectors (2)</td>
</tr>
<tr>
<td>7</td>
<td>Systems Insight Display</td>
</tr>
</tbody>
</table>

- 16 drive SFF configuration (with optional drive cage)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Video connector</td>
</tr>
<tr>
<td>2</td>
<td>Drive bays (box 1)</td>
</tr>
<tr>
<td>3</td>
<td>Drive bays (box 2)</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Systems Insight Display</td>
</tr>
<tr>
<td>5</td>
<td>USB connectors (2)</td>
</tr>
</tbody>
</table>

- 25 SFF drive configuration

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Video connector</td>
</tr>
<tr>
<td>2</td>
<td>Quick release levers (2)</td>
</tr>
<tr>
<td>3</td>
<td>Drive bays</td>
</tr>
<tr>
<td>4</td>
<td>Systems Insight Display</td>
</tr>
</tbody>
</table>

- 8 drive LFF configuration

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Video connector</td>
</tr>
<tr>
<td>2</td>
<td>Quick release levers (2)</td>
</tr>
<tr>
<td>3</td>
<td>Drive bays</td>
</tr>
<tr>
<td>4</td>
<td>USB connector</td>
</tr>
<tr>
<td>5</td>
<td>Systems Insight Display</td>
</tr>
<tr>
<td>6</td>
<td>USB connectors (2)</td>
</tr>
</tbody>
</table>

- 25 SFF drive configuration
• 12 drive LFF configuration

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Video connector</td>
</tr>
<tr>
<td>2</td>
<td>Quick release levers (2)</td>
</tr>
<tr>
<td>3</td>
<td>Drive bays</td>
</tr>
<tr>
<td>4</td>
<td>USB connector</td>
</tr>
</tbody>
</table>

Front panel LEDs and buttons

• SFF
Component Identification

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NIC status LED</td>
<td>Solid green = Link to network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing green (1 Hz/cycle per sec) = Network active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off = No network activity</td>
</tr>
<tr>
<td>2</td>
<td>Health LED</td>
<td>Solid green = Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing amber = System degraded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing red (1 Hz/cycle per sec) = System critical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast-flashing red (4 Hz/cycles per sec) = Power fault*</td>
</tr>
<tr>
<td>3</td>
<td>Power On/Standby button and system power LED</td>
<td>Solid green = System on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing green (1 Hz/cycle per sec) = Performing power on sequence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid amber = System in standby</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off = No power present**</td>
</tr>
<tr>
<td>4</td>
<td>UID button/LED</td>
<td>Solid blue = Activated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing blue (1 Hz/cycle per sec) = Remote management or firmware upgrade in progress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off = Deactivated</td>
</tr>
</tbody>
</table>

* To identify components in a degraded or critical state, see the Systems Insight Display LEDs, check iLO/BIOS logs, and reference the server troubleshooting guide.

** Facility power is not present, power cord is not attached, no power supplies are installed, power supply failure has occurred, or the power button cable is disconnected.

Access the Systems Insight Display

To access the Systems Insight Display in a server with an 8-drive LFF configuration:

1. Press and release the panel.
2. After the display fully ejects, rotate the display downward to view the LEDs.

Systems Insight Display LEDs

The Systems Insight Display LEDs represent the system board layout. The display, available on 8 SFF, 16 SFF, and 8 LFF configurations, enables diagnosis with the access panel installed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power cap</td>
<td>Off = System is in standby, or no cap is set. Solid green = Power cap applied</td>
</tr>
</tbody>
</table>

Component identification 10
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NIC link/activity</td>
<td>Off = No link to network. If the power is off, view the rear panel RJ-45 LEDs for status. Flashing green = Network link and activity. Solid green = Network link.</td>
</tr>
<tr>
<td>3</td>
<td>AMP status</td>
<td>Off = AMP modes disabled. Solid green = AMP mode enabled. Solid amber = Failover. Flashing amber = Invalid configuration.</td>
</tr>
<tr>
<td>4</td>
<td>Over temp</td>
<td>Off = Normal. Solid amber = High system temperature detected.</td>
</tr>
<tr>
<td></td>
<td>All other LEDs</td>
<td>Off = Normal. Amber = Failure. For more information on the activation of these LEDs, see "Systems Insight Display LED combinations (on page 11)."</td>
</tr>
</tbody>
</table>

Systems Insight Display LED combinations

When the health LED on the front panel illuminates either amber or red, the server is experiencing a health event. Combinations of illuminated Systems Insight Display LEDs, the system power LED, and the health LED indicate system status.

<table>
<thead>
<tr>
<th>Systems Insight Display LED and color</th>
<th>Health LED</th>
<th>System power LED</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor (amber)</td>
<td>Red</td>
<td>Amber</td>
<td>One or more of the following conditions may exist:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Processor in socket X has failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Processor X is not installed in the socket.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Processor X is unsupported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- ROM detects a failed processor during POST.</td>
</tr>
<tr>
<td>Processor (amber)</td>
<td>Amber</td>
<td>Green</td>
<td>Processor in socket X is in a pre-failure condition.</td>
</tr>
<tr>
<td>DIMM (amber)</td>
<td>Red</td>
<td>Green</td>
<td>One or more DIMMs have failed.</td>
</tr>
<tr>
<td>DIMM (amber)</td>
<td>Amber</td>
<td>Green</td>
<td>DIMM in slot X is in a pre-failure condition.</td>
</tr>
<tr>
<td>Over temp (amber)</td>
<td>Amber</td>
<td>Green</td>
<td>The Health Driver has detected a cautionary temperature level.</td>
</tr>
<tr>
<td>Over temp (amber)</td>
<td>Red</td>
<td>Amber</td>
<td>The server has detected a hardware critical temperature level.</td>
</tr>
<tr>
<td>Fan (amber)</td>
<td>Amber</td>
<td>Green</td>
<td>One fan has failed or has been removed.</td>
</tr>
<tr>
<td>Fan (amber)</td>
<td>Red</td>
<td>Green</td>
<td>Two or more fans have failed or been removed.</td>
</tr>
<tr>
<td>Power supply (amber)</td>
<td>Red</td>
<td>Amber</td>
<td>One or more of the following conditions may exist:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Only one power supply is installed and that power supply is in standby.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Power supply fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- System board fault</td>
</tr>
</tbody>
</table>
Systems Insight Display LED and color | Health LED | System power LED | Status
---|---|---|---
Power supply (amber) | Amber | Green | One or more of the following conditions may exist:
- Redundant power supply is installed and only one power supply is functional.
- AC power cord is not plugged into redundant power supply.
- Redundant power supply fault
- Power supply mismatch at POST or power supply mismatch through hot-plug addition

Power cap (off) | — | Amber | Standby
Power cap (off) | — | Flashing green | Waiting for power
Power cap (off) | — | Green | Power is available.

IMPORTANT: If more than one DIMM slot LED is illuminated, further troubleshooting is required. Test each bank of DIMMs by removing all other DIMMs. Isolate the failed DIMM by replacing each DIMM in a bank with a known working DIMM.

Rear panel components

![Rear panel components diagram]

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCIe slots 1–3 (top to bottom)</td>
</tr>
<tr>
<td>2</td>
<td>PCIe slots 4–6, optional (top to bottom)</td>
</tr>
<tr>
<td>3</td>
<td>Power supply 1 (PS1)</td>
</tr>
<tr>
<td>4</td>
<td>PS1 power connector</td>
</tr>
<tr>
<td>5</td>
<td>PS2 power connector, optional</td>
</tr>
<tr>
<td>6</td>
<td>Power supply 2 (PS2), optional</td>
</tr>
<tr>
<td>7</td>
<td>USB connectors (4)</td>
</tr>
<tr>
<td>8</td>
<td>Video connector</td>
</tr>
<tr>
<td>9</td>
<td>iLO connector</td>
</tr>
<tr>
<td>10</td>
<td>Serial connector</td>
</tr>
<tr>
<td>11</td>
<td>FlexibleLOM ports (Shown: 4x1Gb/Optional: 2x10Gb); port 1 on right side</td>
</tr>
</tbody>
</table>
Rear panel LEDs and buttons

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UID LED/button</td>
<td>Off = Deactivated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid blue = Activated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing blue = System being managed remotely</td>
</tr>
<tr>
<td>2</td>
<td>Power supply 2 LED</td>
<td>Off = System is off or power supply has failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid green = Normal</td>
</tr>
<tr>
<td>3</td>
<td>Power supply 1 LED</td>
<td>Off = System is off or power supply has failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid green = Normal</td>
</tr>
<tr>
<td>4</td>
<td>NIC activity LED</td>
<td>Off = No network activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid green = Link to network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing green = Network activity</td>
</tr>
<tr>
<td>5</td>
<td>NIC link LED</td>
<td>Off = No network link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green = Network link</td>
</tr>
</tbody>
</table>

Non-hot-plug PCIe riser board slot definitions

<table>
<thead>
<tr>
<th>Primary Slot - form factor</th>
<th>PCIe 2 riser slot description</th>
<th>Secondary Slot - form factor</th>
<th>PCIe 2 x16 riser slot description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - FL/FH</td>
<td>PCIe2 x16 (8,4,1)</td>
<td>4 - FL/FH</td>
<td>PCIe2 x16 (16, 8, 4, 1)</td>
</tr>
<tr>
<td>2 - HL/FH</td>
<td>PCIe2 x8 (8,4,1)</td>
<td>5 - HL/FH</td>
<td>PCIe2 x16 (8, 4, 1)</td>
</tr>
<tr>
<td>3 - HL/FH</td>
<td>PCIe2 x8 (4,1)</td>
<td>6 - HL/FH</td>
<td>PCIe2 x8 (8, 4, 1)</td>
</tr>
</tbody>
</table>

Notes:
- "Primary" denotes the riser cage is installed in the primary riser connector.
- "Secondary" denotes the riser cage is installed in the secondary riser connector.
- Installing the riser cages listed in the table above in either the primary or secondary riser connectors determines the form factor of the PCI cards supported by those riser cages.
- FL/FH denotes full-length, full-height. HL/FH denotes half-length, full-height. LP denotes low profile.
The riser cages support a maximum power of 150 W with a Hewlett Packard Enterprise power cable. This cable must be used for PCIe card wattages greater than 75 W.

System board components

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fan connector 6</td>
</tr>
<tr>
<td>2</td>
<td>Systems Insight Display connector</td>
</tr>
<tr>
<td>3</td>
<td>Fan connector 5</td>
</tr>
<tr>
<td>4</td>
<td>Processor 1 DIMM slots</td>
</tr>
<tr>
<td>5</td>
<td>Fan connector 4</td>
</tr>
<tr>
<td>6</td>
<td>Front I/O connector</td>
</tr>
<tr>
<td>7</td>
<td>Front USB connector</td>
</tr>
<tr>
<td>8</td>
<td>Fan connector 3</td>
</tr>
<tr>
<td>9</td>
<td>First drive cage</td>
</tr>
<tr>
<td>10</td>
<td>Fan connector 2</td>
</tr>
<tr>
<td>11</td>
<td>Processor 2 DIMM slots</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>Second drive cage</td>
</tr>
<tr>
<td>13</td>
<td>Fan connector 1</td>
</tr>
<tr>
<td>14</td>
<td>NMI jumper</td>
</tr>
<tr>
<td>15</td>
<td>Front video connector</td>
</tr>
<tr>
<td>16</td>
<td>Discovery services connector</td>
</tr>
<tr>
<td>17</td>
<td>System maintenance switch</td>
</tr>
<tr>
<td>18</td>
<td>SATA optical drive connector</td>
</tr>
<tr>
<td>19</td>
<td>SATA drive port 1</td>
</tr>
<tr>
<td>20</td>
<td>Power supply backplane connector</td>
</tr>
<tr>
<td>21</td>
<td>USB connector</td>
</tr>
<tr>
<td>22</td>
<td>SD card slot</td>
</tr>
<tr>
<td>23</td>
<td>Secondary (processor 2) PCIe riser connector</td>
</tr>
<tr>
<td>24</td>
<td>Processor 2 socket</td>
</tr>
<tr>
<td>25</td>
<td>System battery</td>
</tr>
<tr>
<td>26</td>
<td>TPM connector</td>
</tr>
<tr>
<td>27</td>
<td>Primary (processor 1) PCIe riser connector</td>
</tr>
<tr>
<td>28</td>
<td>Processor 1 socket</td>
</tr>
<tr>
<td>29</td>
<td>FlexibleLOM</td>
</tr>
<tr>
<td>30</td>
<td>SAS port 1i</td>
</tr>
<tr>
<td>31</td>
<td>SAS port 2i</td>
</tr>
<tr>
<td>32</td>
<td>SAS cache module connector</td>
</tr>
</tbody>
</table>

System maintenance switch

<table>
<thead>
<tr>
<th>Position</th>
<th>Default</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Off</td>
<td>Off = HPE iLO security is enabled. On = HPE iLO security is disabled.</td>
</tr>
<tr>
<td>S2</td>
<td>Off</td>
<td>Off = System configuration can be changed. On = System configuration is locked.</td>
</tr>
<tr>
<td>S3</td>
<td>Off</td>
<td>Reserved</td>
</tr>
<tr>
<td>S4</td>
<td>Off</td>
<td>Reserved</td>
</tr>
<tr>
<td>S5</td>
<td>Off</td>
<td>Off = Power-on password is enabled. On = Power-on password is disabled.</td>
</tr>
<tr>
<td>S6</td>
<td>Off</td>
<td>Off = No function. On = ROM reads system configuration as invalid.</td>
</tr>
<tr>
<td>S7</td>
<td>—</td>
<td>Reserved</td>
</tr>
<tr>
<td>S8</td>
<td>—</td>
<td>Reserved</td>
</tr>
<tr>
<td>S9</td>
<td>—</td>
<td>Reserved</td>
</tr>
<tr>
<td>S10</td>
<td>—</td>
<td>Reserved</td>
</tr>
<tr>
<td>S11</td>
<td>—</td>
<td>Reserved</td>
</tr>
<tr>
<td>S12</td>
<td>—</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

To access the redundant ROM, set S1, S5, and S6 to on.

When the system maintenance switch position 6 is set to the On position, the system is prepared to erase all system configuration settings from both CMOS and NVRAM.
NMI functionality

An NMI crash dump enables administrators to create crash dump files when a system is hung and not responding to traditional debug mechanisms.

Crash dump log analysis is an essential part of diagnosing reliability problems, such as hangs in operating systems, device drivers, and applications. Many crashes freeze a system, and the only available action for administrators is to cycle the system power. Resetting the system erases any information that could support problem analysis, but the NMI feature preserves that information by performing a memory dump before a hard reset.

To force the OS to invoke the NMI handler and generate a crash dump log, the administrator can use the iLO Virtual NMI feature.

For more information, see the Hewlett Packard Enterprise website (http://www.hpe.com/support/NMI).

DIMM slot locations

DIMM slots are numbered sequentially (1 through 12) for each processor. The supported AMP modes use the letter assignments for population guidelines.

SAS and SATA device numbers

- 8 SFF device bay numbering
- 16 SFF device bay numbering

- 25 SFF device bay numbering

- 8 LFF device bay numbering

- 12 LFF device bay numbering
Hot-plug drive LED definitions

<table>
<thead>
<tr>
<th>Item</th>
<th>LED</th>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locate</td>
<td>Solid blue</td>
<td>The drive is being identified by a host application.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing blue</td>
<td>The drive carrier firmware is being updated or requires an update.</td>
</tr>
<tr>
<td>2</td>
<td>Activity ring</td>
<td>Rotating green</td>
<td>Drive activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>No drive activity</td>
</tr>
<tr>
<td>3</td>
<td>Do not remove</td>
<td>Solid white</td>
<td>Do not remove the drive. Removing the drive causes one or more of the logical drives to fail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>Removing the drive does not cause a logical drive to fail.</td>
</tr>
<tr>
<td>4</td>
<td>Drive status</td>
<td>Solid green</td>
<td>The drive is a member of one or more logical drives.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing green</td>
<td>The drive is rebuilding or performing a RAID migration, strip size migration, capacity expansion, or logical drive extension, or is erasing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing amber/green</td>
<td>The drive is a member of one or more logical drives and predicts the drive will fail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing amber</td>
<td>The drive is not configured and predicts the drive will fail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid amber</td>
<td>The drive has failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>The drive is not configured by a RAID controller.</td>
</tr>
</tbody>
</table>

PCIe riser cage LED

⚠️ **CAUTION:** To prevent damage to the server or expansion boards, power down the server and remove all AC power cords before removing or installing the PCIe riser cage.
Status

- **On** = AC power is connected.
- **Off** = AC power is disconnected.
- **Missing** = Riser cage is not installed, or power might not be connected.

FBWC module LEDs (P222, P420, P421)

The FBWC module has three single-color LEDs (one amber and two green). The LEDs are duplicated on the reverse side of the cache module to facilitate status viewing.
<table>
<thead>
<tr>
<th>Component identification</th>
<th>2 - Green</th>
<th>3 - Green</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>The cache module is not powered.</td>
</tr>
<tr>
<td>Off</td>
<td>Flashing 0.5 Hz</td>
<td>Flashing 0.5 Hz</td>
<td>The cache microcontroller is executing from within its boot loader and receiving new flash code from the host controller.</td>
</tr>
<tr>
<td>Off</td>
<td>Flashing 1 Hz</td>
<td>Flashing 1 Hz</td>
<td>The cache module is powering up, and the capacitor pack is charging.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Flashing 1 Hz</td>
<td>The cache module is idle, and the capacitor pack is charging.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>The cache module is idle, and the capacitor pack is charged.</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>The cache module is idle, the capacitor pack is charged, and the cache contains data that has not yet been written to the drives.</td>
</tr>
<tr>
<td>Off</td>
<td>Flashing 1 Hz</td>
<td>Off</td>
<td>A backup is in progress.</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>The current backup is complete with no errors.</td>
</tr>
<tr>
<td>Flashing 1 Hz</td>
<td>Flashing 1 Hz</td>
<td>Off</td>
<td>The current backup failed, and data has been lost.</td>
</tr>
<tr>
<td>Flashing 1 Hz</td>
<td>Flashing 1 Hz</td>
<td>On</td>
<td>A power error occurred during the previous or current boot. Data may be corrupt.</td>
</tr>
<tr>
<td>Flashing 2 Hz</td>
<td>On</td>
<td>Off</td>
<td>An overtemperature condition exists.</td>
</tr>
<tr>
<td>Flashing 2 Hz</td>
<td>Flashing 2 Hz</td>
<td>Off</td>
<td>The capacitor pack is not attached.</td>
</tr>
<tr>
<td>Flashing 2 Hz</td>
<td>Flashing 2 Hz</td>
<td>On</td>
<td>The capacitor has been charging for 10 minutes, but has not reached sufficient charge to perform a full backup.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>The current backup is complete, but power fluctuations occurred during the backup.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>The cache module microcontroller has failed.</td>
</tr>
</tbody>
</table>

Hot-plug fans

⚠️ **CAUTION:** To avoid damage to server components, fan blanks must be installed in fan bays 1 and 2 in a single-processor configuration.

The only two valid fan configurations are listed in the following table.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Fan bay 1</th>
<th>Fan bay 2</th>
<th>Fan bay 3</th>
<th>Fan bay 4</th>
<th>Fan bay 5</th>
<th>Fan bay 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 processor</td>
<td>Fan blank</td>
<td>Fan blank</td>
<td>Fan</td>
<td>Fan</td>
<td>Fan</td>
<td>Fan</td>
</tr>
<tr>
<td>2 processors</td>
<td>Fan</td>
<td>Fan</td>
<td>Fan</td>
<td>Fan</td>
<td>Fan</td>
<td>Fan</td>
</tr>
</tbody>
</table>
For a single-processor configuration, four fans and two blanks are required in specific fan bays for redundancy. A fan failure or missing fan causes a loss of redundancy. A second fan failure or missing fan causes an orderly shutdown of the server.

Installing more than the required number of fans in a single-processor configuration is not a supported configuration.

For a dual-processor configuration, six fans are required for redundancy. A fan failure or missing fan causes a loss of redundancy. A second fan failure or missing fan causes an orderly shutdown of the server.

The server supports variable fan speeds. The fans operate at minimum speed until a temperature change requires a fan speed increase to cool the server. The server shuts down during the following temperature-related scenarios:

- At POST and in the OS, HPE iLO performs an orderly shutdown if a cautionary temperature level is detected. If the server hardware detects a critical temperature level before an orderly shutdown occurs, the server performs an immediate shutdown.

- When the Thermal Shutdown feature is disabled in RBSU, HPE iLO does not perform an orderly shutdown when a cautionary temperature level is detected. Disabling this feature does not disable the server hardware from performing an immediate shutdown when a critical temperature level is detected.

⚠️ **CAUTION:** A thermal event can damage server components when the Thermal Shutdown feature is disabled in RBSU.
Operations

Power up the server

To power up the server, press the Power On/Standby button.

Power down the server

Before powering down the server for any upgrade or maintenance procedures, perform a backup of critical server data and programs.

IMPORTANT: When the server is in standby mode, auxiliary power is still being provided to the system.

To power down the server, use one of the following methods:

- Press and release the Power On/Standby button.
 This method initiates a controlled shutdown of applications and the OS before the server enters standby mode.

- Press and hold the Power On/Standby button for more than 4 seconds to force the server to enter standby mode.
 This method forces the server to enter standby mode without properly exiting applications and the OS. If an application stops responding, you can use this method to force a shutdown.

- Use a virtual power button selection through HPE iLO.
 This method initiates a controlled remote shutdown of applications and the OS before the server enters standby mode.

Before proceeding, verify the server is in standby mode by observing that the system power LED is amber.

Extend the server from the rack

1. Pull down the quick release levers on each side of the server.
2. Extend the server from the rack.

WARNING: To reduce the risk of personal injury or equipment damage, be sure that the rack is adequately stabilized before extending a component from the rack.
3. After performing the installation or maintenance procedure, slide the server back into the rack, and then press the server firmly into the rack to secure it in place.

WARNING: To reduce the risk of personal injury, be careful when pressing the server rail-release latches and sliding the server into the rack. The sliding rails could pinch your fingers.

Remove the server from the rack

To remove the server from a Hewlett Packard Enterprise, Compaq branded, Telco, or third-party rack:

1. Power down the server (on page 22).
2. Extend the server from the rack (on page 22).
3. Disconnect the cabling and remove the server from the rack. For more information, refer to the documentation that ships with the rack mounting option.
4. Place the server on a sturdy, level surface.
Remove the access panel

⚠️ **WARNING:** To reduce the risk of personal injury from hot surfaces, allow the drives and the internal system components to cool before touching them.

⚠️ **CAUTION:** For proper cooling, do not operate the server without the access panel, baffles, expansion slot covers, or blanks installed. If the server supports hot-plug components, minimize the amount of time the access panel is open.

To remove the component:

1. Power down the server if performing a non-hot-plug installation or maintenance procedure ("Power down the server" on page 22).
2. Extend the server from the rack (on page 22).
3. Use the T-15 Torx screwdriver attached to the rear of the server to loosen the security screw on the hood latch.
4. Lift up on the hood latch handle, and then remove the access panel.

Install the access panel

1. Place the access panel on top of the server with the hood latch open. Allow the panel to extend past the rear of the server approximately 1.25 cm (0.5 in).
2. Push down on the hood latch. The access panel slides to a closed position.
3. Use the T-15 Torx screwdriver to tighten the security screw on the hood latch.

Access the product rear panel

Opening the cable management arm

⚠️ **IMPORTANT:** The cable management arm is not supported with the friction rail kit.
To access the server rear panel:
1. Release the cable management arm.

2. Open the cable management arm. Note that the cable management arm can be right-mounted or left-mounted.

Remove the fan cage

To remove the component:
1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend or remove the server from the rack ("Remove the server from the rack" on page 23, "Extend the server from the rack" on page 22).
4. Remove the access panel (on page 24).
5. Remove the air baffle (on page 33).
6. Remove the fan cage.

CAUTION: Do not operate the server for long periods with the access panel open or removed. Operating the server in this manner results in improper airflow and improper cooling that can lead to thermal damage.

IMPORTANT: For optimum cooling, install fans in all primary fan locations. For more information, refer to the fan locations table (“Hot-plug fans” on page 20).

To install the component, reverse the removal procedure.

Remove the hot-plug fan

To remove the component:

1. Extend or remove the server from the rack (“Remove the server from the rack” on page 23, "Extend the server from the rack" on page 22).
2. Remove the access panel (on page 24).
3. Remove the fan.

CAUTION: Do not operate the server for long periods with the access panel open or removed. Operating the server in this manner results in improper airflow and improper cooling that can lead to thermal damage.

IMPORTANT: For optimum cooling, install fans in all primary fan locations. For more information, refer to the fan locations table ("Hot-plug fans" on page 20).

To install the component, reverse the removal procedure.

Remove the full-length expansion board

CAUTION: To prevent damage to the server or expansion boards, power down the server and remove all AC power cords before removing or installing the PCIe riser cage.

To remove the component:
1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend ("Extend the server from the rack" on page 22) or remove ("Remove the server from the rack" on page 23) the server from the rack.
4. Remove the access panel (on page 24).
5. Disconnect any external cables that are connected to the expansion board.
6. Disconnect any internal cables that are connected to the expansion board.
7. If a full-length expansion board is installed in slot 1, release the full-length expansion board retainer, and then remove the primary PCIe riser cage.

8. If a full-length expansion board is installed in slot 4, release the full-length expansion board retainer, and then remove the secondary PCIe riser cage.

9. Remove the full-length expansion board.

To replace the component, reverse the removal procedure.

Remove the primary PCIe riser cage

⚠️ **CAUTION:** To prevent damage to the server or expansion boards, power down the server and remove all AC power cords before removing or installing the PCIe riser cage.

1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
b. Disconnect each power cord from the server.

3. Extend the server from the rack (on page 22).

4. Remove the access panel (on page 24).

5. Remove any installed full-length expansion boards.

6. Remove the PCIe riser cage.

To install the component, reverse the removal procedure.

Remove the secondary PCIe riser cage

⚠️ **CAUTION:** To prevent damage to the server or expansion boards, power down the server and remove all AC power cords before removing or installing the PCIe riser cage.

To remove the component:

1. Power down the server (on page 22).

2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.

3. Extend the server from the rack (on page 22).

4. Remove the access panel (on page 24).
5. If a full-length expansion board is installed in slot 4, release the full-length expansion board retainer, and then remove the PCIe riser cage.

To install the component, reverse the removal procedure.

Install the primary PCIe riser cage

⚠️ **WARNING:** To reduce the risk of personal injury, electric shock, or damage to the equipment, remove the power cord to remove power from the server. The front panel Power On/Standby button does not completely shut off system power. Portions of the power supply and some internal circuitry remain active until AC power is removed.

1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend the server from the rack (on page 22).
4. Remove the access panel (on page 24).
5. Install the PCIe riser cage.

6. Install the access panel (on page 24).
7. Install the server into the rack ("Installing the server into the rack" on page 39).
8. Connect each power cord to the server.
9. Connect each power cord to the power source.
10. Power up the server (on page 22).

Secure the primary PCIe riser cage full-length expansion board retainer

1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend the server from the rack (on page 22).
4. Remove the access panel (on page 24).
5. Install a full-length expansion board ("Installing a full-length expansion board" on page 72).
6. Install the primary PCIe riser cage (on page 30).
7. Secure the full-length expansion board retainer.

8. Install the access panel (on page 24).
9. Install the server into the rack ("Installing the server into the rack" on page 39).
10. Connect each power cord to the server.
11. Connect each power cord to the power source.
12. Power up the server (on page 22).

Secure the secondary PCIe riser cage full-length expansion board retainer

1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend the server from the rack (on page 22).
4. Remove the access panel (on page 24).
5. Install a full-length expansion board ("Installing a full-length expansion board" on page 72).
6. Install the secondary PCIe riser cage ("Secondary PCIe riser cage option" on page 73).
7. Secure the full-length expansion board retainer.

8. Install the access panel (on page 24).

9. Install the server into the rack ("Installing the server into the rack" on page 39).

10. Connect each power cord to the server.

11. Connect each power cord to the power source.

12. Power up the server (on page 22).

Remove the air baffle

⚠️ CAUTION: For proper cooling, do not operate the server without the access panel, baffles, expansion slot covers, or blanks installed. If the server supports hot-plug components, minimize the amount of time the access panel is open.

To remove the component:

1. Power down the server (on page 22).

2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.

3. Extend or remove the server from the rack ("Remove the server from the rack" on page 23, "Extend the server from the rack" on page 22).

4. Remove the access panel (on page 24).

⚠️ CAUTION: Do not detach the cable that connects the battery pack to the cache module. Detaching the cable causes any unsaved data in the cache module to be lost.

📝 IMPORTANT: It is necessary to remove the PCIe riser cage only if there is a full-length expansion board installed.

5. If a full-length expansion board is installed in the primary PCIe riser cage, release the expansion board retainer and remove the primary PCIe riser cage (on page 28, "PCle riser cage LED" on page 18).
6. If a full-length expansion board is installed in the secondary PCIe riser cage, release the expansion board retainer and remove the secondary PCIe riser cage (on page 29).

7. Remove the air baffle.

To install the component, reverse the removal procedure.
Setup

Optional services

Delivered by experienced, certified engineers, HP Care Pack services help you keep your servers up and running with support packages tailored specifically for HPE ProLiant systems. HP Care Packs let you integrate both hardware and software support into a single package. A number of service level options are available to meet your needs.

HP Care Pack Services offer upgraded service levels to expand your standard product warranty with easy-to-buy, easy-to-use support packages that help you make the most of your server investments. Some of the HP Care Pack services are:

- Hardware support
 - 6-Hour Call-to-Repair
 - 4-Hour 24x7 Same Day
 - 4-Hour Same Business Day
- Software support
 - Microsoft®
 - Linux
 - HPE ProLiant Essentials (HPE SIM and RDP)
 - VMware
- Integrated hardware and software support
 - Critical Service
 - Proactive 24
 - Support Plus
 - Support Plus 24
- Startup and implementation services for both hardware and software

For more information on HP Care Pack services, see the Hewlett Packard Enterprise website (www.hpe.com/info/carepackservices).

Rack planning resources

The rack resource kit ships with all HPE Intelligent Series racks. For more information on the content of each resource, see the rack resource kit documentation.

Optimum environment

When installing the server in a rack, select a location that meets the environmental standards described in this section.

Space and airflow requirements

To allow for servicing and adequate airflow, observe the following space and airflow requirements when deciding where to install a rack:
• Leave a minimum clearance of 63.5 cm (25 in) in front of the rack.
• Leave a minimum clearance of 76.2 cm (30 in) behind the rack.
• Leave a minimum clearance of 121.9 cm (48 in) from the back of the rack to the back of another rack or row of racks.

Hewlett Packard Enterprise servers draw in cool air through the front door and expel warm air through the rear door. Therefore, the front and rear rack doors must be adequately ventilated to allow ambient room air to enter the cabinet, and the rear door must be adequately ventilated to allow the warm air to escape from the cabinet.

⚠️ **CAUTION:** To prevent improper cooling and damage to the equipment, do not block the ventilation openings.

When vertical space in the rack is not filled by a server or rack component, the gaps between the components cause changes in airflow through the rack and across the servers. Cover all gaps with blanking panels to maintain proper airflow.

⚠️ **CAUTION:** Always use blanking panels to fill empty vertical spaces in the rack. This arrangement ensures proper airflow. Using a rack without blanking panels results in improper cooling that can lead to thermal damage.

The 9000 and 10000 Series Racks provide proper server cooling from flow-through perforations in the front and rear doors that provide 64 percent open area for ventilation.

⚠️ **CAUTION:** When using a Compaq branded 7000 series rack, install the high airflow rack door insert (PN 327281-B21 for 42U rack, PN 157847-B21 for 22U rack) to provide proper front-to-back airflow and cooling.

⚠️ **CAUTION:** If a third-party rack is used, observe the following additional requirements to ensure adequate airflow and to prevent damage to the equipment:

- **Front and rear doors**—If the 42U rack includes closing front and rear doors, you must allow 5,350 sq cm (830 sq in) of holes evenly distributed from top to bottom to permit adequate airflow (equivalent to the required 64 percent open area for ventilation).
- **Side**—The clearance between the installed rack component and the side panels of the rack must be a minimum of 7 cm (2.75 in).

⚠️ **IMPORTANT:** The ProLiant DL180 Gen9 Server cable management arm is not supported on Compaq branded 7000 series racks.

Temperature requirements

To ensure continued safe and reliable equipment operation, install or position the system in a well-ventilated, climate-controlled environment.

The maximum recommended ambient operating temperature (TMRA) for most server products is 35°C (95°F). The temperature in the room where the rack is located must not exceed 35°C (95°F).

⚠️ **CAUTION:** To reduce the risk of damage to the equipment when installing third-party options:

- Do not permit optional equipment to impede airflow around the server or to increase the internal rack temperature beyond the maximum allowable limits.
- Do not exceed the manufacturer’s TMRA.

Power requirements

Installation of this equipment must comply with local and regional electrical regulations governing the installation of information technology equipment by licensed electricians. This equipment is designed to
operate in installations covered by NFPA 70, 1999 Edition (National Electric Code) and NFPA-75, 1992 (code for Protection of Electronic Computer/Data Processing Equipment). For electrical power ratings on options, refer to the product rating label or the user documentation supplied with that option.

⚠️ **WARNING:** To reduce the risk of personal injury, fire, or damage to the equipment, do not overload the AC supply branch circuit that provides power to the rack. Consult the electrical authority having jurisdiction over wiring and installation requirements of your facility.

⚠️ **CAUTION:** Protect the server from power fluctuations and temporary interruptions with a regulating uninterruptible power supply. This device protects the hardware from damage caused by power surges and voltage spikes and keeps the system in operation during a power failure.

When installing more than one server, you may need to use additional power distribution devices to safely provide power to all devices. Observe the following guidelines:

- Balance the server power load between available AC supply branch circuits.
- Do not allow the overall system AC current load to exceed 80% of the branch circuit AC current rating.
- Do not use common power outlet strips for this equipment.
- Provide a separate electrical circuit for the server.

Electrical grounding requirements

The server must be grounded properly for proper operation and safety. In the United States, you must install the equipment in accordance with NFPA 70, 1999 Edition (National Electric Code), Article 250, as well as any local and regional building codes. In Canada, you must install the equipment in accordance with Canadian Standards Association, CSA C22.1, Canadian Electrical Code. In all other countries, you must install the equipment in accordance with any regional or national electrical wiring codes, such as the International Electrotechnical Commission (IEC) Code 364, parts 1 through 7. Furthermore, you must be sure that all power distribution devices used in the installation, such as branch wiring and receptacles, are listed or certified grounding-type devices.

Because of the high ground-leakage currents associated with multiple servers connected to the same power source, Hewlett Packard Enterprise recommends the use of a PDU that is either permanently wired to the building’s branch circuit or includes a nondetachable cord that is wired to an industrial-style plug. NEMA locking-style plugs or those complying with IEC 60309 are considered suitable for this purpose. Using common power outlet strips for the server is not recommended.

Connecting a DC power cable to a DC power source

⚠️ **WARNING:** To reduce the risk of electric shock or energy hazards:
- This equipment must be installed by trained service personnel, as defined by the NEC and IEC 60950-1, Second Edition, the standard for Safety of Information Technology Equipment.
- Connect the equipment to a reliably grounded SELV source. An SELV source is a secondary circuit that is designed so normal and single fault conditions do not cause the voltages to exceed a safe level (60 V direct current).
- The branch circuit overcurrent protection must be rated 24A.

⚠️ **WARNING:** When installing a DC power supply, the ground wire must be connected before the positive or negative leads.

⚠️ **WARNING:** Remove power from the power supply before performing any installation steps or maintenance on the power supply.
CAUTION: The server equipment connects the earthed conductor of the DC supply circuit to the earthing conductor at the equipment. For more information, see the HPE 750W Common Slot -48V DC Input Hot-Plug Power Supply Kit Installation Instructions.

CAUTION: If the DC connection exists between the earthed conductor of the DC supply circuit and the earthing conductor at the server equipment, the following conditions must be met:

- This equipment must be connected directly to the DC supply system earthing electrode conductor or to a bonding jumper from an earthing terminal bar or bus to which the DC supply system earthing electrode conductor is connected.
- This equipment should be located in the same immediate area (such as adjacent cabinets) as any other equipment that has a connection between the earthing conductor of the same DC supply circuit and the earthing conductor, and also the point of earthing of the DC system. The DC system should be earthed elsewhere.
- The DC supply source is to be located within the same premises as the equipment.
- Switching or disconnecting devices should not be in the earthed circuit conductor between the DC source and the point of connection of the earthing electrode conductor.

To connect a DC power cable to a DC power source:

1. Cut the DC power cord ends no shorter than 150 cm (59.06 in).
2. If the power source requires ring tongues, use a crimping tool to install the ring tongues on the power cord wires.

 IMPORTANT: The ring tongues must be UL approved and accommodate 12 gauge wires.

 IMPORTANT: The minimum nominal thread diameter of a pillar or stud type terminal must be 3.5 mm (0.138 in); the diameter of a screw type terminal must be 4.0 mm (0.157 in).

3. Stack each same-colored pair of wires and then attach them to the same power source. The power cord consists of three wires (black, red, and green).

 For more information, see the 750W Common Slot -48V DC Input Hot-Plug Power Supply installation instructions.

Rack warnings

WARNING: To reduce the risk of personal injury or damage to the equipment, be sure that:

- The leveling jacks are extended to the floor.
- The full weight of the rack rests on the leveling jacks.
- The stabilizing feet are attached to the rack if it is a single-rack installation.
- The racks are coupled together in multiple-rack installations.
- Only one component is extended at a time. A rack may become unstable if more than one component is extended for any reason.

WARNING: To reduce the risk of personal injury or equipment damage when unloading a rack:

- At least two people are needed to safely unload the rack from the pallet. An empty 42U rack can weigh as much as 115 kg (253 lb), can stand more than 2.1 m (7 ft) tall, and might become unstable when being moved on its casters.
- Never stand in front of the rack when it is rolling down the ramp from the pallet. Always handle the rack from both sides.
Identifying the contents of the server shipping carton

Unpack the server shipping carton and locate the materials and documentation necessary for installing the server. All the rack mounting hardware necessary for installing the server into the rack is included with the rack or the server.

The contents of the server shipping carton include:

- Server
- Power cord
- Hardware documentation, Documentation CD, and software products
- Rack-mounting hardware

In addition to the supplied items, you might need:

- Operating system or application software
- Hardware options

Installing hardware options

Install any hardware options before initializing the server. For options installation information, refer to the option documentation. For server-specific information, refer to "Hardware options installation (on page 43)."

Installing the server into the rack

⚠️ **CAUTION:** Always plan the rack installation so that the heaviest item is on the bottom of the rack. Install the heaviest item first, and continue to populate the rack from the bottom to the top.

1. Install the server and cable management arm into the rack. For more information, see the installation instructions that ship with the 2U Quick Deploy Rail System.

2. Connect peripheral devices to the server. For information on identifying connectors, see "Rear panel components (on page 12)."

⚠️ **WARNING:** To reduce the risk of electric shock, fire, or damage to the equipment, do not plug telephone or telecommunications connectors into RJ-45 connectors.

3. Connect the power cord to the rear of the server.
4. Install the power cord anchors.

5. Secure the cables to the cable management arm.

 IMPORTANT: When using cable management arm components, be sure to leave enough slack in each of the cables to prevent damage to the cables when the server is extended from the rack.

6. Connect the power cord to the AC power source.

 WARNING: To reduce the risk of electric shock or damage to the equipment:
 - Do not disable the power cord grounding plug. The grounding plug is an important safety feature.
 - Plug the power cord into a grounded (earthed) electrical outlet that is easily accessible at all times.
 - Unplug the power cord from the power supply to disconnect power to the equipment.
 - Do not route the power cord where it can be walked on or pinched by items placed against it. Pay particular attention to the plug, electrical outlet, and the point where the cord extends from the server.
Installing the operating system

This ProLiant server does not ship with provisioning media. Everything needed to manage and install the system software and firmware is preloaded on the server.

To operate properly, the server must have a supported operating system. For the latest information on operating system support, see the Hewlett Packard Enterprise website (http://www.hpe.com/info/supportos).

To install an operating system on the server, use one of the following methods:

- Intelligent Provisioning—The iLO Management Engine is a new feature on ProLiant servers that contains Intelligent Provisioning for embedded deployment, updating, and provisioning capabilities. Intelligent Provisioning can configure the server and install an operating system, eliminating the need for SmartStart CDs and Smart Update Firmware DVDs.

 To install an operating system on the server with Intelligent Provisioning (local or remote):
 a. Connect the Ethernet cable between the network connector on the server and a network jack.
 b. Press the Power On/Standby button.
 c. During server POST, press the F10 key.
 d. Complete the initial Preferences and Registration portion of Intelligent Provisioning (on page 99).
 e. At the 1 Start screen, click the Configure and Install button.
 f. To finish the installation, follow the onscreen prompts. An Internet connection is required to update the firmware and systems software.

- Remote deployment installation—To deploy an operating system remotely, use Insight Control server deployment for an automated solution.

For additional system software and firmware updates, download the Service Pack for ProLiant from the Hewlett Packard Enterprise website (http://www.hpe.com/servers/spp/download). Software and firmware must be updated before using the server for the first time, unless any installed software or components require an older version. For more information, see "Keeping the system current (on page 106)."

For more information on using these installation methods, see the Hewlett Packard Enterprise website (http://www.hpe.com/info/ilo).

Powering on and selecting boot options

1. Connect the Ethernet cable.
2. Press the Power On/Standby button.
3. During the initial boot:
 a. To modify the server configuration ROM default settings, press F9 when prompted from the start up sequence to enter the RBSU. By default, RBSU runs in the English language.
 b. If you do not need to modify the server configuration and are ready to install the system software, press F10 to access Intelligent Provisioning.

 NOTE: If an HPE Smart Array controller has been added or is embedded in the system, the controller defaults to a RAID configuration based on the size and number of drives installed. For more information on modifying the controller default settings, see the documentation on the Documentation CD.

For more information on automatic configuration, see the HPE ROM-Based Setup Utility user guide on the Documentation CD or the iLO Management Engine Information Library (http://www.hpe.com/support/rbsu).
Registering the product

To experience quicker service and more efficient support, register the product at the Hewlett Packard Enterprise Product Registration website (http://www.hpe.com/info/register).
Hardware options installation

Introduction

If more than one option is being installed, read the installation instructions for all the hardware options and identify similar steps to streamline the installation process.

⚠️ **WARNING:** To reduce the risk of personal injury from hot surfaces, allow the drives, power input modules, and the internal system components to cool before touching them.

⚠️ **CAUTION:** To prevent damage to electrical components, properly ground the server before beginning any installation procedure. Improper grounding can cause electrostatic discharge.

Processor option

The server supports single- and dual-processor operation.

⚠️ **CAUTION:** To avoid damage to the processor and system board, only authorized personnel should attempt to replace or install the processor in this server.

⚠️ **CAUTION:** To help avoid damage to the processor and system board, do not install the processor without using the processor installation tool.

⚠️ **CAUTION:** To prevent possible server malfunction and damage, dual processor configurations must contain processors with the same part number.

⚠️ **IMPORTANT:** Processor socket 1 must be populated at all times or the server does not function properly.

To install the component:

1. Update the system ROM.

 Locate and download the latest ROM version from the Hewlett Packard Enterprise Support Center website (http://www.hpe.com/support/hpesc). Follow the instructions on the website to update the system ROM.

2. Power down the server (on page 22).

3. Remove all power:

 a. Disconnect each power cord from the power source.

 b. Disconnect each power cord from the server.

4. Extend the server from the rack (on page 22).

5. Remove the access panel (on page 24).
6. If a full-length expansion board is installed in the primary PCIe riser cage, release the full-length expansion board retainer, and then remove the PCIe riser cage.

7. If a full-length expansion board is installed in the secondary PCIe riser cage, release the full-length expansion board retainer, and then remove the PCIe riser cage.
8. Remove the air baffle (on page 33).

9. Open the heatsink retaining bracket, and then remove the heatsink blank.
10. Open the processor socket locking lever and the retaining bracket, and then remove the processor socket protective cover.

IMPORTANT: Be sure the processor remains inside the processor installation tool.

11. If the processor has separated from the installation tool, carefully re-insert the processor in the tool. Handle the processor by the edges only, and do not touch the bottom of the processor, especially the contact area.
12. The processor fits one way into the socket. Use the alignment guides on the processor and socket to properly align the processor with the socket. Install the spare processor. **THE PINS ON THE SYSTEM BOARD ARE VERY FRAGILE AND EASILY DAMAGED.**

⚠️ **CAUTION:** THE PINS ON THE SYSTEM BOARD ARE VERY FRAGILE AND EASILY DAMAGED. To avoid damage to the system board:
- Never install or remove a processor without using the processor installation tool.
- Do not touch the processor socket contacts.
- Do not tilt or slide the processor when lowering the processor into the socket.

13. Press the tabs on the processor tool to release the processor, and then remove the processor tool.

14. Close the processor socket retaining bracket and the processor locking lever.

⚠️ **CAUTION:** Be sure to close the processor socket retaining bracket before closing the processor locking lever. The lever should close without resistance. Forcing the lever closed can damage the processor and socket, requiring system board replacement.
15. Remove the heatsink cover.

⚠️ **CAUTION:** After the cover is removed, do not touch the thermal interface media.

16. Install the heatsink, and close the heatsink retaining bracket.
 Be sure to align the pins on the heatsink with the pins on the processor cage.
17. Remove the fan blanks from bays 1 and 2.

18. Install the fans into bays 1 and 2.
19. Install the air baffle.

20. Install the primary PCIe riser cage.
21. Install the secondary PCIe riser cage.

22. If necessary, secure the full-length expansion board retainer for the primary or the secondary PCIe riser cages on the air baffle.

23. Install the access panel (on page 24).
24. Install the server into the rack.
25. Connect each power cord to the server.
26. Connect each power cord to the power source.
27. Power up the server (on page 22).

Memory options

IMPORTANT: This server does not support mixing LRDIMMs or RDIMMs. Attempting to mix any combination of these DIMMs can cause the server to halt during BIOS initialization.

The memory subsystem in this server can support LRDIMMs or RDIMMs:
- RDIMMs offer lower latency in one DIMM per channel configurations and (relatively) low power consumption. They include address parity protection.

- LRDIMMs support higher densities than single- and dual-rank RDIMMs, and higher speeds than quad-rank RDIMMs. This support enables you to install more high capacity DIMMs, resulting in higher system capacities and higher bandwidth.

All types are referred to as DIMMs when the information applies to all types. When specified as LRDIMM or RDIMM, the information applies to that type only. All memory installed in the server must be the same type.

The server supports the following DIMM speeds:

- Single- and dual-rank PC3-10600 (DDR-1333) RDIMMs operating at up to 1333 MT/s
- Single- and dual-rank PC3-12800 (DDR-1600) RDIMMs operating at up to 1600 MT/s
- Quad-rank PC3L-10600 (DDR3-1333) LRDIMMs, operating as dual-rank DIMMs, at up to 1333 MT/s

Speed, voltage, and capacity

<table>
<thead>
<tr>
<th>DIMM type</th>
<th>DIMM capacity</th>
<th>DIMM rank</th>
<th>Native speed (MT/s)</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDIMM</td>
<td>4 GB</td>
<td>Single-rank</td>
<td>1600</td>
<td>STD 1.5 V</td>
</tr>
<tr>
<td>RDIMM</td>
<td>4 GB</td>
<td>Single-rank</td>
<td>1333</td>
<td>LV 1.35 V</td>
</tr>
<tr>
<td>RDIMM</td>
<td>4 GB</td>
<td>Single-rank</td>
<td>1333</td>
<td>ULV 1.25 V</td>
</tr>
<tr>
<td>RDIMM</td>
<td>8 GB</td>
<td>Single-rank</td>
<td>1600</td>
<td>STD 1.5 V</td>
</tr>
<tr>
<td>RDIMM</td>
<td>8 GB</td>
<td>Dual-rank</td>
<td>1333</td>
<td>LV 1.35 V</td>
</tr>
<tr>
<td>RDIMM</td>
<td>8 GB</td>
<td>Dual-rank</td>
<td>1333</td>
<td>ULV 1.25 V</td>
</tr>
<tr>
<td>RDIMM</td>
<td>16 GB</td>
<td>Dual-rank</td>
<td>1600</td>
<td>STD 1.5 V</td>
</tr>
<tr>
<td>RDIMM</td>
<td>16 GB</td>
<td>Dual-rank</td>
<td>1333</td>
<td>LV 1.35 V</td>
</tr>
<tr>
<td>LRDIMM</td>
<td>32 GB</td>
<td>Quad-rank</td>
<td>1333</td>
<td>LV 1.35 V</td>
</tr>
</tbody>
</table>

Depending on the processor model, the number of DIMMs installed, and the voltage(s) of the DIMMs installed, the memory clock speed can be reduced from the DIMMs' native speed. See the following tables for details.

Populated DIMM speed (MT/s), RDIMM

<table>
<thead>
<tr>
<th>Memory modules per channel</th>
<th>Single-rank or Dual-rank</th>
<th>Memory module native speed</th>
<th>Memory bus speed (standard voltage memory module)</th>
<th>Memory bus speed (low voltage memory module)</th>
<th>Memory bus speed (ultra low voltage memory module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1600 MHz</td>
<td>1600 MHz</td>
<td>1333 MHz</td>
<td>1333 MHz</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1333 MHz</td>
<td>1333 MHz</td>
<td>1333 MHz</td>
<td>1333 MHz</td>
</tr>
<tr>
<td>2</td>
<td>2 Single-rank</td>
<td>1600 MHz</td>
<td>1333 MHz</td>
<td>1333 MHz</td>
<td>1333 MHz</td>
</tr>
<tr>
<td>2</td>
<td>2 Dual-rank</td>
<td>1600 MHz</td>
<td>1333 MHz</td>
<td>1333 MHz</td>
<td>1066 MHz</td>
</tr>
<tr>
<td>2</td>
<td>2 mixed</td>
<td>1600 MHz</td>
<td>1333 MHz</td>
<td>1333 MHz</td>
<td>1066 MHz</td>
</tr>
<tr>
<td>3</td>
<td>3 Single-rank</td>
<td>1600 MHz</td>
<td>1066 MHz</td>
<td>1066 MHz</td>
<td>800 MHz</td>
</tr>
<tr>
<td>3</td>
<td>3 Dual-rank</td>
<td>1600 MHz</td>
<td>1066 MHz</td>
<td>800 MHz</td>
<td>667 MHz</td>
</tr>
<tr>
<td>3</td>
<td>3 mixed</td>
<td>1600 MHz</td>
<td>1066 MHz</td>
<td>800 MHz</td>
<td>667 MHz</td>
</tr>
</tbody>
</table>
Memory modules per channel

<table>
<thead>
<tr>
<th>Memory modules per channel</th>
<th>Number of LRDIMMs</th>
<th>Memory module native speed</th>
<th>Memory bus speed (standard voltage memory module)</th>
<th>Memory bus speed (low voltage memory module)</th>
<th>Memory bus speed (ultra low voltage memory module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1333 MHz</td>
<td>—</td>
<td>1333 MHz</td>
<td>1333 MHz</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1333 MHz</td>
<td>—</td>
<td>1333 MHz</td>
<td>1066 MHz</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1333 MHz</td>
<td>—</td>
<td>800 MHz</td>
<td>667 MHz</td>
</tr>
</tbody>
</table>

If RDIMMs of different native voltages are installed together, you can change the DIMM voltage through the DIMM Voltage Preference menu (under the Advanced Power Management Options menu) in RBSU ("Using RBSU" on page 102). Optimized for Performance is the default setting, but choosing Optimized for Power reduces the voltage, which may also reduce the DIMM frequency.

Populated RDIMM voltage

<table>
<thead>
<tr>
<th>1.25V</th>
<th>1.35V</th>
<th>1.5V</th>
<th>RBSU setting</th>
<th>Output voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Performance</td>
<td>1.35V</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Power</td>
<td>1.25V</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Performance</td>
<td>1.5V</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Power</td>
<td>1.35V</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>N/A</td>
<td>Not allowed. System halts during POST.</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>N/A</td>
<td>Not allowed. System halts during POST.</td>
</tr>
</tbody>
</table>

HPE SmartMemory

HPE SmartMemory, introduced for Gen8 servers, authenticates HPE Qualified memory and verifies whether installed memory has passed Hewlett Packard Enterprise qualification and test processes.

Memory subsystem architecture

The memory subsystem in this server is divided into channels. Each processor supports four channels, and each channel supports three DIMM slots, as illustrated.

This multi-channel architecture provides enhanced performance in Advanced ECC mode. This architecture also enables Online Spare Memory modes.
DIMM slots in this server are identified by number and by letter:

- Letters identify the population order.
- Slot numbers indicate the DIMM slot ID for spare replacement.

Population order

For memory configurations with a single processor or multiple processors, populate the DIMM slots in the following order:

- LRDIMM: Sequentially in alphabetical order (A through L)
- RDIMM: Sequentially in alphabetical order (A through L)

After installing the DIMMs, use RBSU to configure Advanced ECC, or online spare memory support.

Single-, dual-, and quad-rank DIMMs

To understand and configure memory protection modes properly, an understanding of single-, dual-, and quad-rank DIMMs is helpful. Some DIMM configuration requirements are based on these classifications.

A single-rank DIMM has one set of memory chips that is accessed while writing to or reading from the memory. A dual-rank DIMM is similar to having two single-rank DIMMs on the same module, with only one rank accessible at a time. A quad-rank DIMM is, effectively, two dual-rank DIMMs on the same module. Only one rank is accessible at a time. The server memory control subsystem selects the proper rank within the DIMM when writing to or reading from the DIMM.

Dual- and quad-rank DIMMs provide the greatest capacity with the existing memory technology. For example, if current DRAM technology supports 8-GB single-rank DIMMs, a dual-rank DIMM would be 16 GB, and a quad-rank DIMM would be 32 GB.

LRDIMMs are labeled as quad-rank DIMMs; however, they function more like dual-rank DIMMs. There are four ranks of DRAM on the DIMM, but the LRDIMM buffer creates an abstraction that allows the DIMM to appear as a dual-rank DIMM to the system. The LRDIMM buffer also isolates the electrical loading of the DRAM from the system to allow for faster operation. These two changes allow the system to support up to three LRDIMMs per memory channel, providing for up to 50% greater memory capacity and higher memory operating speed compared to quad-rank RDIMMs.
DIMM identification

To determine DIMM characteristics, use the label attached to the DIMM and the following illustration and table.

For the latest supported memory information, see the QuickSpecs on the Hewlett Packard Enterprise website (http://www.hpe.com/info/qs). At the website, choose the geographic region, and then locate the product by name or product category.

Memory configurations

To optimize server availability, the server supports the following AMP modes:

- **Advanced ECC**—provides up to 4-bit error correction. This mode is the default option for this server.
- **Online spare memory**—provides protection against failing or degraded DIMMs. Certain memory is reserved as spare, and automatic failover to spare memory occurs when the system detects a DIMM that is degrading. This allows DIMMs that have a higher probability of receiving an uncorrectable memory error (which would result in system downtime) to be removed from operation.
Advanced Memory Protection options are configured in RBSU. If the requested AMP mode is not supported by the installed DIMM configuration, the server boots in Advanced ECC mode. For more information, see “HPE ROM-Based Setup Utility (on page 101).”

Maximum capacity

<table>
<thead>
<tr>
<th>DIMM type</th>
<th>DIMM rank</th>
<th>One processor</th>
<th>Two processors</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDIMM</td>
<td>Single-rank</td>
<td>96 GB</td>
<td>192 GB</td>
</tr>
<tr>
<td>RDIMM</td>
<td>Dual-rank</td>
<td>192 GB</td>
<td>384 GB</td>
</tr>
<tr>
<td>LRDIMM</td>
<td>Quad-rank</td>
<td>384 GB</td>
<td>768 GB</td>
</tr>
</tbody>
</table>

For the latest memory configuration information, see the QuickSpecs on the Hewlett Packard Enterprise website. (http://www.hpe.com/info/qs)

Advanced ECC memory configuration

Advanced ECC memory is the default memory protection mode for this server. Standard ECC can correct single-bit memory errors and detect multi-bit memory errors. When multi-bit errors are detected using Standard ECC, the error is signaled to the server and causes the server to halt.

Advanced ECC protects the server against some multi-bit memory errors. Advanced ECC can correct both single-bit memory errors and 4-bit memory errors if all failed bits are on the same DRAM device on the DIMM.

Advanced ECC provides additional protection over Standard ECC because it is possible to correct certain memory errors that would otherwise be uncorrected and result in a server failure. Using HPE Advanced Memory Error Detection technology, the server provides notification when a DIMM is degrading and has a higher probability of uncorrectable memory error.

Online Spare memory configuration

Online spare memory provides protection against degraded DIMMs by reducing the likelihood of uncorrected memory errors. This protection is available without any operating system support.

Online spare memory protection dedicates one rank of each memory channel for use as spare memory. The remaining ranks are available for OS and application use. If correctable memory errors occur at a rate higher than a specific threshold on any of the non-spare ranks, the server automatically copies the memory contents of the degraded rank to the online spare rank. The server then deactivates the failing rank and automatically switches over to the online spare rank.

General DIMM slot population guidelines

Observe the following guidelines for all AMP modes:

- Install DIMMs only if the corresponding processor is installed.
- When two processors are installed, balance the DIMMs across the two processors.
- White DIMM slots denote the first slot of a channel (Ch 1-A, Ch 2-B, Ch 3-C, Ch 4-D).
- Do not mix LRDIMMs or RDIMMs.
- When two processors are installed, install the DIMMs in sequential alphabetical order balanced between the two processors: P1-A, P2-A, P1-B, P2-B, P1-C, P2-C, and so on.

For detailed memory configuration rules and guidelines, use the Online DDR3 Memory Configuration Tool on the Hewlett Packard Enterprise website (http://www.hpe.com/info/ddr3memory-configurator).

Advanced ECC population guidelines

For Advanced ECC mode configurations, observe the following guidelines:
- Observe the general DIMM slot population guidelines.
- DIMMs may be installed individually.

Online spare population

For Online Spare memory mode configurations, observe the following guidelines:
- Observe the general DIMM slot population guidelines.
- Each channel must have a valid online spare configuration.
- Each channel can have a different valid online spare configuration.
- Each populated channel must have a spare rank:
 - A single dual-rank DIMM is not a valid configuration.
 - LRDIMMs are treated as dual-rank DIMMs.

Installing a DIMM

The server supports up to 24 DIMMs. To install a DIMM:

1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend the server from the rack (on page 22).
4. Remove the access panel (on page 24).
5. Remove the air baffle (on page 33).
6. Open the DIMM slot latches.
7. Install the DIMM.
8. Install the access panel (on page 24).
9. Install the server into the rack ("Installing the server into the rack" on page 39).
10. Connect each power cord to the server.
11. Connect each power cord to the power source.
12. Power up the server (on page 22).
Use RBSU ("HPE ROM-Based Setup Utility" on page 101) to configure the memory mode.
For more information about LEDs and troubleshooting failed DIMMs, see "Systems Insight Display LED combinations ("Systems Insight Display LEDs" on page 10)."

Hot-plug hard drive options

When adding hard drives to the server, observe the following general guidelines:

- The system automatically sets all device numbers.
- If only one hard drive is used, install it in the bay with the lowest device number.
- Drives should be the same capacity to provide the greatest storage space efficiency when drives are grouped together into the same drive array.

Installing a hot-plug SAS or SATA hard drive

The server can support 8 SAS or SATA hard drives in a SFF or LFF configuration, or the following configurations with the optional hard drive cage ("Hard drive cage option" on page 75):

- 12 LFF
- 16 SFF
- 25 SFF

To install the component:
1. Remove the drive blank.
2. Prepare the drive.
3. Install the drive.

4. Removing a hot-plug SAS or SATA hard drive

\[\text{CAUTION:}\] For proper cooling, do not operate the server without the access panel, baffles, expansion slot covers, or blanks installed. If the server supports hot-plug components, minimize the amount of time the access panel is open.

1. Determine the status of the drive from the hot-plug drive LED definitions (on page 18).
2. Back up all server data on the drive.
3. Remove the drive.

Controller options

The server ships with an embedded Smart Array P420i controller. For more information about the storage controller and its features, select the relevant controller user documentation on the Hewlett Packard Enterprise website (http://www.hpe.com/support/SAC_UG_ProLiantServers_en).

To configure arrays, see the user guide for Smart Array Controllers on the Hewlett Packard Enterprise website (http://www.hpe.com/support/CASAC_RG_en).

Upgrade options exist for the integrated array controller. For a list of supported options, see the QuickSpecs on the Hewlett Packard Enterprise website (http://www.hpe.com/support).

The server supports FBWC. FBWC consists of a cache module and a capacitor pack. The DDR cache module buffers and stores data being written by the controller. When the system is powered on, the capacitor pack charges fully in about 5 minutes. In the event of a system power failure, a fully charged capacitor pack provides power for up to 80 seconds. During that interval, the controller transfers the cached data from DDR memory to flash memory, where the data remains indefinitely or until a controller retrieves the data.

\[\text{CAUTION:}\] The cache module connector does not use the industry-standard DDR3 mini-DIMMs. Do not use the controller with cache modules designed for other controller models, because the controller can malfunction and you can lose data. Also, do not transfer this cache module to an unsupported controller model, because you can lose data.
CAUTION: To prevent a server malfunction or damage to the equipment, do not add or remove the battery pack while an array capacity expansion, RAID level migration, or stripe size migration is in progress.

CAUTION: After the server is powered down, wait 15 seconds and then check the amber LED before unplugging the cable from the cache module. If the amber LED blinks after 15 seconds, do not remove the cable from the cache module. The cache module is backing up data, and data is lost if the cable is detached.

IMPORTANT: The battery pack might have a low charge when installed. In this case, a POST error message is displayed when the server is powered up, indicating that the battery pack is temporarily disabled. No action is necessary on your part. The internal circuitry automatically recharges the batteries and enables the battery pack. This process might take up to four hours. During this time, the cache module functions properly, but without the performance advantage of the battery pack.

NOTE: The data protection and the time limit also apply if a power outage occurs. When power is restored to the system, an initialization process writes the preserved data to the hard drives.

Installing the flash-backed write cache module

CAUTION: The cache module connector does not use the industry-standard DDR3 mini-DIMMs. Do not use the controller with cache modules designed for other controller models, because the controller can malfunction and you can lose data. Also, do not transfer this cache module to an unsupported controller model, because you can lose data.

To install the component:
1. Back up all data.
2. Close all applications.

CAUTION: In systems that use external data storage, be sure that the server is the first unit to be powered down and the last to be powered back up. Taking this precaution ensures that the system does not erroneously mark the drives as failed when the server is powered up.

3. Power down the server (on page 22).
4. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
5. Extend the server from the rack (on page 22).
6. Remove the access panel (on page 24).
7. Install the cache module.

8. Connect the capacitor pack cable to the connector on the top of the cache module.

9. Install the access panel (on page 24).

10. Install the server into the rack ("Installing the server into the rack" on page 39).

11. Connect each power cord to the server.

12. Connect each power cord to the power source.

13. Power up the server (on page 22).

Installing the FBWC capacitor pack

△ **CAUTION:** The cache module connector does not use the industry-standard DDR3 mini-DIMMs. Do not use the controller with cache modules designed for other controller models, because the controller can malfunction and you can lose data. Also, do not transfer this cache module to an unsupported controller model, because you can lose data.
To install the component:

1. Back up all data.
2. Close all applications.

⚠️ **CAUTION:** In systems that use external data storage, be sure that the server is the first unit to be powered down and the last to be powered back up. Taking this precaution ensures that the system does not erroneously mark the drives as failed when the server is powered up.

3. Power down the server (on page 22).

4. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.

5. Extend the server from the rack (on page 22).

6. Remove the access panel (on page 24).

7. Install the FBWC module ("Installing the flash-backed write cache module" on page 60), if it is not already installed.

8. Connect the capacitor pack cable to the connector on the top of the cache module.
9. Install one or two FBWC capacitor packs into the FBWC capacitor pack holder.

10. Install the FBWC capacitor pack holder into the server:
 - 8 or 16 drive SFF
- 8 drive LFF

- 12 drive LFF
1. Install the access panel (on page 24).
2. Install the server into the rack ("Installing the server into the rack" on page 39).
3. Connect each power cord to the server.
4. Connect each power cord to the power source.
5. Power up the server (on page 22).

Optical drive option

1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend the server from the rack (on page 22).
4. Remove the access panel (on page 24).
5. Remove the existing media drive option or blank.

6. Slide the optical drive into the drive bay.
7. Connect the power and data cable to the system board and the optical drive.

8. Install the access panel (on page 24).

9. Install the server into the rack ("Installing the server into the rack" on page 39).

10. Connect each power cord to the server.

11. Connect each power cord to the power source.

12. Power up the server (on page 22).

Redundant hot-plug power supply option

⚠️ **CAUTION:** All power supplies installed in the server must have the same output power capacity. Verify that all power supplies have the same part number and label color. The system becomes unstable and may shut down when it detects mismatched power supplies.

<table>
<thead>
<tr>
<th>Label color</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>460W</td>
</tr>
<tr>
<td>Orange</td>
<td>750W</td>
</tr>
<tr>
<td>White</td>
<td>750W 48V DC</td>
</tr>
<tr>
<td>Green</td>
<td>1,200W</td>
</tr>
</tbody>
</table>

⚠️ **CAUTION:** To prevent improper cooling and thermal damage, do not operate the server unless all bays are populated with either a component or a blank.

額 **IMPORTANT:** Before selecting power supplies, Hewlett Packard Enterprise recommends that you run the HPE Power Advisor to determine the right size power supply for your server configuration. HPE Power Advisor is available as both an online tool, running directly from the Hewlett Packard Enterprise website, and as a downloadable tool. Instructions on how to download and use the tool are available on the Hewlett Packard Enterprise website (http://www.hpe.com/info/hpepoweradvisor).

To install the component:

1. Access the product rear panel (on page 24).
2. Remove the blank.
WARNING: To reduce the risk of personal injury from hot surfaces, allow the power supply or power supply blank to cool before touching it.

3. Insert the power supply into the power supply bay until it clicks into place.

4. Connect the power cord to the power supply.
5. Route the power cord. Use best practices when routing power cords and other cables. A cable management arm is available to help with routing. To obtain a cable management arm, contact a Hewlett Packard Enterprise authorized reseller.
6. Connect the power cord to the AC power source.
7. Be sure that the power supply LED is green.

FlexibleLOM option

WARNING: To reduce the risk of personal injury, electric shock, or damage to the equipment, remove the power cord to remove power from the server. The front panel Power On/Standby button does not completely shut off system power. Portions of the power supply and some internal circuitry remain active until AC power is removed.
To remove the component:
1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Remove any attached network cables.
4. Extend the server from the rack (on page 22).
5. Remove the access panel (on page 24).
6. Remove the primary PCIe riser cage (on page 28, "PCIe riser cage LED" on page 18).
7. Loosen the thumbscrew.
8. Remove the existing FlexibleLOM.

Pull the FlexibleLOM toward the front of the server while removing, to avoid catching it on the rear chassis.
To install the component:

1. Firmly seat the optional FlexibleLOM in the slot, and then tighten the thumbscrew.

2. Install the primary PCIe riser cage (on page 30).
3. Install the access panel (on page 24).
4. Slide the server into the rack.
5. Connect the LAN segment cables.
6. Connect each power cord to the server.
7. Connect each power cord to the power source.
8. Power up the server (on page 22).

Expansion board options

The server supports PCI Express expansion boards. The server ships with PCIe riser boards and expansion slots. PCIe expansion boards are supported with optional riser boards.

Removing the expansion slot blanks

⚠️ CAUTION: To prevent damage to the server or expansion boards, power down the server and remove all AC power cords before removing or installing the PCI riser cage.

⚠️ CAUTION: For proper cooling, do not operate the server without the access panel, baffles, expansion slot covers, or blanks installed. If the server supports hot-plug components, minimize the amount of time the access panel is open.

To remove the component from either the primary or secondary PCIe riser cage:

1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend the server from the rack (on page 22).
4. Remove the access panel (on page 24).
5. If you need to remove a blank from the primary PCIe riser cage, remove the PCIe riser cage ("Remove the primary PCIe riser cage" on page 28, "PCIe riser cage LED" on page 18).

6. If you need to remove a blank from the secondary PCIe riser cage, remove the secondary PCIe riser cage (on page 29).

7. Remove the expansion slot blank.

To install the component, reverse the removal procedure.

Installing a half-length expansion board

1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend the server from the rack (on page 22).
4. Remove the access panel (on page 24).
5. Do one of the following:
 o Remove the primary PCIe riser cage (on page 28).
 o Remove the secondary PCIe riser cage (on page 29).
6. Remove the expansion slot blank ("Removing the expansion slot blanks" on page 70).
7. Install the expansion board.

8. Connect any required internal or external cables to the expansion board. See the documentation that ships with the expansion board.

9. Do one of the following:
 - Install the primary PCIe riser cage (on page 30).
 - Install the secondary PCIe riser cage ("Secondary PCIe riser cage option" on page 73).

10. Install the access panel (on page 24).

11. Install the server into the rack ("Installing the server into the rack" on page 39).

12. Connect each power cord to the server.

13. Connect each power cord to the power source.

14. Power up the server (on page 22).

Installing a full-length expansion board

1. Power down the server (on page 22).

2. Remove all power:
 - Disconnect each power cord from the power source.
 - Disconnect each power cord from the server.

3. Extend the server from the rack (on page 22).

4. Remove the access panel (on page 24).

5. If a full-length expansion board is installed in the primary PCIe riser cage, release the expansion board retainer and remove the primary PCIe riser cage (on page 28, "PCIe riser cage LED" on page 18).

6. If a full-length expansion board is installed in the secondary PCIe riser cage, release the expansion board retainer and remove the secondary PCIe riser cage (on page 29).

7. Remove the expansion slot cover ("Removing the expansion slot blanks" on page 70).

8. Install the expansion board into slot 1.

9. Connect any required internal or external cables to the expansion board. See the documentation that ships with the expansion board.

10. Do one of the following:
 - Install the primary PCIe riser cage (on page 30).
 - Install the secondary PCIe riser cage ("Secondary PCIe riser cage option" on page 73).
11. Do one of the following:
 o Secure the primary PCIe riser cage full-length expansion board retainer ("Chipset SATA cable option" on page 92, on page 31).
 o Secure the secondary PCIe riser cage full-length expansion board retainer ("Chipset SATA cable option" on page 92, on page 32).

12. Install the access panel (on page 24).
13. Install the server into the rack ("Installing the server into the rack" on page 39).
14. Connect each power cord to the server.
15. Connect each power cord to the power source.
16. Power up the server (on page 22).

Secondary PCIe riser cage option

⚠️ **WARNING:** To reduce the risk of personal injury, electric shock, or damage to the equipment, remove the power cord to remove power from the server. The front panel Power On/Standby button does not completely shut off system power. Portions of the power supply and some internal circuitry remain active until AC power is removed.

⚠️ **CAUTION:** To prevent improper cooling and thermal damage, do not operate the server unless all PCI slots have either an expansion slot cover or an expansion board installed.

⚠️ **IMPORTANT:** The secondary PCI riser cage option requires both processors.

To install the component:
1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend the server from the rack (on page 22).
4. Remove the access panel (on page 24).
5. Remove the PCI riser blank.
6. Remove the blank from the optional secondary PCI riser cage.

7. Install an expansion board into the PCI riser cage, if needed.

8. Connect any internal or external cables.
9. Install the optional secondary PCIe riser cage.

10. If not already installed, install the secondary processor ("Processor option" on page 43).
11. Install the access panel (on page 24).
12. Install the server into the rack ("Installing the server into the rack" on page 39).
13. Connect each power cord to the server.
14. Connect each power cord to the power source.
15. Power up the server (on page 22).

Hard drive cage option

An additional SAS controller option is required to support the hard drive cage option.

To install the component:

1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend the server from the rack (on page 22).
4. Remove the access panel (on page 24).
5. If a full-length expansion board is installed in slot 1, release the full-length expansion board retainer, and then remove the primary PCIe riser cage.

6. If a full-length expansion board is installed in slot 4, release the full-length expansion board retainer, and then remove the secondary PCIe riser cage.

7. Remove the air baffle (on page 33).
8. Remove the fan cage.

9. Disconnect and remove the optical drive cable, if installed:
 a. Disconnect the cable.
b. Remove the cable from the DIMM guard.

10. Using a T-15 Torx screwdriver, remove the two optical drive retaining screws, and then remove the optical drive cage.
11. Install the optional hard drive cage.

12. Install the hard drives or hard drive blanks.

13. To access the cables, remove the fan bracket on the right side of the chassis.

14. Connect the cables:
a. Connect one end of the power cable to the SAS backplane and the other end to the power connector on the system board.

b. Remove the existing SAS cable from the cable guide and from the system board.
15. Connect the end of each SAS signal cable to the SAS backplane, and then route the SAS signal cables behind the cable guide. Do not connect the other ends yet.

16. Install the fan bracket. Be sure that the cables are properly routed in the channel along the fan bracket.
17. Install the fan cage.

18. Install the air baffle.
 If you do not have a full-length expansion board, the air baffle can be installed last.
19. Remove the blank from the PCIe riser cage.

20. Install the SAS controller board into the PCIe riser cage.

21. Connect the other end of the SAS signal cables to the SAS controller board and to the system board. Then, install the PCIe riser cage.
SAS cables can be connected to the PCIe riser cage and the system board before or after the PCIe riser cage is installed. For ease in accessing connectors, Hewlett Packard Enterprise recommends connecting the cables before the PCIe riser cage is installed.

Completed SAS cabling:

22. Make sure any installed full-length expansion boards are seated in the retainer clip on the air baffle.
23. Install the access panel (on page 24).
24. Install the server into the rack.
25. Connect each power cord to the server.
26. Connect each power cord to the power source.
27. Power up the server (on page 22).
2U rack bezel option

The 2U rack bezel helps prevent any unauthorized physical access to the server in the rack configuration. To access the hard drive cage, you must unlock and open the 2U rack bezel.

To unlock the 2U rack bezel, use the key provided with the kit.

Install the 2U rack bezel into the chassis, and then lock the 2U rack bezel with the key.

HP Trusted Platform Module option

For more information about product features, specifications, options, configurations, and compatibility, see the product QuickSpecs on the Hewlett Packard Enterprise website (http://www.hpe.com/info/qs).

Use these instructions to install and enable a TPM on a supported server. This procedure includes three sections:

1. Installing the Trusted Platform Module board.
2. Retaining the recovery key/password (on page 87).
3. Enabling the Trusted Platform Module (on page 88).

 Enabling the TPM requires accessing BIOS/Platform Configuration (RBSU) in UEFI System Utilities.

TPM installation requires the use of drive encryption technology, such as the Microsoft Windows BitLocker Drive Encryption feature. For more information on BitLocker, see the Microsoft website (http://www.microsoft.com).

⚠️ CAUTION: Always observe the guidelines in this document. Failure to follow these guidelines can cause hardware damage or halt data access.

When installing or replacing a TPM, observe the following guidelines:

- Do not remove an installed TPM. Once installed, the TPM becomes a permanent part of the system board.
- When installing or replacing hardware, Hewlett Packard Enterprise service providers cannot enable the TPM or the encryption technology. For security reasons, only the customer can enable these features.
• When returning a system board for service replacement, do not remove the TPM from the system board. When requested, Hewlett Packard Enterprise Service provides a TPM with the spare system board.

• Any attempt to remove an installed TPM from the system board breaks or disfigures the TPM security rivet. Upon locating a broken or disfigured rivet on an installed TPM, administrators should consider the system compromised and take appropriate measures to ensure the integrity of the system data.

• When using BitLocker, always retain the recovery key/password. The recovery key/password is required to enter Recovery Mode after BitLocker detects a possible compromise of system integrity.

• Hewlett Packard Enterprise is not liable for blocked data access caused by improper TPM use. For operating instructions, see the encryption technology feature documentation provided by the operating system.

Installing the Trusted Platform Module board

⚠️ **WARNING:** To reduce the risk of personal injury, electric shock, or damage to the equipment, remove the power cord to remove power from the server. The front panel Power On/Standby button does not completely shut off system power. Portions of the power supply and some internal circuitry remain active until AC power is removed.

⚠️ **WARNING:** To reduce the risk of personal injury from hot surfaces, allow the drives and the internal system components to cool before touching them.

1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Remove the server from the rack, if necessary (“Remove the server from the rack” on page 23).
4. Place the server on a flat, level work surface.
5. Remove the access panel (on page 24).
6. Do the following:
 a. Remove the primary PCIe riser cage (on page 28, "PCIe riser cage LED" on page 18).
 b. Remove the secondary PCIe riser cage (on page 29).
7. Remove the air baffle (on page 33).

⚠️ **CAUTION:** Any attempt to remove an installed TPM from the system board breaks or disfigures the TPM security rivet. Upon locating a broken or disfigured rivet on an installed TPM, administrators should consider the system compromised and take appropriate measures to ensure the integrity of the system data.
8. Install the TPM board. Press down on the connector to seat the board ("System board components" on page 14).

9. Install the TPM security rivet by pressing the rivet firmly into the system board.

10. Install the air baffle.

11. Do the following:
 a. Install the primary PCIe riser cage (on page 30).
 b. Install the secondary PCIe riser cage ("Secondary PCIe riser cage option" on page 73).

12. Install the access panel (on page 24).

13. Install the server into the rack ("Installing the server into the rack" on page 39).

14. Connect each power cord to the server.

15. Connect each power cord to the power source.

16. Power up the server (on page 22).

Retaining the recovery key/password

The recovery key/password is generated during BitLocker setup, and can be saved and printed after BitLocker is enabled. When using BitLocker, always retain the recovery key/password. The recovery
key/password is required to enter Recovery Mode after BitLocker detects a possible compromise of system integrity.

To help ensure maximum security, observe the following guidelines when retaining the recovery key/password:

- Always store the recovery key/password in multiple locations.
- Always store copies of the recovery key/password away from the server.
- Do not save the recovery key/password on the encrypted hard drive.

Enabling the Trusted Platform Module

1. When prompted during the start-up sequence, access RBSU by pressing the F9 key.
2. From the Main Menu, select **Server Security**.
3. From the Server Security Menu, select **Trusted Platform Module**.
4. From the Trusted Platform Module Menu, select **TPM Functionality**.
5. Select **Enable**, and then press the Enter key to modify the TPM Functionality setting.
6. Press the Esc key to exit the current menu, or press the F10 key to exit RBSU.
7. Reboot the server.
8. Enable the TPM in the OS. For OS-specific instructions, see the OS documentation.

⚠️ **CAUTION:** When a TPM is installed and enabled on the server, data access is locked if you fail to follow the proper procedures for updating the system or option firmware, replacing the system board, replacing a hard drive, or modifying OS application TPM settings.

For more information on firmware updates and hardware procedures, see the *HP Trusted Platform Module Best Practices White Paper* on the Hewlett Packard Enterprise website (http://www.hpe.com/support/hpesc).

For more information on adjusting TPM usage in BitLocker™, see the Microsoft website (http://technet.microsoft.com/en-us/library/cc732774.aspx).
Cabling

SAS hard drive cabling

- SFF hard drive cabling

- SFF cabling, with optional drive cage
- LFF hard drive cabling

Optical drive cabling
FBWC cabling

- 8 or 16 drive SFF

- 8 drive LFF
• 12 LFF or 25 SFF

• PCIe option

Depending on the server configuration, you may need to remove the primary PCIe riser cage (on page 28) before cabling to a PCIe expansion board.

Chipset SATA cable option

With the chipset SATA cable option, the chipset SATA controller can be used with a single SATA hard drive that is installed in one hard drive bay of the SFF or LFF hard drive cage.

• When using the chipset SATA configuration, the following conditions apply:
 o Only drive bay 5 is enabled. The remaining drive bays are disabled.
 o The optical bay is disabled because the chipset SATA controller port on the system board is redirected from the optical bay to the drive cage.
 o Hard drive status LEDs are not supported.
 o Hard drive thermal status monitoring is not supported.
• Hot-plug operation is not supported.

• Because only one drive bay is enabled, all remaining drives can be removed.

For proper thermal cooling, install blanks in all bays that do not have a drive installed. Order a sufficient number of 6.35-cm (2.5-in) or 8.89-cm (3.5-in) hard drive blank option kits from an HPE authorized reseller. For more information, see the server maintenance and service guide.

• The standard SATA driver is included with supported operating systems. No additional driver is required.

To install the component:

1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend the server from the rack (on page 22).
4. Remove the access panel (on page 24).

 WARNING: Eliminate the risk of electric shock by removing all AC power from the system before installing or replacing any non-hot-plug hardware option. Disconnect all power cords to completely remove power from the server.

 WARNING: To reduce the risk of personal injury from hot surfaces, allow the drives and the internal system components to cool before touching them.

 IMPORTANT: You have to remove the primary PCIe riser cage if a full-length expansion board is installed.

5. If a full-length expansion board is installed in slot 1, release the full-length expansion board retainer, and then remove the primary PCIe riser cage.
6. If a full-length expansion board is installed in slot 4, release the full-length expansion board retainer, and then remove the secondary PCIe riser cage.

7. Remove the air baffle (on page 33).

8. Remove the fan cage (on page 25).

9. Disconnect any SAS cables from the hard drive cage and either the embedded SAS controller or an optional SAS controller. Do not disconnect the power cable.
10. Disconnect the SATA cable from the optical drive and the SATA connector on the system board. The optical bay is disabled with the chipset SATA cable option.

11. Connect the chipset SATA cable:
 a. Connect the chipset SATA cable connector to the chipset SATA controller port on the system board. The chipset SATA connector on the SATA cable is narrower than the chipset SATA controller port header on the system board.
 b. Connect the remaining chipset SATA cable connector to the SATA header on the hard drive cage.

12. Coil the cables behind the hard drive backplane to minimize airflow impact.
13. Install the fan cage ("Remove the fan cage" on page 25).
14. Install the air baffle ("Remove the air baffle" on page 33).
15. Install the PCIe riser cage ("Install the primary PCIe riser cage" on page 30), if removed.
16. Do one of the following:
 - Secure the primary PCIe riser cage full-length expansion board retainer ("Chipset SATA cable option" on page 92, on page 31).
Secure the secondary PCIe riser cage full-length expansion board retainer ("Chipset SATA cable option" on page 92, on page 32).

17. Install the access panel (on page 24).
18. Install the server in the rack ("Installing the server into the rack" on page 39).
19. Remove any installed hard drives ("Removing a hot-plug SAS or SATA hard drive" on page 59).
20. Install a SATA hard drive ("Installing a hot-plug SAS or SATA hard drive" on page 58) in hard drive bay 5.
22. Connect each power cord to the server.
23. Connect each power cord to the power source.
24. Power up the server (on page 22).
25. Use RBSU ("HPE ROM-Based Setup Utility" on page 101) to disable the embedded HPE Smart Array P420i Controller, if necessary.

150W PCIe power cable option

CAUTION: To prevent damage to the server or expansion boards, power down the server and remove all AC power cords before removing or installing the PCI expansion cage.

Connect the cable as indicated.
Software and configuration utilities

Server mode

The software and configuration utilities presented in this section operate in online mode, offline mode, or in both modes.

<table>
<thead>
<tr>
<th>Software or configuration utility</th>
<th>Server mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPE iLO (on page 97)</td>
<td>Online and Offline</td>
</tr>
<tr>
<td>Active Health System</td>
<td>Online and Offline</td>
</tr>
<tr>
<td>Integrated Management Log (on page 99)</td>
<td>Online and Offline</td>
</tr>
<tr>
<td>Intelligent Provisioning (on page 99)</td>
<td>Offline</td>
</tr>
<tr>
<td>HPE Insight Diagnostics (on page 99)</td>
<td>Online and Offline</td>
</tr>
<tr>
<td>HPE Insight Remote Support software ("HPE Insight Remote Support central connect" on page 100)</td>
<td>Online and Offline</td>
</tr>
<tr>
<td>HPE Insight Online</td>
<td>Online</td>
</tr>
<tr>
<td>Erase Utility (on page 100)</td>
<td>Offline</td>
</tr>
<tr>
<td>Scripting Toolkit ("Scripting Toolkit for Windows and Linux" on page 101)</td>
<td>Online</td>
</tr>
<tr>
<td>Service Pack for ProLiant (on page 101)</td>
<td>Online and Offline</td>
</tr>
<tr>
<td>HP Smart Update Manager (on page 101)</td>
<td>Online and Offline</td>
</tr>
<tr>
<td>HPE ROM-Based Setup Utility (on page 101)</td>
<td>Offline</td>
</tr>
<tr>
<td>Array Configuration Utility (on page 104)</td>
<td>Online and Offline</td>
</tr>
<tr>
<td>Option ROM Configuration for Arrays (on page 104)</td>
<td>Offline</td>
</tr>
<tr>
<td>ROMPaq utility (on page 105)</td>
<td>Offline</td>
</tr>
</tbody>
</table>

Hewlett Packard Enterprise product QuickSpecs

For more information about product features, specifications, options, configurations, and compatibility, see the product QuickSpecs on the Hewlett Packard Enterprise website (http://www.hpe.com/info/qs).

HPE iLO Management

HPE iLO Management is a set of embedded management features supporting the complete lifecycle of the server, from initial deployment through ongoing management.

HPE iLO

The HPE iLO subsystem is a standard component of ProLiant servers that simplifies initial server setup, server health monitoring, power and thermal optimization, and remote server administration. The HPE iLO subsystem includes an intelligent microprocessor, secure memory, and a dedicated network interface. This design makes HPE iLO independent of the host server and its operating system.

HPE iLO enables and manages the Active Health System and also features Agentless Management. All key internal subsystems are monitored by HPE iLO. If enabled, SNMP alerts are sent directly by HPE iLO regardless of the host operating system or even if no host operating system is installed.
Embedded remote support software is available on ProLiant Gen8 and later servers with iLO 4, regardless of the operating system software and without installing OS agents on the server.

Using HPE iLO, you can do the following:

- Access a high-performance and secure Integrated Remote Console to the server from anywhere in the world if you have a network connection to the server.
- Use the shared .NET Integrated Remote Console to collaborate with up to four server administrators.
- Remotely mount high-performance Virtual Media devices to the server.
- Securely and remotely control the power state of the managed server.
- Implement true Agentless Management with SNMP alerts from iLO, regardless of the state of the host server.
- Download the Active Health System log.
- Register for HPE Insight Remote Support.
- Use iLO Federation to manage multiple servers from one system running the iLO web interface.
- Use Virtual Power and Virtual Media from the GUI, the CLI, or the iLO scripting toolkit for many tasks, including the automation of deployment and provisioning.
- Control iLO by using a remote management tool.

For more information about HPE iLO features, see the HPE iLO documentation on the Documentation CD or on the Hewlett Packard Enterprise website (http://www.hpe.com/info/ilo/docs).

Active Health System

The HPE Active Health System provides the following features:

- Combined diagnostics tools/scanners
- Always on, continuous monitoring for increased stability and shorter downtimes
- Rich configuration history
- Health and service alerts
- Easy export and upload to Service and Support

The Active Health System monitors and records changes in the server hardware and system configuration. The Active Health System assists in diagnosing problems and delivering rapid resolution if server failures occur.

The Active Health System collects the following types of data:

- Server model
- Serial number
- Processor model and speed
- Storage capacity and speed
- Memory capacity and speed
- Firmware/BIOS

Active Health System does not collect information about Active Health System users' operations, finances, customers, employees, partners, or data center, such as IP addresses, host names, user names, and passwords. Active Health System does not parse or change operating system data from third-party error event log activities, such as content created or passed through by the operating system.

The data that is collected is managed according to the Hewlett Packard Enterprise Data Privacy policy. For more information see the Hewlett Packard Enterprise website (http://www.hpe.com/info/privacy).
The Active Health System, in conjunction with the system monitoring provided by Agentless Management or SNMP Pass-thru, provides continuous monitoring of hardware and configuration changes, system status, and service alerts for various server components.

The Agentless Management Service is available in the SPP, which can be download from the Hewlett Packard Enterprise website (http://www.hpe.com/info/spp/download). The Active Health System log can be downloaded manually from HPE iLO and sent to HPE. For more information, see the iLO user guide on the Hewlett Packard Enterprise website (http://www.hpe.com/info/ilo/docs).

Integrated Management Log

The IML records hundreds of events and stores them in an easy-to-view form. The IML timestamps each event with 1-minute granularity.

You can view recorded events in the IML in several ways, including the following:

- From within HPE SIM
- From within operating system-specific IML viewers:
 - For Windows: IML Viewer
 - For Linux: IML Viewer Application
- From within the HPE iLO web interface
- From within Insight Diagnostics ("HPE Insight Diagnostics" on page 99)

Intelligent Provisioning

Several packaging changes have taken place with ProLiant Gen8 servers: SmartStart CDs and the Smart Update Firmware DVD no longer ship with these new servers. Instead, the deployment capability is embedded in the server as part of Intelligent Provisioning.

Intelligent Provisioning is a single-server deployment tool embedded in ProLiant Gen8 and later servers that simplifies ProLiant server setup, providing a reliable and consistent way to deploy ProLiant server configurations:

- Intelligent Provisioning assists with the OS installation process by preparing the system for installing "off-the-shelf" and Hewlett Packard Enterprise branded versions of operating system software and integrating optimized ProLiant server support software.
- Intelligent Provisioning provides maintenance-related tasks using the Perform Maintenance window.
- Intelligent Provisioning provides installation help for Microsoft Windows, Red Hat and SUSE Linux, and VMware operating systems. For specific OS support, see the Intelligent Provisioning Release Notes on the Hewlett Packard Enterprise website (http://www.hpe.com/info/intelligentprovisioning/docs).

For more information about Intelligent Provisioning software, see the Hewlett Packard Enterprise website (http://www.hpe.com/info/intelligentprovisioning/docs). For Intelligent Provisioning recovery media downloads, see the Resources tab on the Hewlett Packard Enterprise website (http://www.hpe.com/info/ilo). For consolidated drive and firmware update packages, see the Smart Update: Server Firmware and Driver Updates page on the Hewlett Packard Enterprise website (http://www.hpe.com/info/SmartUpdate/docs).

HPE Insight Diagnostics

The Insight Diagnostics is a proactive server management tool, available in both offline and online versions, that provides diagnostics and troubleshooting capabilities to assist IT administrators who verify server installations, troubleshoot problems, and perform repair validation.

The Insight Diagnostics Offline Edition performs various in-depth system and component testing while the OS is not running. To run this utility, boot the server using Intelligent Provisioning (on page 99).
The Insight Diagnostics Online Edition is a web-based application that captures system configuration and other related data needed for effective server management. Available in Microsoft Windows and Linux versions, the utility helps to ensure proper system operation.

For more information or to download the utility, see the Hewlett Packard Enterprise website (http://www.hpe.com/servers/diags). The Insight Diagnostics Online Edition is also available in the SPP (“Service Pack for ProLiant” on page 101).

HPE Insight Diagnostics survey functionality

HPE Insight Diagnostics (on page 99) provides survey functionality that gathers critical hardware and software information on ProLiant servers.

This functionality supports operating systems that may not be supported by the server. For operating systems supported by the server, see the Hewlett Packard Enterprise website (http://www.hpe.com/info/supportos).

If a significant change occurs between data-gathering intervals, the survey function marks the previous information and overwrites the survey data files to reflect the latest changes in the configuration.

Survey functionality is installed with every SmartStart-assisted Insight Diagnostics installation, or it can be installed through the HPE PSP.

NOTE: The current version of SmartStart provides the memory spare part numbers for the server. To download the latest version, see the Hewlett Packard Enterprise website (http://www.hpe.com/support/hpesc).

Erase Utility

CAUTION: Perform a backup before running the Erase Utility. The utility sets the system to its original factory state, deletes the current hardware configuration information, including array setup and disk partitioning, and erases all connected hard drives completely. Before using this utility, see the instructions in the Intelligent Provisioning User Guide.

Use the Erase Utility to erase drives and Active Health System logs, and to reset RBSU settings. Run the Erase Utility if you must erase the system for the following reasons:

• You want to install a new operating system on a server with an existing operating system.
• You encounter an error when completing the steps of a factory-installed operating system installation.

To access the Erase Utility, click the Perform Maintenance icon from the Intelligent Provisioning home screen, and then select Erase.

For more information about the Erase Utility, see the Intelligent Provisioning user guide on the Hewlett Packard Enterprise website (http://www.hpe.com/info/intelligentprovisioning/docs).

HPE Insight Remote Support central connect

When you use the embedded Remote Support functionality with an ProLiant Gen8 server or BladeSystem c-Class enclosure, you can register a server or enclosure to communicate to Hewlett Packard Enterprise through an Insight Remote Support centralized Hosting Device in your local environment. All configuration and service event information is routed through the Hosting Device. This information can be viewed by using the local Insight RS Console or the web-based view in Insight Online (if enabled in Insight RS).

The central connect configuration is available in iLO 4 1.10 and later, Intelligent Provisioning 1.20 and later, and Onboard Administrator 3.60 and later.

For more information about the prerequisites, supported hardware, and associated operating systems for central connect, see HPE Insight Remote Support Release Notes on the Hewlett Packard Enterprise website (http://www.hpe.com/info/insightremotesupport/docs).
Scripting Toolkit for Windows and Linux

The Scripting Toolkit for Windows and Linux is a server deployment product that delivers an unattended automated installation for high-volume server deployments. The Scripting Toolkit is designed to support ProLiant BL, ML, DL, and SL servers. The toolkit includes a modular set of utilities and important documentation that describes how to apply these tools to build an automated server deployment process.

The Scripting Toolkit provides a flexible way to create standard server configuration scripts. These scripts are used to automate many of the manual steps in the server configuration process. This automated server configuration process cuts time from each deployment, making it possible to scale rapid, high-volume server deployments.

For more information, and to download the Scripting Toolkit, see the Hewlett Packard Enterprise website (http://www.hpe.com/info/ProLiant/STK).

Service Pack for ProLiant

The SPP is a comprehensive systems software (drivers and firmware) solution delivered as a single package with major server releases. This solution uses HP SUM as the deployment tool and is tested on all supported ProLiant servers including ProLiant Gen8 and later servers.

SPP can be used in an online mode on a Windows or Linux hosted operating system, or in an offline mode where the server is booted to an operating system included on the ISO file so that the server can be updated automatically with no user interaction or updated in interactive mode.

For more information or to download SPP, see one of the following pages on the Hewlett Packard Enterprise website:

- Service Pack for ProLiant download page (http://www.hpe.com/info/spp/docs)
- Smart Update: Server Firmware and Driver Updates page (http://www.hpe.com/info/SmartUpdate/docs)

HP Smart Update Manager

HP SUM is a product used to install and update firmware, drivers, and systems software on ProLiant servers. The HP SUM provides a GUI and a command-line scriptable interface for deployment of systems software for single or one-to-many ProLiant servers and network-based targets, such as iLOs, OAs, and VC Ethernet and Fibre Channel modules.

For more information about HP SUM, see the product page on the Hewlett Packard Enterprise website (http://www.hpe.com/info/hpsum).

To download HP SUM, see the Hewlett Packard Enterprise website (http://www.hpe.com/info/hpsum/download).

To access the HP Smart Update Manager User Guide, see the HP SUM Information Library (http://www.hpe.com/info/hpsum/documentation).

HPE ROM-Based Setup Utility

RBSU is a configuration utility embedded in HPE ProLiant servers that performs a wide range of configuration activities that can include the following:

- Configuring system devices and installed options
- Enabling and disabling system features
- Displaying system information
- Selecting the primary boot controller
Using RBSU

To use RBSU, use the following keys:

- To access RBSU, press the **F9** key during power-up when prompted.
- To navigate the menu system, use the arrow keys.
- To make selections, press the **Enter** key.
- To access Help for a highlighted configuration option, press the **F1** key.

IMPORTANT: RBSU automatically saves settings when you press the **Enter** key. The utility does not prompt you for confirmation of settings before you exit the utility. To change a selected setting, you must select a different setting and press the **Enter** key.

Default configuration settings are applied to the server at one of the following times:

- Upon the first system power-up
- After defaults have been restored

Default configuration settings are sufficient for proper typical server operation, but configuration settings can be modified using RBSU. The system will prompt you for access to RBSU with each power-up.

Auto-configuration process

The auto-configuration process automatically runs when you boot the server for the first time. During the power-up sequence, the system ROM automatically configures the entire system without needing any intervention. During this process, the ORCA utility, in most cases, automatically configures the array to a default setting based on the number of drives connected to the server.

NOTE: If the boot drive is not empty or has been written to in the past, ORCA does not automatically configure the array. You must run ORCA to configure the array settings.

NOTE: The server may not support all the following examples.

<table>
<thead>
<tr>
<th>Drives installed</th>
<th>Drives used</th>
<th>RAID level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>RAID 0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>RAID 1</td>
</tr>
<tr>
<td>3, 4, 5, or 6</td>
<td>3, 4, 5, or 6</td>
<td>RAID 5</td>
</tr>
<tr>
<td>More than 6</td>
<td>0</td>
<td>None</td>
</tr>
</tbody>
</table>

To change any ORCA default settings and override the auto-configuration process, press the **F8** key when prompted.

For more information on RBSU, see the *ROM-Based Setup Utility User Guide* on the Documentation CD or the RBSU Information Library (http://www.hpe.com/info/rbsu/docs).
Boot options

Near the end of the boot process, the boot options screen is displayed. This screen is visible for several seconds before the system attempts to boot from a supported boot device. During this time, you can do the following:

- Access RBSU by pressing the F9 key.
- Access Intelligent Provisioning Maintenance Menu by pressing the F10 key.
- Access the boot menu by pressing the F11 key.
- Force a PXE Network boot by pressing the F12 key.

Configuring AMP modes

Not all ProLiant servers support all AMP modes. RBSU provides menu options only for the modes supported by the server. Advanced memory protection within RBSU enables the following advanced memory modes:

- Advanced ECC Mode—Provides memory protection beyond Standard ECC. All single-bit failures and some multi-bit failures can be corrected without resulting in system downtime.
- Online Spare Mode—Provides protection against failing or degraded DIMMs. Certain memory is set aside as spare, and automatic failover to spare memory occurs when the system detects a degraded DIMM. DIMMs that are likely to receive a fatal or uncorrectable memory error are removed from operation automatically, resulting in less system downtime.

For DIMM population requirements, see the server-specific user guide.

Re-entering the server serial number and product ID

After you replace the system board, you must re-enter the server serial number and the product ID.

1. During the server startup sequence, press the F9 key to access RBSU.
2. Select the Advanced Options menu.
3. Select Service Options.
4. Select Serial Number. The following warning appears:
 Warning: The serial number should ONLY be modified by qualified service personnel. This value should always match the serial number located on the chassis.
5. Press the Enter key to clear the warning.
6. Enter the serial number and press the Enter key.
7. Select Product ID. The following warning appears:
 Warning: The Product ID should ONLY be modified by qualified service personnel. This value should always match the Product ID located on the chassis.
8. Enter the product ID and press the Enter key.
9. Press the Esc key to close the menu.
10. Press the Esc key to exit RBSU.
11. Press the F10 key to confirm exiting RBSU. The server automatically reboots.
Utilities and features

Array Configuration Utility

ACU is a utility with the following features:

- Runs as a local application or remote service accessed through the HPE System Management Homepage
- Supports online array capacity expansion, logical drive extension, assignment of online spares, and RAID or stripe size migration
- Suggests the optimum configuration for an unconfigured system
- For supported controllers, provides access to licensed features, including:
 - Moving and deleting individual logical volumes
 - Advanced Capacity Expansion (SATA to SAS and SAS to SATA)
 - Offline Split Mirror
 - RAID 6 and RAID 60
 - RAID 1 (ADM) and RAID 10 (ADM)
 - HPE Drive Erase
 - Video-On-Demand Advanced Controller Settings
- Provides different operating modes, enabling faster configuration or greater control over the configuration options
- Remains available any time that the server is on
- Displays on-screen tips for individual steps of a configuration procedure
- Provides context-sensitive searchable help content
- Provides diagnostic and SmartSSD Wear Gauge functionality on the Diagnostics tab

ACU is now available as an embedded utility, starting with ProLiant Gen8 servers. To access ACU, use one of the following methods:

- If an optional controller is not installed, press **F10** during boot.
- If an optional controller is installed, when the system recognizes the controller during POST, press **F5**.

For optimum performance, the minimum display settings are 1024 × 768 resolution and 16-bit color. Servers running Microsoft® operating systems require one of the following supported browsers:

- Internet Explorer 6.0 or later
- Mozilla Firefox 2.0 or later

For Linux servers, see the README.TXT file for additional browser and support information.

For more information about the storage controller and its features, select the relevant controller user documentation on the Hewlett Packard Enterprise website (http://www.hpe.com/info/smartstorage/docs).

To configure arrays, see the *HPE Smart Storage Administrator User Guide* on the Hewlett Packard Enterprise website (http://www.hpe.com/info/smartstorage/docs).

Option ROM Configuration for Arrays

Before installing an operating system, you can use the ORCA utility to create the first logical drive, assign RAID levels, and establish online spare configurations.
The utility also provides support for the following functions:

- Reconfiguring one or more logical drives
- Viewing the current logical drive configuration
- Deleting a logical drive configuration
- Setting the controller to be the boot controller
- Selecting the boot volume

If you do not use the utility, ORCA will default to the standard configuration.

For more information regarding the default configurations that ORCA uses, see the HPE ROM-Based Setup Utility User Guide on the Documentation CD or the HPE RBSU Information Library (http://www.hpe.com/info/rbsu/docs).

For more information about the storage controller and its features, select the relevant controller user documentation on the Hewlett Packard Enterprise website (http://www.hpe.com/support/SAC_UG_ProLiantServers_en).

To configure arrays, see the user guide for Smart Array Controllers on the Hewlett Packard Enterprise website (http://www.hpe.com/support/CASAC_RG_en).

ROMPaq utility

The ROMPaq utility enables you to upgrade the system firmware (BIOS). To upgrade the firmware, insert a ROMPaq USB Key into an available USB port and boot the system. In addition to ROMPaq, Online Flash Components for Windows and Linux operating systems are available for updating the system firmware.

The ROMPaq utility checks the system and provides a choice (if more than one exists) of available firmware revisions.

To locate the drivers for a particular server, go to the Hewlett Packard Enterprise website (http://www.hpe.com/support/hpesc). Under Select your HPE product, enter the product name or number and click Go.

Automatic Server Recovery

ASR is a feature that causes the system to restart when a catastrophic operating system error occurs, such as a blue screen, ABEND (does not apply to HPE ProLiant DL980 Servers), or panic. A system fail-safe timer, the ASR timer, starts when the System Management driver, also known as the Health Driver, is loaded. When the operating system is functioning properly, the system periodically resets the timer. However, when the operating system fails, the timer expires and restarts the server.

ASR increases server availability by restarting the server within a specified time after a system hang. At the same time, the SIM console notifies you by sending a message to a designated pager number that ASR has restarted the system. You can disable ASR from the System Management Homepage or through RBSU.

USB support

Hewlett Packard Enterprise provides both standard USB 2.0 support and legacy USB 2.0 support. Standard support is provided by the OS through the appropriate USB device drivers. Before the OS loads, Hewlett Packard Enterprise provides support for USB devices through legacy USB support, which is enabled by default in the system ROM.

Legacy USB support provides USB functionality in environments where USB support is not available normally. Specifically, Hewlett Packard Enterprise provides legacy USB functionality for the following:

- POST
• RBSU
• Diagnostics
• DOS
• Operating environments which do not provide native USB support

Redundant ROM support

The server enables you to upgrade or configure the ROM safely with redundant ROM support. The server has a single ROM that acts as two separate ROM images. In the standard implementation, one side of the ROM contains the current ROM program version, while the other side of the ROM contains a backup version.

NOTE: The server ships with the same version programmed on each side of the ROM.

Safety and security benefits

When you flash the system ROM, ROMPaq writes over the backup ROM and saves the current ROM as a backup, enabling you to switch easily to the alternate ROM version if the new ROM becomes corrupted for any reason. This feature protects the existing ROM version, even if you experience a power failure while flashing the ROM.

Keeping the system current

Drivers

IMPORTANT: Always perform a backup before installing or updating device drivers.

The server includes new hardware that may not have driver support on all OS installation media.

If you are installing an Intelligent Provisioning-supported OS, use Intelligent Provisioning (on page 99) and its Configure and Install feature to install the OS and latest supported drivers.

If you do not use Intelligent Provisioning to install an OS, drivers for some of the new hardware are required. These drivers, as well as other option drivers, ROM images, and value-add software can be downloaded as part of an SPP.

If you are installing drivers from SPP, be sure that you are using the latest SPP version that your server supports. To verify that your server is using the latest supported version and for more information about SPP, see the Hewlett Packard Enterprise website (http://www.hpe.com/servers/spp/download).

To locate the drivers for a particular server, go to the Hewlett Packard Enterprise Support Center website (http://www.hpe.com/support/hpesc) and click on Drivers, Software & Firmware. Then, enter your product name in the Find a **Hewlett Packard Enterprise** product field and click Go.

Software and firmware

Software and firmware should be updated before using the server for the first time, unless any installed software or components require an older version.

For system software and firmware updates, use one of the following sources:

• Download the SPP ("Service Pack for ProLiant" on page 101) from the Service Pack for ProLiant download page (http://www.hpe.com/info/spp/docs).
• Download individual drivers, firmware, or other systems software components from the server product page in the Hewlett Packard Enterprise Support Center website (http://www.hpe.com/support/hpesc).

Version control

The VCRM and VCA are web-enabled Insight Management Agents tools that SIM uses to schedule software update tasks to the entire enterprise.

• VCRM manages the repository for SPP. Administrators can view the SPP contents or configure VCRM to automatically update the repository with internet downloads of the latest software and firmware from Hewlett Packard Enterprise.

• VCA compares installed software versions on the node with updates available in the VCRM managed repository. Administrators configure VCA to point to a repository managed by VCRM.

1. Select HP Insight Management from the available options in Products and Solutions.
2. Select HP Version Control from the available options in Insight Management.
3. Download the latest document.

Operating systems and virtualization software support for ProLiant servers

For information about specific versions of a supported operating system, see the Hewlett Packard Enterprise website (http://www.hpe.com/info/ossupport).

HPE Technology Service Portfolio

HPE Technology Services offers a targeted set of consultancy, deployment, and service solutions to meet the support needs of most business and IT environments.

Foundation Care services—Delivers scalable hardware and software support packages for ProLiant server and industry-standard software. You can choose the type and level of service that is most suitable for your business needs.

HPE Collaborative Support—With a single call, Hewlett Packard Enterprise addresses initial hardware and software support needs and helps to quickly identify if a problem is related to hardware or software. If the problem is related to hardware, Hewlett Packard Enterprise resolves the problem according to service level commitments. If the reported incident is related to a Hewlett Packard Enterprise software product or a supported third-party software product and cannot be resolved by applying known fixes, Hewlett Packard Enterprise contacts the third-party vendor and creates a problem incident on your behalf.

HPE Proactive Care—For customers running business critical environments where downtime is not an option, HPE Proactive Care helps to deliver high levels of availability. Key to these service options is the delivery of proactive service management tools to help you avoid the causes of downtime. If a problem arises, then Hewlett Packard Enterprise offers advanced technical response from critical system support specialists for problem identification and resolution.

Hewlett Packard Enterprise Support Center—For all service options, the Hewlett Packard Enterprise Support Center delivers the information, tools, and experts required to support Hewlett Packard Enterprise business products.

HPE Insight Remote Support—Provides 24x7 secure remote monitoring, diagnosis, and problem resolution.

For more information, see one of the following websites:
Change control and proactive notification

Hewlett Packard Enterprise offers Change Control and Proactive Notification to notify customers 30 to 60 days in advance of upcoming hardware and software changes on Hewlett Packard Enterprise commercial products.

For more information, refer to the Hewlett Packard Enterprise website (http://www.hpe.com/info/pcn).
Troubleshooting

Troubleshooting resources

The ProLiant Gen8 Troubleshooting Guide, Volume I: Troubleshooting provides procedures for resolving common problems and comprehensive courses of action for fault isolation and identification, issue resolution, and software maintenance on ProLiant servers and server blades. To view the guide, select a language:

- English (http://www.hpe.com/support/Gen9_TSG_en)
- French (http://www.hpe.com/support/Gen9_TSG_fr)
- Spanish (http://www.hpe.com/support/Gen9_TSG_es)
- German (http://www.hpe.com/support/Gen9_TSG_de)
- Japanese (http://www.hpe.com/support/Gen9_TSG_ja)
- Simplified Chinese (http://www.hpe.com/support/Gen9_TSG_zh_cn)

The ProLiant Gen8 Troubleshooting Guide, Volume II: Error Messages provides a list of error messages and information to assist with interpreting and resolving error messages on ProLiant servers and server blades. To view the guide, select a language:

- English (http://www.hpe.com/support/Gen9_EMG_en)
- French (http://www.hpe.com/support/Gen9_EMG_fr)
- Spanish (http://www.hpe.com/support/Gen9_EMG_es)
- German (http://www.hpe.com/support/Gen9_EMG_de)
- Japanese (http://www.hpe.com/support/Gen9_EMG_ja)
- Simplified Chinese (http://www.hpe.com/support/Gen9_EMG_zh_cn)
Battery replacement

If the server no longer automatically displays the correct date and time, you may need to replace the battery that provides power to the real-time clock.

⚠️ **WARNING:** The computer contains an internal lithium manganese dioxide, a vanadium pentoxide, or an alkaline battery pack. A risk of fire and burns exists if the battery pack is not properly handled. To reduce the risk of personal injury:
- Do not attempt to recharge the battery.
- Do not expose the battery to temperatures higher than 60°C (140°F).
- Do not disassemble, crush, puncture, short external contacts, or dispose of in fire or water.
- Replace only with the spare designated for this product.

To remove the component:
1. Power down the server (on page 22).
2. Remove all power:
 a. Disconnect each power cord from the power source.
 b. Disconnect each power cord from the server.
3. Extend ("Extend the server from the rack" on page 22) or remove ("Remove the server from the rack" on page 23) the server from the rack.
4. Remove the access panel (on page 24).
5. If installed, remove the secondary PCIe riser cage (on page 29).
6. Locate the battery ("System board components" on page 14).
7. Remove the battery.

To replace the component, reverse the removal procedure.

For more information about battery replacement or proper disposal, contact an authorized reseller or an authorized service provider.
Warranty and regulatory information

Safety and regulatory compliance

Turkey RoHS material content declaration

Türkiye Cumhuriyeti: EEE Yönetmeliğine Uygundur

Ukraine RoHS material content declaration

Обладнання відповідає вимогам Технічного регламенту щодо обмеження використання деяких небезпечних речовин в електричному та електронному обладнанні, затвердженого постановою Кабінету Міністрів України від 3 грудня 2008 № 1057

Warranty information

HPE ProLiant and x86 Servers and Options (http://www.hpe.com/support/ProLiantServers-Warranties)
HPE Enterprise Servers (http://www.hpe.com/support/EnterpriseServers-Warranties)
HPE Storage Products (http://www.hpe.com/support/Storage-Warranties)
HPE Networking Products (http://www.hpe.com/support/Networking-Warranties)
Electrostatic discharge

Preventing electrostatic discharge

To prevent damaging the system, be aware of the precautions you need to follow when setting up the system or handling parts. A discharge of static electricity from a finger or other conductor may damage system boards or other static-sensitive devices. This type of damage may reduce the life expectancy of the device.

To prevent electrostatic damage:

- Avoid hand contact by transporting and storing products in static-safe containers.
- Keep electrostatic-sensitive parts in their containers until they arrive at static-free workstations.
- Place parts on a grounded surface before removing them from their containers.
- Avoid touching pins, leads, or circuitry.
- Always be properly grounded when touching a static-sensitive component or assembly.

Grounding methods to prevent electrostatic discharge

Several methods are used for grounding. Use one or more of the following methods when handling or installing electrostatic-sensitive parts:

- Use a wrist strap connected by a ground cord to a grounded workstation or computer chassis. Wrist straps are flexible straps with a minimum of 1 megohm ± 10 percent resistance in the ground cords. To provide proper ground, wear the strap snug against the skin.
- Use heel straps, toe straps, or boot straps at standing workstations. Wear the straps on both feet when standing on conductive floors or dissipating floor mats.
- Use conductive field service tools.
- Use a portable field service kit with a folding static-dissipating work mat.

If you do not have any of the suggested equipment for proper grounding, have an authorized reseller install the part.

For more information on static electricity or assistance with product installation, contact an authorized reseller.
Specifications

Environmental specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>10°C to 35°C (50°F to 95°F)</td>
</tr>
<tr>
<td>Shipping Temperature</td>
<td>-30°C to 50°C (-22°F to 122°F)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-30°C to 60°C (-22°F to 140°F)</td>
</tr>
<tr>
<td>Maximum wet bulb</td>
<td>28°C (82.4°F)</td>
</tr>
<tr>
<td>temperature</td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td></td>
</tr>
<tr>
<td>(noncondensing)**</td>
<td></td>
</tr>
<tr>
<td>Operating humidity</td>
<td>10% to 90%</td>
</tr>
<tr>
<td>Non-operating humidity</td>
<td>5% to 95%</td>
</tr>
</tbody>
</table>

* All temperature ratings shown are for sea level. An altitude derating of 1°C per 300 m (1.8°F per 1,000 ft) to 3048 m (10,000 ft) is applicable. No direct sunlight allowed.

** Storage maximum humidity of 95% is based on a maximum temperature of 45°C (113°F). Altitude maximum for storage corresponds to a pressure minimum of 70 KPa.

Mechanical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>8.73 cm (3.44 in)</td>
</tr>
<tr>
<td>Depth, SFF</td>
<td>69.85 cm (27.50 in)</td>
</tr>
<tr>
<td>Depth, LFF</td>
<td>74.93 cm (29.5 in)</td>
</tr>
<tr>
<td>Width</td>
<td>44.55 cm (17.54 in)</td>
</tr>
<tr>
<td>Weight, 8 LFF</td>
<td>22.63 kg-30.19 kg (49.9 lb- 66.5 lb)</td>
</tr>
<tr>
<td>Weight, 12 LFF</td>
<td>20.02 kg-32.66 kg (44.1 lb- 72 lb)</td>
</tr>
<tr>
<td>Weight, 8 SFF</td>
<td>23.53 kg-28.08 kg (51.9 lb- 61.9 lb)</td>
</tr>
<tr>
<td>Weight, 16 SFF</td>
<td>19.92 kg-27.76 kg (43.9 lb- 61.2 lb)</td>
</tr>
<tr>
<td>Weight, 25 SFF</td>
<td>21.15 kg-28.37 kg (46.6 lb- 62.5 lb)</td>
</tr>
</tbody>
</table>

Power supply specifications

Depending on installed options, the server is configured with one of the following power supplies:

- 460 W CS Gold power supply (92% efficiency) (on page 114)
- 460 W CS Platinum Plus power supply (94% efficiency) (on page 114)
- 750 W CS Gold power supply (92% efficiency) (on page 114)
- 750 W CS Platinum Plus power supply (94% efficiency) (on page 115)
- 750 W 48V CS DC power supply (94% efficiency) (*750 W DC CS HE power supply (94% efficiency)* on page 115)
- 1200 W CS Platinum Plus power supply (90% efficiency) (on page 116)
For detailed power supply specifications, see the quickspecs on the Hewlett Packard Enterprise website (http://www.hpe.com/info/Quickspecs-Moonshot-1500Chassis).

460 W CS Gold power supply (92% efficiency)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input requirements</td>
<td></td>
</tr>
<tr>
<td>Rated input voltage</td>
<td>100V to 240V AC</td>
</tr>
<tr>
<td>Rated input frequency</td>
<td>50 Hz or 60 Hz</td>
</tr>
<tr>
<td>Rated input current</td>
<td>5.5A to 2.2A</td>
</tr>
<tr>
<td>Rated input power</td>
<td>526 W at 100 V AC input</td>
</tr>
<tr>
<td></td>
<td>505 W at 200 V AC input</td>
</tr>
<tr>
<td>Btus per hour</td>
<td>1794 at 100 V AC input</td>
</tr>
<tr>
<td></td>
<td>1725 at 200 V AC input</td>
</tr>
<tr>
<td>Power supply output</td>
<td></td>
</tr>
<tr>
<td>Rated steady-state power</td>
<td>460 W at 100 V to 120 V AC input</td>
</tr>
<tr>
<td></td>
<td>460 W at 200 V to 240 V AC input</td>
</tr>
<tr>
<td>Maximum peak power</td>
<td>460 W at 100 V to 120 V AC input</td>
</tr>
<tr>
<td></td>
<td>460 W at 200 V to 240 V AC input</td>
</tr>
</tbody>
</table>

460 W CS Platinum Plus power supply (94% efficiency)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input requirements</td>
<td></td>
</tr>
<tr>
<td>Rated input voltage</td>
<td>100V to 240V AC</td>
</tr>
<tr>
<td>Rated input frequency</td>
<td>50 Hz or 60 Hz</td>
</tr>
<tr>
<td>Rated input current</td>
<td>5.2A to 2.1A</td>
</tr>
<tr>
<td>Rated input power</td>
<td>509 W at 115 V AC input</td>
</tr>
<tr>
<td></td>
<td>495 W at 230 V AC input</td>
</tr>
<tr>
<td>Btus per hour</td>
<td>1764 at 100 V AC</td>
</tr>
<tr>
<td></td>
<td>1694 at 200 V AC</td>
</tr>
<tr>
<td>Power supply output</td>
<td></td>
</tr>
<tr>
<td>Rated steady-state power</td>
<td>460 W at 100 V to 120 V AC input</td>
</tr>
<tr>
<td></td>
<td>460 W at 200 V to 240 V AC input</td>
</tr>
<tr>
<td>Maximum peak power</td>
<td>460 W at 100 V to 120 V AC input</td>
</tr>
<tr>
<td></td>
<td>460 W at 200 V to 240 V AC input</td>
</tr>
</tbody>
</table>

750 W CS Gold power supply (92% efficiency)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input requirements</td>
<td></td>
</tr>
<tr>
<td>Rated input voltage</td>
<td>100V to 240V AC</td>
</tr>
<tr>
<td>Rated input frequency</td>
<td>50 to 60 Hz</td>
</tr>
<tr>
<td>Rated input current</td>
<td>8.9A to 3.6A</td>
</tr>
<tr>
<td>Rated input power</td>
<td>857 W at 100 V AC input</td>
</tr>
<tr>
<td></td>
<td>824 W at 200 V AC input</td>
</tr>
<tr>
<td>Btus per hour</td>
<td>2925 at 100 V AC input</td>
</tr>
<tr>
<td></td>
<td>2812 at 200 V AC input</td>
</tr>
<tr>
<td>Power supply output</td>
<td></td>
</tr>
</tbody>
</table>

Specifications 114
750 W CS Platinum Plus power supply (94% efficiency)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input requirements</td>
<td>—</td>
</tr>
<tr>
<td>Rated input voltage</td>
<td>100V to 240V AC</td>
</tr>
<tr>
<td>Rated input frequency</td>
<td>50 Hz to 60 Hz</td>
</tr>
<tr>
<td>Rated input current</td>
<td>8.5A to 3.5A</td>
</tr>
<tr>
<td>Maximum rated input power</td>
<td>831 W at 115 V AC input</td>
</tr>
<tr>
<td></td>
<td>808 W at 230 V AC input</td>
</tr>
<tr>
<td>Btus per hour</td>
<td>2878 at 100 V AC input</td>
</tr>
<tr>
<td></td>
<td>2769 at 200 V AC input</td>
</tr>
<tr>
<td>Power supply output</td>
<td>—</td>
</tr>
<tr>
<td>Rated steady-state power</td>
<td>750 W at 100 V to 120 V AC input</td>
</tr>
<tr>
<td></td>
<td>750 W at 200 V to 240 V AC input</td>
</tr>
<tr>
<td>Maximum peak power</td>
<td>750 W at 100 V to 120 V AC input</td>
</tr>
<tr>
<td></td>
<td>750 W at 200 V to 240 V AC input</td>
</tr>
</tbody>
</table>

750 W DC CS HE power supply (94% efficiency)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input requirements</td>
<td>—</td>
</tr>
<tr>
<td>Rated input voltage</td>
<td>-36 V DC to -72 V DC input</td>
</tr>
<tr>
<td></td>
<td>-48 V DC nominal input</td>
</tr>
<tr>
<td>Rated input current</td>
<td>23 A at -36 V DC input</td>
</tr>
<tr>
<td></td>
<td>17 A at -48 V DC input, nominal input</td>
</tr>
<tr>
<td></td>
<td>11 A at -72 V DC input</td>
</tr>
<tr>
<td>Rated input power (W)</td>
<td>815 W at -36 V DC input</td>
</tr>
<tr>
<td></td>
<td>805 W at -48 V DC input, nominal input</td>
</tr>
<tr>
<td></td>
<td>795 W at -72 V DC input</td>
</tr>
<tr>
<td>Rated input power (Btus per hour)</td>
<td>2780 at -36 V DC input</td>
</tr>
<tr>
<td></td>
<td>2740 at -48 V DC input, nominal input</td>
</tr>
<tr>
<td></td>
<td>2720 at -72 V DC input</td>
</tr>
<tr>
<td>Power supply output</td>
<td>—</td>
</tr>
<tr>
<td>Rated steady-state power (W)</td>
<td>750 W</td>
</tr>
<tr>
<td>Maximum peak power (W)</td>
<td>750 W</td>
</tr>
</tbody>
</table>

⚠️ **CAUTION:** This equipment is designed to permit the connection of the earthed conductor of the DC supply circuit to the earthing conductor at the equipment. If this connection is made, all of the following must be met:
- This equipment must be connected directly to the DC supply system earthing electrode conductor or to a bonding jumper from an earthing terminal bar or bus to which the DC supply system earthing electrode conductor is connected.
- This equipment must be located in the same immediate area (such as adjacent cabinets) as...
any other equipment that has a connection between the earthed conductor of the same DC supply circuit and the earthing conductor, and also the point of earthing of the DC system. The DC system must be earthed elsewhere.

- The DC supply source is to be located within the same premises as the equipment.
- Switching or disconnecting devices must not be in the earthed circuit conductor between the DC source and the point of connection of the earthing electrode conductor.

⚠️ **CAUTION:** To reduce the risk of electric shock or energy hazards:
- This equipment must be installed by trained service personnel, as defined by the NEC and IEC 60950-1, Second Edition, the standard for Safety of Information Technology Equipment.
- Connect the equipment to a reliably grounded SELV source. An SELV source is a secondary circuit that is designed so normal and single fault conditions do not cause the voltages to exceed a safe level (60 V DC).
- The branch circuit overcurrent protection must be rated 24 A.

1200 W CS Platinum Plus Power Supply (90% efficiency)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input requirements</td>
<td></td>
</tr>
<tr>
<td>Rated input voltage</td>
<td>100V AC to 240V AC</td>
</tr>
<tr>
<td>Rated input frequency</td>
<td>50 Hz to 60 Hz</td>
</tr>
<tr>
<td>Rated input current</td>
<td>9.1A to 5.5A</td>
</tr>
<tr>
<td>Maximum rated input power</td>
<td>897 W at 100V AC input</td>
</tr>
<tr>
<td></td>
<td>1321 W at 200V AC input</td>
</tr>
<tr>
<td>Btus per hour</td>
<td>3061 at 100V AC input</td>
</tr>
<tr>
<td></td>
<td>4506 at 200V AC input</td>
</tr>
<tr>
<td>Power supply output</td>
<td></td>
</tr>
<tr>
<td>Rated steady-state power</td>
<td>800 W at 100V AC input</td>
</tr>
<tr>
<td></td>
<td>900 W at 120V AC input</td>
</tr>
<tr>
<td></td>
<td>1200 W at 200V to 240V AC input</td>
</tr>
<tr>
<td>Maximum peak power</td>
<td>800 W at 100V AC input</td>
</tr>
<tr>
<td></td>
<td>900 W at 120V AC input</td>
</tr>
<tr>
<td></td>
<td>1200 W at 200V to 240V AC input</td>
</tr>
</tbody>
</table>
Support and other resources

Accessing Hewlett Packard Enterprise Support

- For live assistance, go to the Contact Hewlett Packard Enterprise Worldwide website (http://www.hpe.com/assistance).
- To access documentation and support services, go to the Hewlett Packard Enterprise Support Center website (http://www.hpe.com/support/hpesc).

Information to collect

- Technical support registration number (if applicable)
- Product name, model or version, and serial number
- Operating system name and version
- Firmware version
- Error messages
- Product-specific reports and logs
- Add-on products or components
- Third-party products or components

Accessing updates

- Some software products provide a mechanism for accessing software updates through the product interface. Review your product documentation to identify the recommended software update method.
- To download product updates, go to either of the following:
 - Hewlett Packard Enterprise Support Center Get connected with updates page (http://www.hpe.com/support/e-updates)
 - Software Depot website (http://www.hpe.com/support/softwaredepot)

IMPORTANT: Access to some updates might require product entitlement when accessed through the Hewlett Packard Enterprise Support Center. You must have an HP Passport set up with relevant entitlements.

Websites

- Hewlett Packard Enterprise Information Library (http://www.hpe.com/info/enterprise/docs)
- Hewlett Packard Enterprise Support Center (http://www.hpe.com/support/hpesc)
- Contact Hewlett Packard Enterprise Worldwide (http://www.hpe.com/assistance)
Customer Self Repair

Hewlett Packard Enterprise products are designed with many Customer Self Repair (CSR) parts to minimize repair time and allow for greater flexibility in performing defective parts replacement. If during the diagnosis period Hewlett Packard Enterprise (or Hewlett Packard Enterprise service providers or service partners) identifies that the repair can be accomplished by the use of a CSR part, Hewlett Packard Enterprise will ship that part directly to you for replacement. There are two categories of CSR parts:

- **Mandatory**—Parts for which customer self repair is mandatory. If you request Hewlett Packard Enterprise to replace these parts, you will be charged for the travel and labor costs of this service.

- **Optional**—Parts for which customer self repair is optional. These parts are also designed for customer self repair. If, however, you require that Hewlett Packard Enterprise replace them for you, there may or may not be additional charges, depending on the type of warranty service designated for your product.

NOTE: Some Hewlett Packard Enterprise parts are not designed for customer self repair. In order to satisfy the customer warranty, Hewlett Packard Enterprise requires that an authorized service provider replace the part. These parts are identified as "No" in the Illustrated Parts Catalog.

Based on availability and where geography permits, CSR parts will be shipped for next business day delivery. Same day or four-hour delivery may be offered at an additional charge where geography permits. If assistance is required, you can call the Hewlett Packard Enterprise Support Center and a technician will help you over the telephone. Hewlett Packard Enterprise specifies in the materials shipped with a replacement CSR part whether a defective part must be returned to Hewlett Packard Enterprise. In cases where it is required to return the defective part to Hewlett Packard Enterprise, you must ship the defective part back to Hewlett Packard Enterprise within a defined period of time, normally five (5) business days. The defective part must be returned with the associated documentation in the provided shipping material. Failure to return the defective part may result in Hewlett Packard Enterprise billing you for the replacement. With a customer self repair, Hewlett Packard Enterprise will pay all shipping and part return costs and determine the courier/carrier to be used.

For more information about the Hewlett Packard Enterprise CSR program, contact your local service provider. For the North American program, go to the Hewlett Packard Enterprise CSR website (http://www.hpe.com/support/selfrepair).

Réparation par le client (CSR)

Les produits Hewlett Packard Enterprise comportent de nombreuses pièces CSR (Customer Self Repair = réparation par le client) afin de minimiser les délais de réparation et faciliter le remplacement des pièces défectueuses. Si pendant la période de diagnostic, Hewlett Packard Enterprise (ou ses partenaires ou mainteneurs agréés) détermine que la réparation peut être effectuée à l'aide d'une pièce CSR, Hewlett Packard Enterprise vous l'envoie directement. Il existe deux catégories de pièces CSR :

- **Obligatoire**—Pièces pour lesquelles la réparation par le client est obligatoire. Si vous demandez à Hewlett Packard Enterprise de remplacer ces pièces, les coûts de déplacement et main d'œuvre du service vous seront facturés.
• **Facultatif**—Pièces pour lesquelles la réparation par le client est facultative. Ces pièces sont également conçues pour permettre au client d'effectuer lui-même la réparation. Toutefois, si vous demandez à Hewlett Packard Enterprise de remplacer ces pièces, l'intervention peut ou non vous être facturée, selon le type de garantie applicable à votre produit.

REMARQUE : Certaines pièces Hewlett Packard Enterprise ne sont pas conçues pour permettre au client d'effectuer lui-même la réparation. Pour que la garantie puisse s'appliquer, Hewlett Packard Enterprise exige que le remplacement de la pièce soit effectué par un Mainteneur Agréé. Ces pièces sont identifiées par la mention "Non" dans le Catalogue illustré.

Les pièces CSR sont livrées le jour ouvré suivant, dans la limite des stocks disponibles et selon votre situation géographique. Si votre situation géographique le permet et que vous demandez une livraison le jour même ou dans les 4 heures, celle-ci vous sera facturée. Pour toute assistance, appelez le Centre d’assistance Hewlett Packard Enterprise pour qu’un technicien vous aide au téléphone. Dans les documents envoyés avec la pièce de rechange CSR, Hewlett Packard Enterprise précise s’il est nécessaire de lui retourner la pièce défectueuse. Si c’est le cas, vous devez le faire dans le délai indiqué, généralement cinq (5) jours ouvrés. La pièce et sa documentation doivent être retournées dans l'emballage fourni. Si vous ne retournez pas la pièce défectueuse, Hewlett Packard Enterprise se réserve le droit de vous facturer les coûts de remplacement. Dans le cas d'une pièce CSR, Hewlett Packard Enterprise supporte l'ensemble des frais d'expédition et de retour, et détermine la société de courses ou le transporteur à utiliser.

Riparazione da parte del cliente

Per abbreviare i tempi di riparazione e garantire una maggiore flessibilità nella sostituzione di parti difettose, i prodotti Hewlett Packard Enterprise sono realizzati con numerosi componenti che possono essere riparati direttamente dal cliente (CSR, Customer Self Repair). Se in fase di diagnostica Hewlett Packard Enterprise (o un centro di servizi o di assistenza Hewlett Packard Enterprise) identifica il guasto come riparabile mediante un ricambio CSR, Hewlett Packard Enterprise lo spedirà direttamente al cliente per la sostituzione. Vi sono due categorie di parti CSR:

- **Obbligatorie**—Parti che devono essere necessariamente riparate dal cliente. Se il cliente ne affida la riparazione ad Hewlett Packard Enterprise, deve sostenere le spese di spedizione e di manodopera per il servizio.

- **Opzionali**—Parti la cui riparazione da parte del cliente è facoltativa. Si tratta comunque di componenti progettati per questo scopo. Se tuttavia il cliente ne richiede la sostituzione ad Hewlett Packard Enterprise, potrebbe dover sostenere spese addizionali a seconda del tipo di garanzia previsto per il prodotto.

NOTA : alcuni componenti Hewlett Packard Enterprise non sono progettati per la riparazione da parte del cliente. Per rispettare la garanzia, Hewlett Packard Enterprise richiede che queste parti siano sostituite da un centro di assistenza autorizzato. Tali parti sono identificate da un "No" nel Catalogo illustrato dei componenti.

In base alla disponibilità e alla località geografica, le parti CSR vengono spedite con consegna entro il giorno lavorativo seguente. La consegna nel giorno stesso o entro quattro ore è offerta con un supplemento di costo solo in alcune zone. In caso di necessità si può richiedere l'assistenza telefonica di un addetto del centro di supporto tecnico Hewlett Packard Enterprise. Nel materiale fornito con una parte di ricambio CSR, Hewlett Packard Enterprise specifica se il cliente deve restituire dei componenti. Qualora si richieda la resa ad Hewlett Packard Enterprise del componente difettoso, lo si deve spedire ad Hewlett Packard Enterprise entro un determinato periodo di tempo, generalmente cinque (5) giorni lavorativi. Il componente difettoso deve essere restituito con la documentazione associata nell'imballo di spedizione fornito. La mancata restituzione del componente può comportare la fatturazione del ricambio da parte di Hewlett Packard Enterprise. Nel caso di riparazione da parte del cliente, Hewlett Packard Enterprise sostiene tutte le spese di spedizione e resa e sceglie il corriere/vettore da utilizzare.
Customer Self Repair

Hewlett Packard Enterprise Produkte enthalten viele CSR-Teile (Customer Self Repair), um Reparaturzeiten zu minimieren und höhere Flexibilität beim Austausch defekter Bauteile zu ermöglichen. Wenn Hewlett Packard Enterprise (oder ein Hewlett Packard Enterprise Servicepartner) bei der Diagnose feststellt, dass das Produkt mithilfe eines CSR-Teils repariert werden kann, sendet Ihnen Hewlett Packard Enterprise dieses Bauteil zum Austausch direkt zu. CSR-Teile werden in zwei Kategorien unterteilt:

- **Zwingend**—Teile, für die das Customer Self Repair-Verfahren zwingend vorgegeben ist. Wenn Sie den Austausch dieser Teile von Hewlett Packard Enterprise vornehmen lassen, werden Ihnen die Anfahrt- und Arbeitskosten für diesen Service berechnet.

Reparaciones del propio cliente

Los productos de Hewlett Packard Enterprise incluyen muchos componentes que el propio usuario puede reemplazar (Customer Self Repair, CSR) para minimizar el tiempo de reparación y ofrecer una mayor flexibilidad a la hora de realizar sustituciones de componentes defectuosos. Si, durante la fase de diagnóstico, Hewlett Packard Enterprise (o los proveedores o socios de servicio de Hewlett Packard Enterprise) identifica que una reparación puede llevarse a cabo mediante el uso de un componente CSR, Hewlett Packard Enterprise le enviará dicho componente directamente para que realice su sustitución. Los componentes CSR se clasifican en dos categorías:

- **Obligatorio**—componentes cuya reparación por parte del usuario es obligatoria. Si solicita a Hewlett Packard Enterprise que realice la sustitución de estos componentes, tendrá que hacerse cargo de los gastos de desplazamiento y de mano de obra de dicho servicio.

Support and other resources 120
• **Opcional**—componentes cuya reparación por parte del usuario es opcional. Estos componentes también están diseñados para que puedan ser reparados por el usuario. Sin embargo, si precisa que Hewlett Packard Enterprise realice su sustitución, puede o no conllevar costes adicionales, dependiendo del tipo de servicio de garantía correspondiente al producto.

NOTA: Algunos componentes de Hewlett Packard Enterprise no están diseñados para que puedan ser reparados por el usuario. Para que el usuario haga valer su garantía, Hewlett Packard Enterprise pone como condición que un proveedor de servicios autorizado realice la sustitución de estos componentes. Dichos componentes se identifican con la palabra "No" en el catálogo ilustrado de componentes.

Según la disponibilidad y la situación geográfica, los componentes CSR se enviarán para que lleguen a su destino al siguiente día laborable. Si la situación geográfica lo permite, se puede solicitar la entrega en el mismo día o en cuatro horas con un coste adicional. Si precisa asistencia técnica, puede llamar al Centro de asistencia técnica de Hewlett Packard Enterprise y recibirá ayuda telefónica por parte de un técnico. Con el envío de materiales para la sustitución de componentes CSR, Hewlett Packard Enterprise especificará si los componentes defectuosos deberán devolverse a Hewlett Packard Enterprise. En aquellos casos en los que sea necesario devolver algún componente a Hewlett Packard Enterprise, deberá hacerlo en el periodo de tiempo especificado, normalmente cinco días laborables. Los componentes defectuosos deberán devolverse con toda la documentación relacionada y con el embalaje de envío. Si no enviara el componente defectuoso requerido, Hewlett Packard Enterprise podrá cobrarle por el de sustitución. En el caso de todas sustituciones que lleve a cabo el cliente, Hewlett Packard Enterprise se hará cargo de todos los gastos de envío y devolución de componentes y escogerá la empresa de transporte que se utilice para dicho servicio.

Para obtener más información acerca del programa de Reparaciones del propio cliente de Hewlett Packard Enterprise, póngase en contacto con su proveedor de servicios local. Si está interesado en el programa para Norteamérica, visite la página web de Hewlett Packard Enterprise CSR (http://www.hpe.com/support/selfrepair).

Customer Self Repair

Veel onderdelen in Hewlett Packard Enterprise producten zijn door de klant zelf te repareren, waardoor de reparatieduur tot een minimum beperkt kan blijven en de flexibiliteit in het vervangen van defecte onderdelen groter is. Deze onderdelen worden CSR-onderdelen (Customer Self Repair) genoemd. Als Hewlett Packard Enterprise (of een Hewlett Packard Enterprise Service Partner) bij de diagnose vaststelt dat de reparatie kan worden uitgevoerd met een CSR-onderdeel, verzendt Hewlett Packard Enterprise dat onderdeel rechtstreeks naar u, zodat u het defecte onderdeel kunt vervangen. Er zijn twee categorieën CSR-onderdelen:

• **Verplicht**—Onderdelen waarvoor reparatie door de klant verplicht is. Als u Hewlett Packard Enterprise verzoekt deze onderdelen voor u te vervangen, worden u voor deze service reiskosten en arbeidsloon in rekening gebracht.

• **Optioneel**—Onderdelen waarvoor reparatie door de klant optioneel is. Ook deze onderdelen zijn ontworpen voor reparatie door de klant. Als u echter Hewlett Packard Enterprise verzoekt deze onderdelen voor u te vervangen, kunnen daarvoor extra kosten in rekening worden gebracht, afhankelijk van het type garantiservice voor het product.

OPMERKING: Sommige Hewlett Packard Enterprise onderdelen zijn niet ontwikkeld voor reparatie door de klant. In verband met de garantievoorwaarden moet het onderdeel door een geautoriseerde Service Partner worden vervangen. Deze onderdelen worden in de geïllustreerde onderdelencatalogus aangemerkt met "Nee".

Afhankelijk van de leverbaarheid en de locatie worden CSR-onderdelen verzonden voor levering op de eerstvolgende werkdag. Levering op dezelfde dag of binnen vier uur kan tegen meerkosten worden aangeboden, indien dit mogelijk is gezien de locatie. Indien assistentie is gewenst, belt u het Hewlett Packard Enterprise Support Center om via de telefoon ondersteuning van een technicus te ontvangen. Hewlett Packard Enterprise vermeldt in de documentatie bij het vervangende CSR-onderdeel of het defecte onderdeel aan Hewlett Packard Enterprise moet worden geretourneerd. Als het defecte onderdeel aan Hewlett Packard Enterprise moet worden teruggezonden, moet u het defecte onderdeel

Neem contact op met een Service Partner voor meer informatie over het Customer Self Repair programma van Hewlett Packard Enterprise. Informatie over Service Partners vindt u op de Hewlett Packard Enterprise website (http://www.hpe.com/support/selfrepair).

Reparo feito pelo cliente

Os produtos da Hewlett Packard Enterprise são projetados com muitas peças para reparo feito pelo cliente (CSR) de modo a minimizar o tempo de reparo e permitir maior flexibilidade na substituição de peças com defeito. Se, durante o período de diagnóstico, a Hewlett Packard Enterprise (ou fornecedores/parceiros da Hewlett Packard Enterprise) concluir que o reparo pode ser efetuado pelo uso de uma peça CSR, a Hewlett Packard Enterprise enviará a peça diretamente ao cliente. Há duas categorias de peças CSR:

- **Obrigatoria**—Peças cujo reparo feito pelo cliente é obrigatório. Se desejar que a Hewlett Packard Enterprise substitua essas peças, serão cobradas as despesas de transporte e mão-de-obra do serviço.

- **Opcional**—Peças cujo reparo feito pelo cliente é opcional. Essas peças também são projetadas para o reparo feito pelo cliente. No entanto, se desejar que a Hewlett Packard Enterprise as substitua, pode haver ou não a cobrança de taxa adicional, dependendo do tipo de serviço de garantia destinado ao produto.

OBSERVAÇÃO: Algumas peças da Hewlett Packard Enterprise não são projetadas para o reparo feito pelo cliente. A fim de cumprir a garantia do cliente, a Hewlett Packard Enterprise exige que um técnico autorizado substitua a peça. Essas peças estão identificadas com a marca “No” (Não), no catálogo de peças ilustrado.

Conforme a disponibilidade e o local geográfico, as peças CSR serão enviadas no primeiro dia útil após o pedido. Onde as condições geográficas permitirem, a entrega no mesmo dia ou em quatro horas pode ser feita mediante uma taxa adicional. Se precisar de auxílio, entre em contato com o Centro de suporte técnico da Hewlett Packard Enterprise para que um técnico o ajude por telefone. A Hewlett Packard Enterprise especifica nos materiais fornecidos com a peça CSR de reposição se a peça com defeito deve ser devolvida à Hewlett Packard Enterprise. Nos casos em que isso for necessário, é preciso enviar a peça com defeito à Hewlett Packard Enterprise, você deverá enviar a peça com defeito de volta para a Hewlett Packard Enterprise dentro do período de tempo definido, normalmente em 5 (cinco) dias úteis. A peça com defeito deve ser enviada com a documentação correspondente no material de transporte fornecido. Caso não o faça, a Hewlett Packard Enterprise poderá cobrar a reposição. Para as peças de reparo feito pelo cliente, a Hewlett Packard Enterprise paga todas as despesas de transporte e de devolução da peça e determina a transportadora/serviço postal a ser utilizado.

カスタマーセルフリペア

修理時間を短縮し、故障部品の交換における高い柔軟性を確保するために、Hewlett Packard Enterprise製品には多数のカスタマーセルフリペア（CSR）部品があります。診断の際に、CSR部品を使用すれば修理ができるとHewlett Packard Enterprise（Hewlett Packard EnterpriseまたはHewlett Packard Enterprise正規保守代理店）が判断した場合、Hewlett Packard Enterpriseはその部品を直接、お客様に発送し、お客様に交換していただきます。CSR部品には以下の2種類があります。

- 必須 - カスタマーセルフリペアが必須の部品。当該部品について、もしもお客様がHewlett Packard Enterpriseに交換作業を依頼される場合には、その修理サービスに関する交通費および人件費がお客様に請求されます。
- 任意 - カスタマーセルフリペアが任意である部品。この部品もカスタマーセルフリペア用です。当該部品について、もしもお客様がHewlett Packard Enterpriseに交換作業を依頼される場合には、お買い上げの製品に適用される保証サービス内容の範囲内においては、別途費用を負担していただくことなく保証サービスを受けることができます。

注：Hewlett Packard Enterprise製品の一部の部品は、カスタマーセルフリペアの対象外です。製品の保証を継続するためには、Hewlett Packard EnterpriseまたはHewlett Packard Enterprise正規保守代理店による交換作業が必須となります。部品カタログには、当該部品がカスタマーセルフリペア除外品である旨が記載されています。

部品供給が可能な場合、地域によっては、CSR部品を翌営業日に届くように発送します。また、地域によっては、追加費用を負担いただくことにより同日または4時間以内に届くように発送することも可能な場合があります。サポートが必要なときは、Hewlett Packard Enterpriseの修理受付窓口に電話していただければ、技術者が電話でアドバイスします。交換用のCSR部品または同様物には、故障部品をHewlett Packard Enterpriseに返送する必要があるかどうかが表示されています。故障部品をHewlett Packard Enterpriseに返送する必要がある場合は、指定期限内（通常は5営業日以内）に故障部品をHewlett Packard Enterpriseに返送してください。故障部品を返送する場合は、届いた時の梱包箱に関連書類とともに入れてください。故障部品を返送しない場合、Hewlett Packard Enterpriseから部品費用が請求されます。カスタマーセルフリペアの際には、Hewlett Packard Enterpriseは送料および部品返送費を全額負担し、使用する宅配便会社や運送会社を指定します。
客戶自行維修

Hewlett Packard Enterprise 產品提供許多客戶自行維修 (CSR) 部件，以盡可能縮短維修時間和在更換缺陷部件提供更大的靈活性。如果在診斷期間 Hewlett Packard Enterprise（或 Hewlett Packard Enterprise 服務供應商或服務合作伙伴）確定再使用 CSR 部件完成維修，Hewlett Packard Enterprise 將直接將該部件發給您進行更換。有兩類 CSR 部件：

- 強制性的 — 要求客戶必須自行維修的部件。如果要求 Hewlett Packard Enterprise 更換這些部件，則必須為該服務支付差旅費和人工費用。
- 可選的 — 客戶可以選擇是否自行維修的部件。這些部件也是為客戶自行維修設計的。不過，如果您要求 Hewlett Packard Enterprise 為您更換這些部件，則根據為您的產品指定的保修服務類型，Hewlett Packard Enterprise 可能收取或不再收取任何附加費用。

注：某些 Hewlett Packard Enterprise 部件的設計並未考慮客戶自行維修。為了滿足保修保養的需要，Hewlett Packard Enterprise 要求授權服務提供商更換相關部件。這些部件在部件圖錄目錄中标記為“否”。

CSR 部件的存放在一個工作日發貨（取決於備貨情況和允許的地理範圍），在允許的地理範圍內，可以在當天或四小時內發貨，但因安裝手續需要收取額外費用。如果需要幫助，您可以致電 Hewlett Packard Enterprise 技術支持中心，將會有技術人員通過電話為您提供幫助。Hewlett Packard Enterprise 在隨更換的 CSR 部件發送的材料中會指出您是否必須將有缺陷的部件返回給 Hewlett Packard Enterprise。如果要求您將有缺陷的部件返回給 Hewlett Packard Enterprise，那麼您必須在規定的期限內（通常是五 (5) 個工作日）將缺陷部件發回 Hewlett Packard Enterprise。有缺陷的部件必須隨所提供的復原材料中的相關文件一起返回。如果未能送回有缺陷的部件，Hewlett Packard Enterprise 可能會要求您支付更換費用。

客戶自行維修時，Hewlett Packard Enterprise 將承擔所有相關運輸和部件運送費用，並指定快速郵寄/承運商。

有關 Hewlett Packard Enterprise 客戶自行維修計劃的詳細信息，請與您的當地服務提供商聯繫。有關北美地區的計劃，請訪問 Hewlett Packard Enterprise 網站 (http://www.hpe.com/support/selfrepair)。

客戶自行維修

Hewlett Packard Enterprise 產品設置了許多“客戶自行維修”(CSR) 的零件以減少維修時間，並且使得更換瑕疵零件時沒有更大的彈性。如果在診斷期間，Hewlett Packard Enterprise（或 Hewlett Packard Enterprise 服務供應商或維修夥伴）辨認出此項維修工作可以藉由使用 CSR 零件來完成，則 Hewlett Packard Enterprise 將直接寄送該零件給您作更換。CSR 零件分為兩種類別：

- 強制的 — 客戶自行維修所使用的零件是強制性的。如果需要 Hewlett Packard Enterprise 更換這些零件，Hewlett Packard Enterprise 將會向您收取此服務所需的外出費用與勞動成本。
- 選購的 — 客戶自行維修所使用的零件是選購的。這些零件也設計用於客戶自行維修之用。不過，如果您要求 Hewlett Packard Enterprise 為您更換，則可能需要您可能不需要負擔額外的費用，端取決定於此產品指定的保固服務類型而定。

備註：某些 Hewlett Packard Enterprise 零件沒有消費者可自行維修的設計。為符合客戶保固，Hewlett Packard Enterprise 需要授權的服務供應商更換零件。這些零件在顯示的零件目錄中，被標示為“否”。

關於材料與環境的允許的情況下，CSR 零件將於下一個工作日寄送。在環境的允許下當天或四小時內送達，可能需要額外的費用。若您需要協助，請致電 Hewlett Packard Enterprise 支援中心，會有技術人員透過電話為您提供協助。不論損壞的零件是否必須返回，Hewlett Packard Enterprise 皆會在與 CSR 替換零件的一同送達的材料中註明。若要將損壞的零件退回 Hewlett Packard Enterprise，您必須在指定的一段時間內（通常為五 (5) 個工作日），將損壞的零件寄回 Hewlett Packard Enterprise。損壞的零件必須與寄送資料中隨附的相關技術文件一併退回。若無法退回損壞的零件，Hewlett Packard Enterprise 可能會向您收取損壞費用。針對客戶自行維修情形，Hewlett Packard Enterprise 將負責所有運費及零件運費費用，並指定使用何家快遞/運輸公司。

如需 Hewlett Packard Enterprise 的 CSR 方案詳細資訊，請連絡您的當地服務提供商。至於北美方案，請參閱 Hewlett Packard Enterprise 的 CSR 網站 repair (http://www.hpe.com/support/selfrepair)。
고객 셀프 수리

Hewlett Packard Enterprise 제품은 수리 시간을 최소화하고 해결이 있는 부품 교체에 더욱 빠른 응용성을 발휘할 수 있도록 키 위에 고객 셀프 수리(CSR) 부품을 다양 사용하여 설계되었습니다. 전단 기간 동안 Hewlett Packard Enterprise 또는 Hewlett Packard Enterprise 서비스 공급업체 또는 서비스 협력업체에서 CSR 부품을 사용하여 수리가 가능하다고 판단되면 Hewlett Packard Enterprise는 해당 부품을 바로 사용자가 받아 수리가 가능할 수 있도록 합니다. CSR 부품에는 두 가지 종류가 있습니다.

- 폐수 - 고객 셀프 수리가 없을 경우 폐수 부품. 사용자가 Hewlett Packard Enterprise에 이 부품의 교체를 요청할 경우 이를 서비스에 대한 설명서의 지침에 따라 제작되어 설치할 수 있습니다.
 - 선택 사항 - 고객 셀프 수리가 선택 사항인 부품. 이 부품들도 고객 셀프 수리가 가능하도록 설계되었습니다. 하지만 사용자가 Hewlett Packard Enterprise에 이 부품의 교체를 요청할 경우 사용자가 구입한 제품에 해당하는 보증 서비스 유형에 따라 추가 비용이 수리가 가능할 수 있습니다.

참고: 일부 Hewlett Packard Enterprise 부품은 고객 셀프 수리가 불가능하도록 설계되었습니다.
Hewlett Packard Enterprise은 반복적으로 고객 부품을 교체할 경우 공급 서비스 제공업체용 부품을 교체하도록 하고 있습니다. 이러한 부분들은 Illustrated Parts Catalog에 "No"라고 표시되어 있습니다.

CSR 부품은 교체 성능과 균형의 조건이 허용하는 경우 다음 원칙의 납품이 가능하도록 배송이 이루어집니다. 지하의 조건이 허용하는 경우 추가 비용이 적용되는 조건으로 당일 또는 4시간 내 배송이 가능할 수도 있습니다. 배송이 필요하지만 Hewlett Packard Enterprise Support Center로 전화하시오. 명시 기술자가 전화로 도움을 줄 것입니다. Hewlett Packard Enterprise는 결함이 발생한 부품을 Hewlett Packard Enterprise로 반환해야 하는지 여부를 CSR 교체 부품과 함께 배송된 자료에 지정합니다.

결함이 발생한 부품이 Hewlett Packard Enterprise로 반환해야 하는 경우에는 지원 기간 내(통상 영업일 기준 6일)에 Hewlett Packard Enterprise로 반환해야 합니다. 이때 결함이 발생한 부품은 제공된 포장재료에 넣어 관련 설명서와 함께 반환해야 합니다. 결함이 발생한 부품을 반환하지 않는 경우 Hewlett Packard Enterprise가 교체 부품에 대해 비용을 청구할 수 있습니다. 고객 셀프 수리의 경우, Hewlett Packard Enterprise는 모든 운송 및 부품 반환 비용을 부담하며 사용자 서비스를 제공합니다.

Remote support

Remote support is available with supported devices as part of your warranty or contractual support agreement. It provides intelligent event diagnosis, and automatic, secure submission of hardware event notifications to Hewlett Packard Enterprise, which will initiate a fast and accurate resolution based on your product's service level. Hewlett Packard Enterprise strongly recommends that you register your device for remote support.

For more information and device support details, go to the Insight Remote Support website (http://www.hpe.com/info/insightremotesupport/docs).
Acronyms and abbreviations

ABEND
abnormal end

ACU
Array Configuration Utility

AMP
Advanced Memory Protection

ASR
Automatic Server Recovery

CSA
Canadian Standards Association

CSR
Customer Self Repair

DDR
double data rate

FBWC
flash-backed write cache

IEC
International Electrotechnical Commission

iLO
Integrated Lights-Out

IML
Integrated Management Log

LFF
large form factor

NMI
nonmaskable interrupt
NVRAM
nonvolatile memory

ORCA
Option ROM Configuration for Arrays

PCIe
Peripheral Component Interconnect Express

POST
Power-On Self Test

RBSU
ROM-Based Setup Utility

RDIMM
registered dual in-line memory module

RDP
Rapid Deployment Pack

SAS
serial attached SCSI

SATA
serial ATA

SELV
separated extra low voltage

SFF
small form factor

SIM
Systems Insight Manager

TMRA
recommended ambient operating temperature

TPM
Trusted Platform Module

UID
unit identification
USB
universal serial bus

VCA
Version Control Agent
Hewlett Packard Enterprise is committed to providing documentation that meets your needs. To help us improve the documentation, send any errors, suggestions, or comments to Documentation Feedback (mailto:docsfeedback@hpe.com). When submitting your feedback, include the document title, part number, edition, and publication date located on the front cover of the document. For online help content, include the product name, product version, help edition, and publication date located on the legal notices page.
Index

A
AC power supply 114, 115, 116
access panel 24
Advanced ECC memory 56, 103
air baffle 33
Array Configuration Utility (ACU) 104
ASR (Automatic Server Recovery) 105
authorized reseller 112, 117
auto-configuration process 102
Automatic Server Recovery (ASR) 105

B
battery 110
BIOS upgrade 97, 105
blue screen event 16
boot options 103
BSMI notice 111
buttons 6

C
cable management arm 39
cables 89
cabling 89, 90
Canadian notice 111
capacitor pack 61
Care Pack 35, 107, 117
cautions 112
Change Control 108
components 6
components, identification 6
configuration of system 97
connectors 6
controller 59
crash dump analysis 16
CSR (customer self repair) 118
customer self repair (CSR) 118

D
DC power supply 114, 115, 116
default settings 56
diagnostic tools 97, 99, 105
diagnostics utility 99
DIMM identification 55
DIMM installation guidelines 55, 56, 57, 58
DIMM slot locations 16
DIMMs 16, 54
DIMMs, single- and dual-rank 54
drive LEDs 18
drivers 106
drives 18

E
electrical grounding requirements 37
electrostatic discharge 112
enabling the Trusted Platform Module 88
environmental requirements 35
environmental specifications 113
Erase Utility 97, 100
error messages 109
European Union notice 111
expansion board options 70
expansion boards 70
extending server from rack 22

F
FBWC cabling 91
FBWC module 19
features 6, 104
Federal Communications Commission (FCC) notice 111
firmware 106
front panel components 6

G
grounding methods 112
grounding requirements 37, 112

H
hard drive bays 6
hard drive LEDs 18
hard drives, determining status of 18
hardware options installation 39, 43
health driver 105
help resources 117
hot-plug fans 20, 24
hot-plug SAS hard drive options 58
HP Smart Update Manager overview 97, 101
HPE Insight Diagnostics 99, 100
HPE Insight Remote Support software 100, 107
HPE Technical Support 107, 117

I
iLO (Integrated Lights-Out) 97, 99
IML (Integrated Management Log) 97, 99
Insight Diagnostics 99, 100, 106
installation services 35
installation, server options 39, 43
installing a DIMM 57
installing a hot-plug SAS hard drive 58
installing hardware 43
installing the full-length expansion board retainer 72
installing the server into the rack 39
installing the Trusted Platform Module board 86
Integrated Lights-Out (iLO) 99
Integrated Management Log (IML) 99
Intelligent Provisioning 97, 99

J
Japanese notice 111

L
LEDs 18
LEDs, front panel 18
LEDs, hard drive 18
LEDs, SAS hard drive 18
LEDs, troubleshooting 18, 109

M
mechanical specifications 113
memory 54, 55, 56
memory configurations 56
memory dump 16
memory subsystem architecture 53
memory, configuring 56
memory, online spare 56, 103

N
NIC connectors 12

O
online spare memory 56, 57, 103
operating system crash 16, 105
operating systems 107
optical drive 6
optical drive cable 90
optimum environment 35
Option ROM Configuration for Arrays (ORCA) 97, 104
options installation 35, 39, 43
ORCA (Option ROM Configuration for Arrays) 97, 104

P
PCI expansion slots 13
PCI riser cage 28, 29, 30
phone numbers 117
POST error messages 109
power distribution unit (PDU) 37
Power On button 22
power requirements 36
power supply specifications 113, 114, 115, 116
powering down 22
powering up 22
preparation procedures 22
problem diagnosis 109

R
rack installation 35, 38
rack mounting hardware 39
rack resources 35
rack warnings 38
RAID configuration 104
RBSU (ROM-Based Setup Utility) 97, 101, 102, 103
rear panel components 12
rear panel LEDs 13
rear panel, accessing 24
redundant ROM 106
registering the server 42
regulatory compliance notices 111
removing a hot-plug SAS hard drive 59
removing server from rack 23
retaining the recovery key/password 87
ROM redundancy 106
ROMPaq utility 97, 105, 106

S
safety considerations 38, 106, 111, 112
SAS and SATA device numbers 16
scripted installation 101
serial number 103
series number 111
server features and options 43
server setup 35, 41, 42, 106
shipping carton contents 39
space and airflow requirements 35
specifications 113, 114, 115, 116
specifications, environmental 113
specifications, mechanical 113
specifications, power 113, 114, 115, 116
specifications, server 113
static electricity 112
support 117
supported operating systems 107
switches 16
system battery 110
system board components 14
system components 6
system maintenance switch 15, 16
system power LED 8
Systems Insight Display 6, 9, 10, 11
Systems Insight Display LEDs 10, 11

T
Taiwan battery recycling notice 111
technical support 107, 117
telephone numbers 117
temperature requirements 36
TPM (Trusted Platform Module) 87, 88
TPM connector 14
troubleshooting 109

U
UID LED 16
updating the system ROM 106
USB connector 6
USB support 105
utilities 97, 104
utilities, deployment 97, 101

V
ventilation 35
Version Control 107
video connector 6

W
warnings 38
website, HP 117