HP ProCurve MSM7xx Controllers

Management and Configuration Guide
This guide contains proprietary information, which is protected by copyright. No part of this guide may be photocopied, reproduced, or translated into another language without the prior written consent of Hewlett-Packard.

Publication Number
5998-0308
April 2010

Applicable Products

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSM710 Access Controller</td>
<td>J9328A</td>
</tr>
<tr>
<td>MSM710 Mobility Controller</td>
<td>J9325A</td>
</tr>
<tr>
<td>MSM730 Access Controller</td>
<td>J9329A</td>
</tr>
<tr>
<td>MSM730 Mobility Controller</td>
<td>J9326A</td>
</tr>
<tr>
<td>MSM750 Access Controller</td>
<td>J9330A</td>
</tr>
<tr>
<td>MSM750 Mobility Controller</td>
<td>J9327A</td>
</tr>
<tr>
<td>MSM760 Access Controller</td>
<td>J9421A</td>
</tr>
<tr>
<td>MSM760 Mobility Controller</td>
<td>J9420A</td>
</tr>
<tr>
<td>MSM765zl Mobility Controller</td>
<td>J9370A</td>
</tr>
</tbody>
</table>

USA Japan WW
MSM310 Access Point J9374A/B J9524A/B J9379A/B
MSM310-R Access Point J9380A/B J9383A/B
MSM317 Access Device J9422A J9423A J9423A
MSM320 Access Point J9360A/B J9527A/B J9364A/B
MSM320-R Access Point J9365A/B J9528A/B J9368A/B
MSM325 Access Point J9369A/B J9373A/B
with Sensor J9356A/B J9357A/B
MSM335 Access Point J9356A/B J9357A/B
with Sensor J9356A/B J9357A/B
MSM410 Access Point J9426A/B J9529A/B J9427A/B
MSM422 Access Point J9358A/B J9530A/B J9359A/B

Trademark Credits
Windows NT®, Windows®, and MS Windows® are US registered trademarks of Microsoft Corporation.

Disclaimer
HEWLETT-PACKARD COMPANY MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

Warranty
See the Customer Support/Warranty booklet included with the product.
A copy of the specific warranty terms applicable to your Hewlett-Packard products and replacement parts can be obtained from your HP Sales and Service Office or authorized dealer.

Open Source Software Acknowledgement Statement
This software incorporates open source components that are governed by the GNU General Public License (GPL), version 2. In accordance with this license, HP ProCurve Networking will make available a complete, machine-readable copy of the source code components covered by the GNU GPL upon receipt of a written request. Send a request to:
Hewlett-Packard Company, L.P.
GNU GPL Source Code
Attn: ProCurve Networking Support
Roseville, CA 95747 USA

Safety and regulatory information
Before installing and operating this product, please read
- Safety information on page 1-11.
- Appendix A: Safety and EMC regulatory statements
Contents

1 Introduction

- About this guide ... 1-2
- Products covered ... 1-2
- Important terms ... 1-3
- Conventions .. 1-3

- New in this release ... 1-5

- Introducing the MSM7xx Controllers 1-6
 - Simplified configuration, deployment, and operation 1-7
 - Controller teaming ... 1-7
 - Seamless mobility ... 1-8
 - Best-in-class public/guest network access service 1-10

- Safety information .. 1-11

- HP ProCurve Networking support .. 1-12

- Getting started ... 1-12

- Online documentation .. 1-12

2 Management

- Management tool ... 2-2
 - Management scenarios .. 2-2
 - Management station ... 2-2
 - Starting the management tool .. 2-2
 - Customizing management tool settings 2-3
 - Security policies ... 2-6
 - Security .. 2-6
 - Web server .. 2-7
 - Auto-refresh .. 2-7

- Device discovery ... 2-8
 - Mobility controller discovery 2-8
 - Controlled AP discovery ... 2-10
SNMP ...2-11
 Configuring the SNMP agent ..2-11

SOAP ..2-14
 Configuring the SOAP server ..2-14

CLI ..2-15
 Configuring CLI support ...2-16

System time ..2-17

Country ...2-18

3 Network configuration

 Port configuration ..3-3
 LAN port configuration ...3-4
 Internet port configuration ..3-5

 Network profiles ..3-6
 About the default network profiles ...3-6
 To define a network profile ..3-6

 Address allocation ..3-7
 DHCP server ..3-8
 DHCP relay agent FIX ..3-10

 VLAN support ...3-12

 GRE tunnels ...3-12

 Bandwidth control ...3-14
 Internet port data rate limits ...3-15
 Bandwidth levels ...3-15
 Example ...3-16

 Discovery protocols ...3-17
 LLDP agents ...3-17
 CDP ..3-17

 DNS ...3-18
 DNS servers ...3-18
 DNS advanced settings ..3-19

 IP routes ..3-20
 Configuration ...3-21
Network address translation (NAT)...3-23
 NAT security and static mappings..3-23
 VPN One-to-one NAT...3-26
RIP...3-27
IP QoS ...3-28
 Configuration..3-28
 Example...3-29
IGMP proxy..3-31

4 Working with VSCs

 Key concepts..4-3
 Viewing and editing VSC profiles ...4-4
 The default VSC..4-4
 VSC configuration options..4-5
 About access control and authentication..4-6
 Summary of VSC configuration options..4-8
 Access control..4-9
 Virtual AP...4-10
 VSC ingress mapping...4-14
 VSC egress mapping...4-15
 Default user data rates..4-16
 Wireless mobility ..4-16
 Fast wireless roaming..4-17
 Wireless security filters...4-18
 Wireless protection..4-20
 802.1X authentication...4-23
 RADIUS authentication realms..4-24
 HTML-based user logins..4-25
 VPN-based authentication...4-25
 MAC-based authentication..4-26
 Location-aware ...4-26
 Wireless MAC filter..4-27
 Wireless IP filter..4-27
 DHCP server..4-28
 DHCP relay agent ..4-29
5 Working with controlled APs

Key concepts ... 5-3

Key controlled-mode events ... 5-4

Discovery of controllers by controlled APs ... 5-6
 Discovery overview .. 5-6
 Discovery methods ... 5-7
 Discovery order ... 5-9
 Discovery recommendations ... 5-9
 Discovery priority .. 5-10
 Discovery considerations ... 5-12
 Monitoring the discovery process .. 5-12

Authentication of controlled APs ... 5-18
 Building the AP authentication list .. 5-18

Configuring APs .. 5-21
 Overview ... 5-21
 Inheritance ... 5-22
 Configuration strategy .. 5-23
 Working with groups ... 5-24
 Working with APs .. 5-26
 Assigning egress VLANs to a group .. 5-29
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Centralizing traffic on a controller</td>
<td>8-18</td>
</tr>
<tr>
<td></td>
<td>How it works</td>
<td>8-18</td>
</tr>
<tr>
<td></td>
<td>Configuration overview</td>
<td>8-18</td>
</tr>
<tr>
<td>2</td>
<td>Centralized traffic on a controller with VLAN egress</td>
<td>8-21</td>
</tr>
<tr>
<td></td>
<td>How it works</td>
<td>8-21</td>
</tr>
<tr>
<td></td>
<td>Configuration overview</td>
<td>8-21</td>
</tr>
<tr>
<td>3</td>
<td>Centralized traffic on a controller with per-user traffic routing</td>
<td>8-25</td>
</tr>
<tr>
<td></td>
<td>How it works</td>
<td>8-25</td>
</tr>
<tr>
<td></td>
<td>Configuration overview</td>
<td>8-25</td>
</tr>
<tr>
<td>4</td>
<td>Assigning home networks on a per-user basis</td>
<td>8-35</td>
</tr>
<tr>
<td></td>
<td>How it works</td>
<td>8-35</td>
</tr>
<tr>
<td></td>
<td>Configuration overview</td>
<td>8-36</td>
</tr>
<tr>
<td>5</td>
<td>Traffic routing using VLANs</td>
<td>8-41</td>
</tr>
<tr>
<td></td>
<td>How it works</td>
<td>8-41</td>
</tr>
<tr>
<td></td>
<td>Configuration overview</td>
<td>8-42</td>
</tr>
<tr>
<td>6</td>
<td>Distributing traffic using VLAN ranges</td>
<td>8-49</td>
</tr>
<tr>
<td></td>
<td>How it works</td>
<td>8-49</td>
</tr>
<tr>
<td></td>
<td>Configuration overview</td>
<td>8-50</td>
</tr>
<tr>
<td></td>
<td>Subnet-based mobility</td>
<td>8-57</td>
</tr>
</tbody>
</table>

9 User authentication

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
<td>9-2</td>
</tr>
<tr>
<td></td>
<td>Authentication support</td>
<td>9-2</td>
</tr>
<tr>
<td></td>
<td>802.1X authentication</td>
<td>9-4</td>
</tr>
<tr>
<td></td>
<td>Supported 802.1X protocols</td>
<td>9-5</td>
</tr>
<tr>
<td></td>
<td>Configuring 802.1X support on a VSC</td>
<td>9-6</td>
</tr>
<tr>
<td></td>
<td>Configuring global 802.1X settings for wired users</td>
<td>9-8</td>
</tr>
<tr>
<td></td>
<td>Configuring global 802.1X settings for wireless users</td>
<td>9-9</td>
</tr>
<tr>
<td></td>
<td>Configuring 802.1X support on an MSM317 switch port</td>
<td>9-10</td>
</tr>
</tbody>
</table>
MAC-based authentication..9-10
Configuring global MAC-based authentication..9-12
Configuring MAC-based authentication on a VSC...9-13
Configuring MAC-based authentication on an MSM317 switch port9-14
Configuring MAC-based filters on a VSC...9-14
Configuring MAC-based filters on an MSM317 switch port9-15

HTML-based authentication..9-17
Configuring HTML-based authentication on a VSC ..9-17

VPN-based authentication...9-19
Configuring VPN-based authentication on a VSC..9-19

No authentication...9-21

Locally-defined user accounts..9-21
Features ..9-21
Defining a user account...9-25
Defining account profiles ...9-27
Defining subscription plans ...9-29
Accounting persistence ...9-30

10 Authentication services
Overview ...10-2
Using the integrated RADIUS server ...10-2
Server configuration..10-3
User account configuration..10-4
Using a third-party RADIUS server ...10-5
Configuring a RADIUS server profile on the controller10-5
Using an Active Directory server ...10-9
Active Directory configuration ..10-9
Configuring an Active Directory group ..10-12
Configuring a VSC to use Active Directory ..10-14

11 Security
Firewall...11-2
Firewall presets ..11-2
Firewall configuration ...11-4
Customizing the firewall .. 11-4
Managing certificates .. 11-5
 Trusted CA certificate store ... 11-6
 Certificate and private key store ... 11-8
 Certificate usage ... 11-10
 About certificate warnings ... 11-11
 IPSec certificates ... 11-11
MAC lockout ... 11-13

12 Local mesh

Key concepts .. 12-2
 Simultaneous AP and local mesh support ... 12-2
 Using 802.11a/n for local mesh ... 12-3
 Quality of service ... 12-3
 Maximum range (ack timeout) .. 12-4
Local mesh terminology .. 12-5
Local mesh operational modes .. 12-6
Node discovery .. 12-6
Operating channel .. 12-6
Local mesh profiles .. 12-7
 Configuration guidelines .. 12-8
 Configuring a local mesh profile ... 12-8
Provisioning local mesh links .. 12-11
Sample local mesh deployments .. 12-14
 RF extension .. 12-14
 Building-to-building connection ... 12-14
 Dynamic network ... 12-15

13 Public/guest network access

Key concepts .. 13-3
 About the public and protected networks ... 13-3
 About the public access interface ... 13-4
 Public access examples .. 13-4
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default configuration ... 13-4</td>
</tr>
<tr>
<td>Public access interface tour ... 13-5</td>
</tr>
<tr>
<td>About the “Subscribe to the service” feature .. 13-5</td>
</tr>
<tr>
<td>About the “Use Free Access service” feature ... 13-8</td>
</tr>
<tr>
<td>About the “Existing user” feature .. 13-8</td>
</tr>
<tr>
<td>Displaying advertisements ... 13-10</td>
</tr>
<tr>
<td>Public access interface flow .. 13-11</td>
</tr>
<tr>
<td>Customizing the public access interface .. 13-12</td>
</tr>
<tr>
<td>Common configuration tasks .. 13-13</td>
</tr>
<tr>
<td>Setting site configuration options .. 13-18</td>
</tr>
<tr>
<td>Allow subscription plan purchases .. 13-18</td>
</tr>
<tr>
<td>Display the Free Access option ... 13-19</td>
</tr>
<tr>
<td>Support a local Welcome page ... 13-19</td>
</tr>
<tr>
<td>Use frames when presenting ads ... 13-19</td>
</tr>
<tr>
<td>Allow SSLv2 authentication .. 13-20</td>
</tr>
<tr>
<td>Redirect users to the Login page via .. 13-20</td>
</tr>
<tr>
<td>Customizing public access interface Web pages .. 13-21</td>
</tr>
<tr>
<td>Site file archive ... 13-21</td>
</tr>
<tr>
<td>FTP server ... 13-21</td>
</tr>
<tr>
<td>Current site files .. 13-22</td>
</tr>
<tr>
<td>Global access control settings .. 13-29</td>
</tr>
<tr>
<td>Access control parameter definitions ... 13-30</td>
</tr>
<tr>
<td>Web server configuration .. 13-33</td>
</tr>
<tr>
<td>Options ... 13-33</td>
</tr>
<tr>
<td>Ports ... 13-33</td>
</tr>
<tr>
<td>MIME types ... 13-34</td>
</tr>
<tr>
<td>Security .. 13-35</td>
</tr>
<tr>
<td>Payment services .. 13-36</td>
</tr>
<tr>
<td>Payment services configuration ... 13-36</td>
</tr>
<tr>
<td>Service settings ... 13-36</td>
</tr>
<tr>
<td>Billing record logging ... 13-38</td>
</tr>
<tr>
<td>Settings ... 13-38</td>
</tr>
<tr>
<td>Persistence .. 13-39</td>
</tr>
<tr>
<td>External billing records server profiles ... 13-40</td>
</tr>
<tr>
<td>Billing records log .. 13-43</td>
</tr>
</tbody>
</table>
14 Working with RADIUS attributes

Introduction .. 14-3

Controller attributes overview .. 14-4
 Customizing the public access interface using the site attribute 14-4
 Defining and retrieving site attributes .. 14-5
 Controller attribute definitions .. 14-8

User attributes .. 14-14
 Customizing user accounts with the user attribute .. 14-14
 Defining and retrieving user attributes ... 14-14
 User attribute definitions ... 14-20

Administrator attributes .. 14-31

Colubris AV-Pair - Site attribute values ... 14-33
 Access list ... 14-34
 Configuration file ... 14-44
 Custom SSL certificate ... 14-44
 Custom public access interface Web pages .. 14-45
 Default user interim accounting update interval ... 14-52
 Default user bandwidth level ... 14-52
 Default user idle timeout .. 14-53
 Default user quotas ... 14-53
 Default user data rates .. 14-54
 Default user one-to-one NAT .. 14-54
 Default user session timeout .. 14-55
 Default user public IP address ... 14-55
 Default user SMTP server ... 14-55
 Default user URLs ... 14-56
 HTTP proxy upstream ... 14-56
 IPass login URL .. 14-57
 MAC authentication .. 14-57
 Multiple login servers ... 14-58
 Redirect URL .. 14-60
15 Working with VPNs

Overview ... 15-2

Securing wireless client sessions with VPNs.. 15-3
Configure an IPSec profile for wireless client VPN 15-4
Configure L2TP server for wireless client VPN ... 15-5
Configure PPTP server for wireless client VPN .. 15-5
VPN address pool .. 15-5

Securing controller communications to remote VPN servers 15-6
Configure an IPSec policy for a remote VPN server 15-7
Configure PPTP client for a remote VPN server ... 15-8
Keeping user traffic out of the VPN tunnel .. 15-10

Additional IPSec configuration .. 15-11
IPSec VLAN mapping .. 15-11
Local group list .. 15-11
IPSec security policy database .. 15-11

16 LLDP

Overview ... 16-2
 LLDP-MED ... 16-2
 Local mesh .. 16-3
 SNMP support ... 16-3

Configuring LLDP on the controller ... 16-4
 TLV settings .. 16-6

Configuring LLDP on an AP .. 16-7
 LLDP agent ... 16-7
 Media endpoint discovery (MED) features .. 16-8
 LLDP settings ... 16-10

17 sFlow

Overview ... 17-2
 sFlow proxy ... 17-2
 MIB support .. 17-3

Configuring and activating sFlow ... 17-3
 sFlow settings ... 17-4
 Collectors ... 17-4
 Active sFlow agents .. 17-5
18 Working with autonomous APs

Key concepts...18-2
 Autonomous AP detection ...18-3
 Viewing autonomous AP information ...18-3
 Switching a controlled AP to autonomous mode ..18-4

Configuring autonomous APs...18-5
 VSC definitions ..18-5

Working with third-party autonomous APs ..18-6
 VSC selection ...18-6

19 Maintenance

Config file management...19-2
 Manual configuration file management ..19-2
 Scheduled operations..19-3

Software updates..19-4
 Performing an immediate software update..19-4
 Performing a scheduled software update...19-5

Licenses...19-6
 Factory reset considerations ...19-7
 Generating and installing a feature license ..19-7

A Safety and EMC regulatory statements

Safety Information ... A-2
Informations concernant la sécurité... A-2
Hinweise zur Sicherheit.. A-3
Considerazioni sulla sicurezza ... A-4
Consideraciones sobre seguridad ... A-5
Safety Information (Japan) .. A-6
Safety Information (China) ... A-7
EMC Regulatory Statements... A-8
 U.S.A... A-8
 Japan .. A-8
Simple NOC authentication example ... D-12
Forcing user logouts ... D-13

E DHCP servers and Colubris vendor classes

Overview .. E-2
Windows Server 2003 configuration .. E-2
 ISC DHCP server configuration ... E-7
Contents

About this guide ... 1-2
 Products covered... 1-2
 Important terms... 1-3
 Conventions ... 1-3

New in this release ... 1-5

Introducing the MSM7xx Controllers .. 1-6
 Simplified configuration, deployment, and operation 1-7
 Controller teaming ... 1-7
 Seamless mobility ... 1-8
 Best-in-class public/guest network access service ... 1-10

Safety information.. 1-11

HP ProCurve Networking support... 1-12

Getting started .. 1-12

Online documentation ... 1-12
About this guide

This guide explains how to configure, and operate the MSM7xx Controllers. It also provides controlled-mode information for MSM3xx and MSM4xx Access Points and the MSM317 Access Device. For information on the operation of access points that support autonomous mode, see the MSM3xx/MSM4xx Access Points Management and Configuration Guide.

Products covered

This guide applies to the following MSM7xx Controller products:

<table>
<thead>
<tr>
<th>Model</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSM710 Access Controller</td>
<td>J9328A</td>
</tr>
<tr>
<td>MSM710 Mobility Controller</td>
<td>J9325A</td>
</tr>
<tr>
<td>MSM730 Access Controller</td>
<td>J9329A</td>
</tr>
<tr>
<td>MSM730 Mobility Controller</td>
<td>J9326A</td>
</tr>
<tr>
<td>MSM750 Access Controller</td>
<td>J9330A</td>
</tr>
<tr>
<td>MSM750 Mobility Controller</td>
<td>J9327A</td>
</tr>
<tr>
<td>MSM760 Access Controller</td>
<td>J9421A</td>
</tr>
<tr>
<td>MSM760 Mobility Controller</td>
<td>J9420A</td>
</tr>
<tr>
<td>MSM765z Mobility Controller</td>
<td>J9370A</td>
</tr>
</tbody>
</table>

This guide provides controlled-mode information for the following MSM3xx and MSM4xx Access Points and the MSM317 Access Device (“USA” identifies USA versions, “WW” identifies worldwide versions for the rest of the world):

<table>
<thead>
<tr>
<th>Model</th>
<th>USA</th>
<th>Japan</th>
<th>WW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSM310 Access Point</td>
<td>J9374A</td>
<td>J9524A/B</td>
<td>J9379A</td>
</tr>
<tr>
<td>MSM310-R Access Point</td>
<td>J9380A</td>
<td></td>
<td>J9383A</td>
</tr>
<tr>
<td>MSM317 Access Device</td>
<td>J9422A</td>
<td>J9423A</td>
<td>J9423A</td>
</tr>
<tr>
<td>MSM320 Access Point</td>
<td>J9360A</td>
<td>J9527A/B</td>
<td>J9364A</td>
</tr>
<tr>
<td>MSM320-R Access Point</td>
<td>J9365A</td>
<td>J9528A/B</td>
<td>J9368A</td>
</tr>
<tr>
<td>MSM325 Access Point with Sensor</td>
<td>J9369A</td>
<td></td>
<td>J9373A</td>
</tr>
<tr>
<td>MSM335 Access Point with Sensor</td>
<td>J9356A</td>
<td></td>
<td>J9357A</td>
</tr>
<tr>
<td>MSM410 Access Point</td>
<td>J9426A</td>
<td>J9529A/B</td>
<td>J9427A</td>
</tr>
<tr>
<td>MSM422 Access Point</td>
<td>J9358A</td>
<td>J9530A/B</td>
<td>J9359A</td>
</tr>
</tbody>
</table>
Important terms

The following terms are used in this guide.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Refers to any HP ProCurve Networking MSM3xx or MSM4xx Access Point or the MSM317 Access Device which is an Access Point with integrated Ethernet switch. Specific model references are used where appropriate. Non-HP ProCurve access points are identified as third-party APs. These APs do not support controlled-mode operation.</td>
</tr>
<tr>
<td>controller</td>
<td>Refers to any HP ProCurve Networking MSM7xx Controller, including both Access Controller and Mobility Controller variants.</td>
</tr>
</tbody>
</table>

Controller teams

Most of the concepts discussed in this guide apply equally to both teamed and non-teamed controllers. Any reference to the term controller, also implies controller team unless specifically indicated otherwise.

Conventions

Management tool

This guide uses specific syntax when directing you to interact with the management tool user interface. Key user-interface elements are identified as follows:

![Management tool interface with network tree and main menu and sub-menu indicators]
Example directions in this guide	What to do in the user interface
Select **Controller >> Security > Firewall.** | **On a non-teamed MSM7xx controller**
In the Network Tree select the **Controller** element, then on the main menu select **Security**, and then select **Firewall** on the sub-menu. All elements to the left of the double angle brackets >> are found in the Network Tree.

On an MSM7xx controller team
In the Network Tree on the team manager, select the **Team [team-name]** element, then on the main menu select **Security**, and then select **Firewall** on the sub-menu. All elements to the left of the double angle brackets >> are found in the Network Tree.

Select **Controller > VSCs > [VSC-name] >> Configuration.** | **On a non-teamed MSM7xx controller**
Expand the **Controller** branch (click its + symbol), expand the **VSCs** branch, select a **[VSC-name]**, then select **Configuration** on the main menu.

On an MSM7xx controller team
In the Network Tree on the team manager, expand the **Team: [team-name]** branch (click its + symbol), expand the **VSCs** branch, select a **[VSC-name]**, then select **Configuration** on the main menu.

For **Password** specify secret22. | In the **Password** field enter the text **secret22** exactly as shown.

Warnings and cautions

Do not proceed beyond a WARNING or CAUTION notice until you fully understand the hazardous conditions and have taken appropriate steps.

Warning
Identifies a hazard that can cause physical injury or death.

Caution
Identifies a hazard that can cause the loss of data or configuration information, create a non-compliant condition, or hardware damage.

Commands and program listings

Monospaced text identifies commands and program listings as follows:

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>use-access-list</td>
<td>Command name. Specify it as shown.</td>
</tr>
<tr>
<td>ip_address</td>
<td>Items in italics are parameters for which you must supply a value.</td>
</tr>
</tbody>
</table>
New in this release

The following new features and enhancements have been added in releases 5.4.x:

<table>
<thead>
<tr>
<th>New feature or enhancement</th>
<th>For information see...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility traffic manager</td>
<td>Chapter 8: Mobility traffic manager</td>
</tr>
<tr>
<td>Controller teaming</td>
<td>Chapter 7: Controller teaming</td>
</tr>
<tr>
<td>Network profiles</td>
<td>Network profiles</td>
</tr>
<tr>
<td>LLDP</td>
<td>Chapter 16: LLDP</td>
</tr>
<tr>
<td>sFlow</td>
<td>Chapter 17: sFlow</td>
</tr>
<tr>
<td>RADIUS authentication for the CLI</td>
<td>CLI on page 2-15</td>
</tr>
<tr>
<td>MAC lockout</td>
<td>MAC lockout on page 11-13</td>
</tr>
<tr>
<td>802.1X supplicant</td>
<td>802.1X on page 5-35</td>
</tr>
<tr>
<td>PCM IDM 3.0 compatibility</td>
<td>ProCurve Manager IDM support on page 14-18</td>
</tr>
<tr>
<td>Support for 64 VSCs (MSM760 and MSM765 only)</td>
<td>The MSM760 and MSM765 controllers can now support up to 64 VSCs. The number of VSCs supported by controlled APs remains unchanged at 16. VSC support on other controllers remains at 16.</td>
</tr>
<tr>
<td>Forced user disassociation</td>
<td>A new column, named Disassociate, has been added to the Controlled APs >> Overview > Wireless clients page. This column provides a Disassociate link for each client in the table. Click the link to terminate a client’s 802.11 session. (The controller sends an 802.11 disassociation message to the client.) Note that this does not permanently block client access. The client is free to associate again.</td>
</tr>
</tbody>
</table>
Introducing the MSM7xx Controllers

The HP ProCurve Networking MSM7xx Controllers provide management and control of intelligent HP ProCurve Networking MSM APs distributed throughout a wireless zone, building, or campus. MSM controllers let you take advantage of both distributed and centralized approaches to deploying a wireless networking solution, letting you design a wireless infrastructure that perfectly meets the needs of your users.

Controller managing APs installed in different physical locations

Controller managing APs installed in different areas at a location
Simplified configuration, deployment, and operation

For trouble-free deployment in geographically distributed networks, HP ProCurve Networking MSM controllers automate discovery, authentication and configuration for a group of APs. Using standard dynamic look-up procedures, APs identify the controller to which they are assigned. Authentication using digital certificates assures security and eliminates the risk of rogue AP connectivity. Once authenticated, the controller establishes a secure management tunnel for the exchange of configuration and control information with the AP.

The controller provides centralized management for all APs. It eliminates time-consuming AP configuration, troubleshooting and maintenance tasks by providing a single management interface for the entire group of APs it manages. The controller automates installation of AP software updates and ensures a consistent set of services are delivered throughout the network. All security, quality of service (QoS), and other policies can be centrally defined through the controller's intuitive and secure Web-based management tool.

Controller teaming

Controller teaming enables you to easily configure and monitor multiple controllers and their access points. Up to five controllers can be combined into a team enabling support for up to 800 APs (four controllers x 200 APs per controller plus one additional controller for backup/redundancy). For example:

Key benefits of controller teaming include:

- **Scalability:** Controller teaming enables you to scale up your wireless network as your needs increase. Simply add additional APs, controllers, and licenses to meet the required demand. Up to 800 APs are supported per controller team (four controllers x 200 APs per controller plus one additional controller reserved for backup/redundancy).

- **Redundancy and failover support:** A controller team provides for service redundancy in case of failure. If one of the controllers in a team becomes inoperative (due to network problems, hardware failure, etc.), its APs will automatically migrate to another controller in the team allowing for continuation of services.

- **Centralized management and control:** Configuration and monitoring of all team members and their APs is performed using the management tool on the team manager. The team manager is responsible for handling the addition and deletion of controlled
APs, including newly discovered APs. It also displays status information for all team members and their APs, as well as APs directly connected to the manager.

The team manager is responsible for enforcing and updating the firmware of team members. An update to the team manager firmware triggers an update of all members and their controlled APs, ensuring that the entire network is running the same firmware. The synchronization of firmware between controllers and APs alleviates any potential issue regarding software compatibility between deployed devices.

Seamless mobility

Mobility traffic manager (MTM) provides for seamless roaming of wireless users, while at the same time giving you complete control over how wireless user traffic is distributed onto the wired networking infrastructure. MTM enables you to implement a wireless networking solution using both centralized and distributed strategies. Some of the deployment strategies that you can use with MTM include:

- **Centralized wireless traffic**: All traffic from wireless users is tunneled back to a central controller where it is egressed onto the wired infrastructure. Wireless users can be connected to any AP within the layer 3 network serviced by MTM.

 The following diagram shows a deployment where all wireless traffic is egressed onto a specific network segment (192.168.30.0).

 [Diagram of a network showing user A and B with their respective network segments: Network 1 (192.168.10.0), Network 2 (192.168.20.0), Network 3 (192.168.30.0).]

 MTM can also be used to send traffic to different networks or VLANs based on criteria such as username, network location, VSC, or AP group.

- **Traffic distribution using home networks**: A home network can be assigned to each wireless user (via RADIUS, local user accounts, or through a VSC egress). MTM can then be used to tunnel the user's traffic to their home network, regardless of the AP to which a user connects within the mobility domain.
The following diagram shows a deployment where the wireless traffic for each user is egressed onto a specific network segment by assigning a home network to each user.

If a user roams between APs, MTM adjusts the tunnel to maintain the user's connection to their home network.
Best-in-class public/guest network access service

Designed to deliver the best possible user experience, the public/guest network access feature adapts to any client device IP address and Web proxy settings, and provides a customizable Web login page for easy sign-on. For example:

To ensure seamless applications support, the public/guest network access feature uses advanced IP networking capabilities, SMTP redirect, and DHCP services, providing transparent support for demanding applications, such as VPN tunneling and email.

A rich feature set allows service providers to create a centrally-managed hotspot network. Support for a captive portal enables users to access Web content.
Safety information

Professional Installation Required

Prior to installing or using a controller, consult with a professional installer trained in RF installation and knowledgeable in local regulations including building and wiring codes, safety, channel, power, indoor/outdoor restrictions, and license requirements for the intended country. It is the responsibility of the end user to ensure that installation and use comply with local safety and radio regulations.

Cabling: You must use the appropriate cables, and where applicable, surge protection, for your given region. For compliance with EN55022 Class-B emissions requirements use shielded Ethernet cables.

Country of use: In some regions, you are prompted to select the country of use during setup. Once the country has been set, the controller will automatically limit the available wireless channels, ensuring compliant operation in the selected country. Entering the incorrect country may result in illegal operation and may cause harmful interference to other systems.

Safety: Take note of the following safety information during installation:

- If your network covers an area served by more than one power distribution system, be sure all safety grounds are securely interconnected.

- Network cables may occasionally be subject to hazardous transient voltages (caused by lightning or disturbances in the electrical power grid).

- Handle exposed metal components of the network with caution.

- The MSM7xx Controller and all directly-connected equipment must be installed indoors within the same building (except for outdoor models / antennas), including all PoE-powered network connections as described by Environment A of the IEEE 802.3af standard.

Servicing

There are no user-serviceable parts inside HP ProCurve Networking products. Any servicing, adjustment, maintenance, or repair must be performed only by trained service personnel.
HP ProCurve Networking support

The Customer Support/Warranty booklet included with your product and the HP ProCurve Networking Web site, www.hp.com/go/procurve/support, provide information on the support services offered by HP ProCurve Networking. Additionally, your HP-authorized network reseller can provide you with assistance, both with services that they offer and with services offered by HP.

Before contacting support

To make the support process most efficient, before calling your networking dealer or HP Support, you first should collect the following information:

<table>
<thead>
<tr>
<th>Collect this information</th>
<th>Where to find it</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product identification.</td>
<td>On the rear of the product.</td>
</tr>
<tr>
<td>Software version.</td>
<td>The product management tool Login page.</td>
</tr>
<tr>
<td>Network topology map, including the addresses assigned to all relevant devices.</td>
<td>Your network administrator.</td>
</tr>
</tbody>
</table>

Getting started

Get started by following the directions in the relevant guide as follows:

<table>
<thead>
<tr>
<th>Product</th>
<th>Guide to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSM710, MSM730, MSM750</td>
<td>The provided Quickstart.</td>
</tr>
<tr>
<td>MSM760, MSM765zl</td>
<td>The provided Installation and Getting Started Guide.</td>
</tr>
</tbody>
</table>

Then continue with the next chapter of this guide.

Online documentation

For the latest documentation, visit the HP ProCurve Networking manuals Web page at: www.hp.com/go/procurve/manuals.

Note

The MSM317 Access Device consists of both a controlled-mode-only access point and an integrated Ethernet switch. Where appropriate, this guide makes reference to the MSM317 Installation and Getting Started Guide which must be used in conjunction with this guide when working with the MSM317.
Chapter 2: Management

Contents

Management tool .. 2-2
Management scenarios .. 2-2
Management station .. 2-2
Starting the management tool .. 2-2
Customizing management tool settings .. 2-3
Security policies .. 2-6
Security .. 2-6
Web server .. 2-7
Auto-refresh .. 2-7
Device discovery ... 2-8
Mobility controller discovery .. 2-8
Controlled AP discovery .. 2-10
SNMP .. 2-11
Configuring the SNMP agent .. 2-11
SOAP .. 2-14
Configuring the SOAP server .. 2-14
CLI .. 2-15
Configuring CLI support .. 2-16
System time .. 2-17
Country ... 2-18
Management tool

The management tool is a Web-based interface to the controller that provides easy access to all configuration and monitoring functions.

Management scenarios

For complete flexibility, you can manage the controller both locally and remotely. The following management scenarios are supported:

- Local management using a computer that is connected to the LAN or Internet port on the controller. This may be a direct connection or through a switch.
- Remote management via the Internet with or without a VPN connection. See Securing controller communications to remote VPN servers on page 15-6 for more information on using the controller integrated VPN clients to create secure remote connections.

Management station

The management station refers to the computer that a manager or operator uses to connect to the management tool. To act as a management station, a computer must:

- Have at least Microsoft Internet Explorer 7/8 or Firefox 3.x.
- Be able to establish an IP connection with the controller.

Note

Before installation, ensure that TCP/IP is installed and configured on the management station. IP addressing can be either static or DHCP. A unique feature of the controller is its ability to support connections from users that have a preconfigured static IP address.

Starting the management tool

To launch the management tool, specify the following in the address bar of your browser:

https://Controller_IP_address

By default, the address 192.168.1.1 is assigned to the LAN port. For information on starting the management tool for the first time, see the relevant guide as described in Getting started on page 1-12.

About passwords

The default username and password is admin. New passwords must be 6 to 16 printable ASCII characters in length with at least 4 different characters. Passwords are case sensitive. Space characters and double quotes (“) cannot be used. Passwords must also conform to the selected security policy as described in Security policies on page 2-6.
Customizing management tool settings

To customize management tool settings, select **Controller >> Management >> Management tool**.

![Management tool configuration diagram]

Security policies
- Follow NIST 800-53 guidelines
- Follow PCI DSS 1.2 guidelines

Security
- Access to the management tool is enabled for the addresses and interfaces that are specified below.
 - **Allowed addresses**:
 - IP address:
 - Mask:
 - Add
 - Remove Selected Entry

Active interfaces
- **LAN port**
- **VPN**
- **Internet port**
- **VLAN/GRE (Select from the list)**:
 - VLAN -> VLAN

Web server
- Secure web server port: 443
- Web server port: 80

Login control
- Lock access after: 5 login failures
- Lock access for: 5 minutes

Auto-Refresh
- Interval: 5 seconds

Account Inactivity logout
- Timeouts: 75 minutes
Administrative user authentication

Login credentials for administrative users can be verified using local account settings and/or an external RADIUS server.

- **Local account settings:** A single manager and operator account can be configured locally under Manager account and Operator account on this page.

- **RADIUS server:** Using a RADIUS server enables you to have multiple accounts, each with a unique login name and password. Identify manager accounts using the vendor specific attribute `web-administrative-role`. Valid values for this attribute are Manager and Operator. For attribute information, see Administrator attributes on page 14-31. To use a RADIUS server, you must define a RADIUS profile on the Controller >> Authentication > RADIUS profiles page.

If both options are enabled, the RADIUS server is always checked first.

Authenticating administrative credentials using an external RADIUS server

Configure RADIUS authentication as follows:

1. Define an account for the administrator on the RADIUS server. See Administrator attributes on page 14-31.

2. On the controller, create a RADIUS profile that will connect the controller to the RADIUS server. See Configuring a RADIUS server profile on the controller on page 10-5.

3. Under Administrator authentication, set Authenticate via to the RADIUS profile you created. In this example, the profile is called Rad1.

4. Test the RADIUS account to make sure it is working before you save your changes. Specify the appropriate username and password and click Test.

(As a backup measure you can choose to enable Local. This will allow you to log in using the local account if the connection to the RADIUS server is unavailable.)
Manager and Operator accounts

Two types of administrative accounts are defined: manager and operator.

- The manager account provides full management tool rights.
- The operator account provides read-only rights plus the ability to disconnect wireless clients and perform troubleshooting.

Only one administrator (manager or operator) can be logged in at any given time. Options are provided to control what happens when an administrator attempts to log in while another administrator (or the same administrator in a different session) is already logged in. In every case, the manager’s rights supersede those of an operator.

The following options can be used to prevent the management tool from being locked by an idle manager or operator:

- **Terminates the current manager session:** When enabled, an active manager or operator session will be terminated by the login of another manager. This prevents the management tool from being locked by an idle session until the **Account inactivity logout** timeout expires.

- **Is blocked until the current manager logs out:** When enabled, access to the management tool is blocked until an existing manager logs out or is automatically logged out due to an idle session.

 An operator session is always terminated if a manager logs in. An active operator session cannot block a manager from logging in.

- **Terminates the current operator session:** When enabled, an active operator’s session will be terminated by the login of another operator. This prevents the management tool from being locked by an idle session until the **Account inactivity logout** timeout expires.

 Operator access to the management tool is blocked if a manager is logged in. An active manager session cannot be terminated by the login of an operator.

 An operator session is always terminated if a manager logs in. An active operator session cannot block a manager from logging in.

- **Login control:** If login to the management tool fails five times in a row (bad username and/or password), login privileges are blocked for five minutes. Once five minutes expires, login privileges are once again enabled. However, if the next login attempt fails, privileges are again suspended for five minutes. This cycle continues until a valid login occurs. You can configure the number of failures and the timeout.

- **Account inactivity logout:** By default, if a connection to the management tool remains idle for more than ten minutes, the controller automatically terminates the session. You can configure the timeout.

Caution

If you forget the manager password, the only way to access the management tool is to reset the controller to factory default settings. See *Appendix C: Resetting to factory defaults*.

Passwords
Passwords must be 6 to 16 printable ASCII characters in length with at least 4 different characters. Passwords are case sensitive. Space characters and double quotes (""") cannot be used. Passwords must also conform to the selected security policy as described below.

Security policies
Security policies affect both manager and operator accounts. Select from one of the following options:

- **Follow FIPS 140-2 guidelines**: When selected, implements the following requirements from the FIPS 140-2 guidelines:
 - All administrator passwords must be at least six characters long.
 - All administrator passwords must contain at least four different characters.

 For more information on these guidelines, refer to the Federal Information Processing Standards Publication (FIPS PUB) 140-2, Security Requirements for Cryptographic Modules.

- **Follow PCI DSS 1.2 guidelines**: When selected, implements the following requirements from the PCI DSS 1.2 guidelines:
 - All administrator passwords must be at least seven characters long.
 - All administrator passwords must contain both numeric and alphabetic characters.
 - The settings under Login control must be configured as follows:
 - **Lock access after nn login failures** must be set to 6 or less.
 - **Lock access for nn minutes** must be set to 30 minutes or more.

 The settings under Account inactivity logout must be configured as follows:
 - **Timeout** must be set to 15 minutes or less.

 For more information on these guidelines, refer to the Payment Card Industry Data Security Standard v1.2 document.

Security
The management tool is protected by the following security features:

- **Allowed addresses**: You can configure a list of subnets from which access to the management tool is permitted.

- **Active interfaces**: You can enable or disable access to the management tool for each of the following:
 - LAN port
 - Internet port
 - VPN
- VLAN/GRE.

These settings also apply when SSH is used to access the command line interface.

Note

Changing the security settings may cause you to lose your connection to the management tool.

Web server

You can also configure the Web server ports from which access to the management tool is permitted.

- **Secure web server port**: Specify a port number for the controller to use to provide secure HTTPS access to the management tool. Default is 443. Before reaching the management tool login page, you must accept a security certificate. The default certificate provided with the controller will trigger a warning message on most browsers because it is self-signed. To remove this warning message, you must replace the default certificate. See *About certificate warnings on page 11-11*.

Note

Changing the secure web server port will cause you to lose your connection to the management tool. To reconnect, you will need to specify the following address: `https://Controller_IP_address:web_server_Port_number`.

- **Web server port**: Specify a port number for the controller to use to provide standard HTTP access to the management tool. These connections are met with a warning, and the browser is redirected to the secure Web server port. Default is 80.

Auto-refresh

This option controls how often the controller updates the information in group boxes that show the auto-refresh icon in their title bar. Under **Interval**, specify the number of seconds between refreshes.

![Auto-refresh icon](image)
Device discovery

Use this page to define discovery options for:

- Inter-controller discovery when using the mobility feature
- Controller discovery by controlled APs

Select Management > Device discovery to open the Discovery configuration page.

On a non-teamed controller

![Device discovery configuration for a non-teamed controller](image)

On a controller team

![Device discovery configuration for a controller team](image)

Mobility controller discovery

The wireless mobility feature defines a mobility domain, which is an interconnection between multiple controllers for the purpose of exchanging mobility information on wireless users. For more information, see *Chapter 8: Mobility traffic manager*.

For the controllers to interconnect, each must have the Mobility controller discovery option enabled. In addition, one controller must be defined as the primary mobility controller. It acts as the central site for distribution of mobility information.
There can only be one primary mobility controller for each mobility domain. On all other controllers, set **IP address of primary controller** to the IP address of the primary controller.

Note

Discovery automatically takes place on both the LAN port and Internet port. **VLANs are not supported.**

Network requirements

The network that interconnects the controllers and APs that make up a mobility domain must not block any of the following ports/protocols:

- UDP port 1194
- UDP port 12141
- UDP port 3000
- UDP port 3001
- UDP port 3518
- TCP port 5432
- Internet protocol number 47 (GRE)

Controller discovery and teaming

When teaming is active, several configuration scenarios are possible:

- **Teamed controllers operating in conjunction with one or more non-teamed controllers:** Set the team as the primary mobility controller. On the other controllers, set the **IP address of primary mobility controller** parameter to the team IP address.

- **A single team of controllers:** Enable the **This is the primary mobility controller** option on the team manager.

- **Multiple teamed and non-teamed controllers:** Set one team as the primary mobility controller. On the other teams and controllers, set the **IP address of primary mobility controller** parameter to the team IP address of the primary mobility controller.

This is the primary mobility controller

Enable this option to designate this controller as the primary mobility controller. The primary controller is responsible for the coordination and discovery of all other controllers in the mobility domain.

IP address of primary mobility controller

Enter the IP address of the primary mobility controller.
Controlled AP discovery

Discovery priority of this controller
Discovery priority of controller team

Sets the priority for this controller or team when discovered by a controlled AP. A value of 1 indicates the highest priority. A value of 16 indicates the lowest priority.

If multiple controllers or teams are discovered by a controlled AP, the AP will establish a control channel with the controller or team that has the highest priority setting first. If that controller or team is already managing the maximum number of controlled APs, the AP will choose the controller or team with the next highest priority.

Each controller or team must have a different priority setting, otherwise AP discovery will fail with the diagnostic Priority conflict. See Viewing all discovered APs on page 5-13.

See Discovery of controllers by controlled APs on page 5-6 for more detailed information on the discovery process.

Active interfaces

Select the physical interfaces on which the controller or team manager will listen for discovery requests from controlled APs. The control channel to an AP is always established on the interface on which it is discovered.
SNMP

The controller provides a robust SNMP implementation supporting both industry-standard and custom MIBs. For information on supported MIBs, see the *MSM SNMP MIB Reference Guide*.

Configuring the SNMP agent

Select Management > SNMP to open the SNMP agent configuration page. By default, the SNMP agent is enabled (SNMP agent configuration in title bar is checked). If you disable the agent, the controller will not respond to SNMP requests.
Attributes

System name
Specify a name to identify the controller. By default, this is set to the serial number of the controller.

Location
Specify a descriptive name for the location where the controller is installed.

Contact
Contact information for the controller.

Port
Specify the UDP port and protocol the controller uses to respond to SNMP requests. Default port is 161.

SNMP protocol
Select the SNMP versions that the controller will support. Default is Version 1 and Version 2c.

Notifications
Select the SNMP versions that the AP will support. Default is Version 1 and Version 2c.

Notifications
When this feature is enabled, the controller sends notifications to the hosts that appear in the Notifications receivers list.

The controller supports the following MIB II notifications:
- coldStart
- linkUp
- linkDown
- authenticationFailure

In addition, the controller supports a number of custom notifications. Select Configure Notifications. For a descriptions of these notifications, see the online help.

v1/v2 communities

Community name
Specify the password, also known as the read/write name, that controls read/write access to the SNMP agent. A network management program must supply this name when attempting to set or get SNMP information from the controller. By default, this is set to private.

Read-only name
This is the password that controls read-only access to the SNMP agent. A network management program must supply this name when attempting to get SNMP information from the controller. By default, this is set to public.
v3 users

This table lists all defined SNMP v3 users. To add a new user, click **Add New User**. Up to five users are supported. To edit a user, click its link in the **Username** column.

Username
The SNMP v3 username.

Security
Security protocol defined for the user. Authentication type and encryption type are separated by a slash. For example, **MD5/DES** indicates **MD5** authentication and **DES** encryption.

Access level
Type of access assigned to the user:

- **Read-only**: The user has read and notify access to all MIB objects.
- **Read-write**: The user has read, write, and notify access to all MIB objects.

Notification receivers

This table lists all defined SNMP notification receivers. SNMP notifications are sent to all receivers in this list. To add a new receiver, click **Add New Receiver**. Up to five receivers are supported. To edit a receiver, click its link in the **Host** column.

Host
The domain name or IP address of the SNMP notifications receiver to which the controller will send notifications.

UDP port
The port on which the controller will send notifications.

Version
The SNMP version (1, 2c, 3) for which this receiver is configured.

Community/Username
- For SNMP v1 and v2c, the SNMP Community name of the receiver.
- For SNMP v3, the SNMP v3 Username of the receiver.

Security
Use these settings to control access to the SNMP interface.

- **Allowed addresses**: List of IP address from which access to the SNMP interface is permitted. To add an entry, specify the **IP address** and appropriate **Mask**, and then select **Add**.
- When the list is empty, access is permitted from any IP address.
- **Active interfaces**: Enable the checkboxes that correspond to the interfaces from which to allow access to the SNMP agent. For VLAN, GRE, or Mesh, select from the list. Use Ctrl-click to select multiple objects.
SOAP

The controller provides a SOAP interface that can be used by SOAP-compliant client applications to perform configuration and management tasks.

The SOAP/XML SDK is available on the HP ProCurve Networking manuals page at: www.hp.com/go/procurve/manuals. Look under **MSM7xx Controllers**.

Configuring the SOAP server

Select **Management > SOAP** to open the **SOAP server configuration** page. By default, the SOAP server is enabled (**SOAP server configuration** in title bar is checked).

Server settings

Secure HTTP (SSL/TLS)

Enable this option to configure the SOAP server for SSL/TLS mode. When enabled, the Secure Sockets Layer (SSL) protocol must be used to access the SOAP interface.

Using client certificate

When enabled, the use of a X.509 client certificate is mandatory for SOAP clients.

HTTP authentication

When enabled, access to the SOAP interface is available via HTTP with the specified username and password.
TCP port
Specify the number of the TCP port that SOAP uses to communicate with remote applications. Default is 448.

Security
Use these settings to control access to the SOAP interface.

- **Allowed addresses:** List of IP address from which access to the SOAP interface is permitted. To add an entry, specify the IP address and appropriate Mask, and then select Add.

 When the list is empty, access is permitted from any IP address.

- **Active interfaces:** Enable the checkboxes that correspond to the interfaces from which to allow access to the SOAP interface.

Security considerations

- The SOAP server is configured for SSL/TLS mode, and the use of a X.509 client certificate is mandatory for SOAP clients.

- The SOAP server is configured to trust all client certificates signed by the default SOAP CA installed on the controller.

- Users should generate and install their own SOAP CA private key/public key certificate to protect their devices from unauthorized access. This is important because the default SOAP CA and a valid client certificate are provided as an example to all customers. (See Managing certificates on page 11-5.)

CLI

The controller provides a command line interface that can be used to perform configuration and management tasks via the serial port or an IP connection on any of the controller interfaces, including the LAN port, Internet port, or VPN/GRE tunnel.

For information on using the CLI, see the CLI Reference Guide.

A maximum of three concurrent CLI sessions are supported regardless of the connection type.
Configuring CLI support

Select Management > CLI to open the Command Line Interface (CLI) configuration page.

Secure shell access

Enable this option to allow access to the CLI via an SSH session. The CLI supports SSH on the standard TCP port (22).

Connectivity and login credentials for SSH connections use the same settings as defined for management tool on the Controller >> Management > Management tool page. SSH connections to the CLI can be made on any active interface. Support for each interface must be explicitly enabled under Security.

The following SSH clients have been tested with the CLI. Others may work as well:

- OpenSSH
- Tectia
- SecureCRT
- Putty

Authenticate CLI logins using

The CLI validates login credentials (username and password) using the settings defined on the Management > Management tool page.

Local manager account

The login username and password are the same as those defined for the local manager account. If this account is disabled, the last known username and password for this account are used.

Administrative user authentication settings

The login username and password use the same settings (Local and/or RADIUS) as defined for the manager account under Administrative user authentication.
System time

Select Management > System time to open the System time page. This page enables you to configure the time server and set time zone information.

Note

The system time page on the MSM765zl is a read-only page that displays the current time configured on the chassis. This may or may not be the current time.

Setting the correct time is important when the controller is managing controlled APs, as the time configured on the controller is used on all controlled APs. Synchronization and certificate problems can occur if the controller time is not accurate.

Correct time is also important when the controller is using Active Directory to authenticate users.

Set timezone

Select the time zone in which the controller is located. If you change the time zone setting, the new value does not take effect until you restart the controller.

Automatically adjust clock for daylight savings time changes

Enable this option to automatically update the clock based on the specified daylight savings time (DST) rules.

- Default DST rule: This is the currently active daylight savings time rule.
- Customize DST rules: Select this button to define your own DST rule.
Time server protocol
Select the protocol that will be used to communicate with the time server.

Set date and time (manually)
Use this option to manually set the system date and time.

Set date and time (time servers)
Select this option to have the controller periodically contact a network time server to update its internal clock. By default, the list contains two ntp vendor zone pools that are reserved for HP ProCurve devices. By using these pools, you will get better service and keep from overloading the standard ntp.org server. For more information refer to: pool.ntp.org.

Country
Select Management > Country to open the Country page. This page enables you to configure the country in which the controller operates.

Note
The Country page is not available on controllers delivered with a fixed country setting.

The country in which the controller is configured to operate is displayed on the management tool home page.

Caution
Incorrectly entering the country code may result in illegal operation and may cause harmful interference to other systems. Please consult with a professional installer who is trained in RF installation and knowledgeable about local regulations to ensure that the AP is operating in accordance with channel, power, indoor/outdoor restrictions and license requirements for the intended country.

Note
After changing the country code, controlled APs must be synchronized as described in Synchronizing APs on page 5-23.
Network configuration

Contents

Port configuration ..3-3
 LAN port configuration ...3-4
 Internet port configuration ..3-5

Network profiles ...3-6
 About the default network profiles ..3-6
 To define a network profile ..3-6

Address allocation ..3-7
 DHCP server ..3-8
 DHCP relay agent FIX ..3-10

VLAN support ..3-12

GRE tunnels ..3-12

Bandwidth control ..3-14
 Internet port data rate limits ..3-15
 Bandwidth levels ..3-15
 Example ...3-16

Discovery protocols ...3-17
 LLDP agents ..3-17
 CDP ...3-17

DNS ..3-18
 DNS servers ..3-18
 DNS advanced settings ...3-19

IP routes ..3-20
 Configuration ..3-21
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network address translation (NAT)</td>
<td>3-23</td>
</tr>
<tr>
<td>NAT security and static mappings</td>
<td>3-23</td>
</tr>
<tr>
<td>VPN One-to-one NAT</td>
<td>3-26</td>
</tr>
<tr>
<td>RIP</td>
<td>3-27</td>
</tr>
<tr>
<td>IP QoS</td>
<td>3-28</td>
</tr>
<tr>
<td>Configuration</td>
<td>3-28</td>
</tr>
<tr>
<td>Example</td>
<td>3-29</td>
</tr>
<tr>
<td>IGMP proxy</td>
<td>3-31</td>
</tr>
</tbody>
</table>
Port configuration

The Port configuration page displays summary information about all ports, VLANs, and GRE tunnels. Open this page by selecting Controller >> Network > Ports.

Port configuration information

- **Status indicator**: Operational state of each port, as follows:
 - **Green**: Port is properly configured and ready to send and receive data.
 - **Red**: Port is not properly configured or is disabled.
- **Name**: Identifier for the port. To configure a port, click its name.
- **IP address**: IP addresses assigned to the port. An address of 0.0.0.0 means that no address is assigned.
- **Mask**: Subnet mask for the IP address.
- **MAC address**: MAC address of the port.

Default port settings

By default, ports are configured as follows:

<table>
<thead>
<tr>
<th>Port</th>
<th>IP address</th>
<th>Default DHCP server status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN</td>
<td>192.168.1.1</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Internet</td>
<td>DHCP client</td>
<td>This feature is not available on the Internet port.</td>
</tr>
</tbody>
</table>
LAN port configuration

The LAN port is used to connect the controller to a wired network. To verify and possibly adjust LAN port configuration, select Controller >> Network > Ports > LAN port.

Addressing options

The LAN port must be configured with a static IP address, because the controller cannot function as a DHCP client on the LAN port. By default it is set to the address 192.168.1.1.

For information on configuring address allocation on the LAN port via DHCP server or DHCP relay agent, see Address allocation on page 3-7.

Management address

Use this option to assign a second IP address to the LAN port. This address provides a simple way to separate management traffic from user traffic without using VLANs.

For example, by default the LAN port is set to 192.168.1.1 and all client devices obtain an address on this subnet from the controller’s DHCP server. With this feature you can add another address, say 192.168.2.1/255.255.255.0. APs can then be assigned to this subnet using static IP addressing. Now all management traffic exchanged between the controller and the APs is on a separate subnet.

Link settings

By default, the controller automatically adjusts link settings based on the type of equipment the port is connected to. If needed, you can force the port to operate at a particular speed or duplex setting.
Internet port configuration

To verify and possibly adjust Internet port configuration, select Controller >> Network >> Ports >> Internet port.

Addressing options

The Internet port supports the following addressing options:

- PPPoE client
- DHCP client (default setting)
- Static addressing
- No address.

By default, the Internet port operates as a DHCP client. Select the addressing option that is required by your ISP or network administrator and then select Configure. See the online help for descriptions of all configuration options.

Link settings

By default, the controller automatically adjusts link settings based on the type of equipment the port is connected to. If needed, you can force the port to operate at a particular speed or duplex setting.

Network address translation

Enable this option to permit all the computers on the network to simultaneously share the connection on the Internet port. See Network address translation (NAT) on page 3-23.

Limit NAT port range

When enabled, the controller reserves a range of TCP and UDP ports for each authenticated, access-controlled user starting at port 5000, and maps all outgoing traffic for the user within the range.
Network configuration

Network profiles

Network profiles let you define the characteristic of a network and assign a friendly name to it. Profiles make it easy to configure the same settings in multiple places on the controller.

For example, if you define a profile with a VLAN ID of 10, you could use that profile to:

- Configure VLAN 10 on the controller's Internet or LAN port using the Controller >> Network > Ports page.
- Configure VLAN 10 as the egress network for a group of APs when binding them to a VSC using the Controlled APs > [group] >> VSC bindings page.
- Configure VLAN 10 as the local network for an AP using the Controlled APs >> Configuration > Local network page.

About the default network profiles

Two network profiles are created by default: **LAN port network** and **Internet port network**. These profiles are associated with the two physical Ethernet ports on the controller. You can rename these profiles, but you cannot assign a VLAN to them or delete them. You can use these profiles to send untagged traffic to a specific port on the controller.

Both ports are considered to be local networks on the controller, which means that they automatically map the network that is assigned to each physical port as a local network on the controller. However, the LAN and Internet port network profiles can also be assigned as a local network on an AP (for example, using the Controlled APs >> Configuration > Local networks page). When this is done, both profiles refer to the untagged Ethernet port on the AP.

To define a network profile

1. Select Controller >> Network > Network profiles.

Note

If you enable this feature you should not assign static NAT mappings in the range 5000 to 10000.

Size of port range

Sets the number of TCP and UDP ports reserved for each user.
2. Select **Add New Profile**.

![Add/Edit network profile](image)

3. Configure profile settings as follows:

 - Under **Settings**, specify a **Name** for the profile.
 - To assign a VLAN, select **VLAN** and then specify an **ID**.

 If the profile will be used on an Ethernet port, you can also define a range of VLANs. This enables a single VLAN definition to span a large number of contiguously assigned VLANs. Specify the range in the form X-Y, where X and Y can be 1 to 4094. For example: 50-60.

 An IP address cannot be assigned to a VLAN range.

 You can define more than one VLAN range by using multiple profiles. Each range must be distinct and contiguous.

4. Select **Save**.

Address allocation

The controller can operate as a DHCP server or DHCP relay agent on the LAN port. This enables it to assign IP addresses to downstream devices connected to the LAN port.

By default, address allocation is disabled. To configure address allocation settings, select **Controller >> Network > Address allocation**.

![Address allocation configuration](image)

For information on VPN address pool, see *Configure an IPSec profile for wireless client VPN on page 15-4*.
DHCP server

The DHCP server can be used to automatically assign IP addresses to devices that are connected to the controller via the LAN port or client data tunnel.

Note
- Do not enable the DHCP server if the LAN port is connected to a network that already has an operational DHCP server.
- When the DHCP server is active, users can still connect using static IP addresses assigned on different subnets. To configure this feature, select **Public access > Access control** and under **Client options**, select **Allow any IP address**.
- The DHCP settings on this page are always used by the default VSC. For additional flexibility, separate DHCP servers can enabled on other access-controlled VSCs to assign addresses to users. See *DHCP server on page 4-28*.
- The DHCP server feature is not supported when controller teaming is active.

DHCP server configuration

Configure the DHCP server as follows:

1. Select **Controller >> Network > Address allocation**.

2. Select **DHCP server** and then **Configure**.

![DHCP server configuration](image)
3. Under **Addresses**, do the following:

- Set the IP address of the default **Gateway** that the controller will assign to DHCP users. You can usually specify the IP address of the controller LAN port as the **Gateway**.

- **DNS servers to assign to client stations** shows the IP addresses of the DNS servers that the controller can assign to users. You can define DNS options by selecting **Network > DNS**.

4. Under **Settings**, do the following:

- Adjust **Domain name** if desired. Specify the domain name for the controller to return to users. Typically, this will be your corporate domain name.

 The host name in the currently installed SSL certificate is automatically assigned as the domain name of the controller. The factory default SSL certificate that is installed on the controller has the host name **wireless.colubris.com**.

 You do not have to add this name to your server for it to be resolved. The controller intercepts all DNS requests it receives. It resolves any request that matches the certificate host name by returning the IP address assigned to the Internet port. All other DNS requests are forwarded to the appropriate DNS servers as configured on the **Controller > Network > DNS** page.

 To summarize, this means that by default, any DNS request by a user that matches **wireless.colubris.com** will return the IP address of the controller Internet port.

- Adjust **Lease time** if desired. Specify the number of seconds of lease time for the controller to assign to all assigned addresses. Default is 300 seconds.

- Consider enabling **Logout HTML user on discovery request** when multiple users on your network share the same device. This causes the controller to log out a device if a DHCP discovery request is received from the device while a DHCP address lease is currently assigned. Otherwise, if a user forgets to log out before turning off the device, the next user will have to wait until the lease expires before being able to log in.

- For **Listen for DHCP requests**, select the interfaces on which the controller will listen for DHCP requests.

5. Select **Save**.
Fixed leases
Use this feature to permanently reserve an IP addresses lease for a specific device. This ensures that the device is always reachable at the same address on the network, but does not require a static address to be set directly on the device itself. This table lists all permanently reserved addresses. Up to 255 fixed leases can be defined.

To assign a specific IP address to a client station specify the following and click Add:

- **IP address**: IP address that will be assigned to the client station in the format: nnn.nnn.nnn.nnn.
- **Unique identifier**: A number that identifies the device. Must be unique to all DHCP clients on the network. Generally set to the MAC address of the client station. This parameter is optional unless MAC masquerading is being performed by the client station.

Controller discovery option
Use this option to define controller discovery information for controlled APs. See *DHCP discovery on page 5-8*.

Add the IP address for each controller that is active on the network. When working with a controller team you should add the IP address of each team member.

This list is sent to all devices that request an IP address, encoded as DHCP option 43 (Vendor-specific information). However, this information is only interpreted by HP ProCurve APs that are operating in controlled mode. Controlled mode APs use these addresses to connect with the controllers in the order that they appear in the list.

DHCP relay agent FIX
The controller provides a flexible DHCP relay implementation. It can listen for requests on the LAN port or client data tunnel and forward them to a DHCP via any of the controller's physical or logical interfaces.

Note
For additional flexibility, separate DHCP relay agents can be enabled on access-controlled VSCs. See *DHCP relay agent on page 4-29*.

Use the following guidelines when configuring DHCP relay:

- Routes must be defined on the network so that the DHCP servers can successfully send DHCP packets back to the DHCP relay agent running on the controller. These routes must identify the segment assigned to the controller LAN port.
- DHCP relay is not supported via the Internet port when it is operating as a PPPoE client.
DHCP relay cannot work via the Internet port if the internal firewall is set to High and NAT is enabled on the Internet port. The DHCP server must be able to ping the assigned address to prevent duplicate assignments.

DHCP relay agent configuration

Configure the DHCP relay agent as follows:

1. Select **Controller >> Network >> Address allocation**.
2. Select **DHCP relay agent** and then **Configure**.

3. Under **Settings**, select the port on which the controller listens for DHCP requests, as follows:
 - **LAN port**: Listens to any requests from the local network and relays them to the remote DHCP server.
 - **Client data tunnel**: Enable this option when the client data tunnel feature is active on one or more VSCs, and you want tunneled client stations to be able to receive an IP address from the DHCP server. See *Client data tunnel on page 4-12*.
 - **Circuit ID**: Use this field to attach information to the DHCP request that enables the server to identify the client station that issued the DHCP request. To have the controller insert dynamic values, use the following placeholders:
 - %S: SSID the client station is associated with.
 - %B: The BSSID the client station is associated with.
 - %V: The VLAN the client station is mapped to.
 - **Remote ID**: This field lets you attach information to the DHCP request which lets the server identify the controller. To have the controller insert dynamic values, use the following placeholders:
 - %S: SSID the client station is associated with.
 - %B: The BSSID the client station is associated with.
Network configuration

VLAN support

- \%V: The VLAN the client station is mapped to.

4. Under **Server**, configure the following parameters:

- **Primary DHCP server address**: Specify the IP address of the first DHCP server to which the controller should forward DHCP requests.

- **Secondary DHCP server address**: Specify the IP address of the backup DHCP server to which the controller should forward DHCP requests.

- **Extend Internet subnet to LAN port**: Used to assign public IP addresses to specific clients on the LAN port. When enabled, the controller will alter the DHCP address requests from users so that they appear to originate from the network assigned to the Internet port on the controller. This will cause the DHCP server to assign IP addresses on this network to all users. The controller handles all mapping between the two subnets internally.

VLAN support

VLAN configuration is discussed in *Chapter 6: Working with VLANs*.

GRE tunnels

To view and configure GRE tunnel definitions, select **Controller >> Network > Ports**. Initially, no GRE tunnels are defined.
To add a tunnel, select Add New GRE Tunnel. The Add/Edit GRE tunnel page opens.

![Add/Edit GRE tunnel page]

Define tunnel settings as follows:

- **Name**: Tunnel name.
- **Local tunnel IP address**: Specify the IP address of the controller inside the tunnel.
- **Remote tunnel IP address**: Specify the IP address of the remote device inside the tunnel.
- **Tunnel IP mask**: Specify the mask associated with the IP addresses inside the tunnel.
- **GRE peer IP address**: Specify the IP address of the remote device that terminates the tunnel.
Bandwidth control

The controller incorporates a bandwidth management feature that enables control of all user traffic flowing through the controller.

To configure Bandwidth management, select **Controller >> Network > Bandwidth Control**.

Bandwidth control has two separate components: Internet port data rate limits and bandwidth levels. They interact with the data stream as follows:
Internet port data rate limits

These settings enable you to limit the total incoming or outgoing data rate on the Internet port. If traffic exceeds the rate you set for short bursts, it is buffered. Long overages will result in data being dropped.

To utilize the full available bandwidth, the Maximum transmit rate and Maximum receive rate should be set to match the incoming and outgoing data rates supported by the connection established on the Internet port.

Bandwidth levels

The controller provides four levels of traffic priority that you can use to manage traffic flow: *Very High, High, Normal,* and *Low*. The settings for each level are customizable, allowing performance to be tailored to meet a wide variety of scenarios.

Assigning traffic to a bandwidth level

Traffic is assigned to a bandwidth level for each VSC or for each user. Each VSC can be configured to handle user traffic at a specific bandwidth level. This level applies to users who do not have a specific assignment in their RADIUS account.

- Management traffic (which includes RADIUS, SNMP, and administrative sessions) is assigned to bandwidth level Very High and cannot be changed.
- All traffic assigned to a particular bandwidth level shares the allocated bandwidth for that level across all VSCs. This means that if you have three VSCs all assigning user traffic to High, all users share the bandwidth allocated to the High level.

Customizing bandwidth levels

Bandwidth levels are arranged in order of priority from Very High to Low. Priority determines how free bandwidth is allocated once the minimum rate is met for each level. Free bandwidth is always assigned to the higher priority levels first.

Bandwidth rates for each level are defined by taking a percentage of the maximum transmit and receive rates defined for the Internet port. Each bandwidth level has four rate settings:

- Transmit rate - guaranteed minimum: Minimum amount of bandwidth that will be assigned to a level as soon as outgoing traffic is present on the level.
- Transmit rate - maximum: Maximum amount of outgoing bandwidth that can be consumed by the level. Traffic in excess is buffered for short bursts, and dropped for sustained overages.
- Receive rate - guaranteed minimum: Minimum amount of bandwidth that will be assigned to a level as soon as incoming traffic is present on the level.
- Receive rate - maximum: Maximum amount of incoming bandwidth that can be consumed by the level. Traffic in excess is buffered for short bursts, and dropped for sustained overages.
Example

For example, assume that transmit bandwidth is configured as follows:

<table>
<thead>
<tr>
<th>Transmit rates</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>High</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Normal</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>Low</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Next, assume the following bandwidth requirement occurs on transmitted user data:

- High requires 70%, which is 30% more than its minimum.
- Normal requires 50%, which is 30% more than its minimum.
- There is no traffic on Very High or Low.

Since both High and Normal require bandwidth in excess of their guaranteed minimum, each is allocated their guaranteed minimum. This leaves 40% of the bandwidth free to be assigned on a priority basis. High has more priority than Normal, so it takes as much bandwidth as needed. In this case it is 30%, which brings High up to 70%. This leaves 10% for Normal, which is not enough. Traffic is buffered for a short period, and then dropped.

If at the same time Very High traffic is sent, this level immediately steals 20% from the lower levels. In this case, 10% is taken from Normal, returning it to its minimum guaranteed level, and 10% is taken from High.
Discovery protocols

The controller supports two protocols (LLDP and CDP) that provide a mechanism for devices on a network to exchange information with their neighbors.

To these protocols, select **Controller >> Network > Discovery protocols.**

LLDP agents

For a complete discussion of all LLDP options, see *Chapter 16: LLDP on page 16-1.*

CDP

The controller can be configured to transmit CDP (Cisco Discovery Protocol) information on the LAN and Internet ports. This information is used to advertise controller information to third-party devices, such as CDP-aware switches. Network managers can retrieve this information allowing them to determine the switch ports to which different controllers are connected.

The controller always listens for CDP information on the LAN and Internet ports, even when this option is disabled, to build a list of autonomous APs. CDP information from third-party devices and controlled APs is ignored.

Note
Controlled APs always send CDP information.
DNS

The controller provides several options to customize DNS handling. To configure these options, select Controller >> Network >> DNS. The configuration options on this page change depending on the address option that is active on the Internet port.

When the Internet port is configured to obtain an IP address via PPPoE or DHCP:

![DNS configuration for PPPoE or DHCP](image)

When the Internet port is configured to use a static IP address:

![DNS configuration for static IP](image)

Note

When using Active Directory for user authentication, set the DNS servers to be the Active Directory servers or the devices that provide SRV records.

DNS servers

Dynamically assigned servers

Shows the DNS servers that are dynamically assigned to the controller when PPPoE or DHCP is used to obtain an IP address on the Internet port.
Override dynamically assigned DNS servers
Enable this checkbox to use the DNS servers that you specify on this page to replace those that are assigned to the controller.

Server 1
Specify the IP address of the primary DNS server for the controller to use.

Server 2
- Specify the IP address of the secondary DNS server for the controller to use.

Server 3
- Specify the IP address of the tertiary DNS server for the controller to use.

DNS advanced settings

DNS cache
Enable this checkbox to activate the DNS cache. Once a host name is successfully resolved to an IP address by a remote DNS server, it is stored in the cache. This speeds up network performance, because the remote DNS server does not have to be queried for subsequent requests for this host.

An entry stays in the cache until one of the following is true:

- An error occurs when connecting to the remote host.
- The time to live (TTL) of the DNS request expires.
- The controller restarts.

DNS switch on server failure
Controls how the controller switches between servers:

- When enabled, the controller switches servers if the current server replies with a DNS server failure message.
- When disabled, the controller switches servers if the current server does not reply to a DNS request.

DNS switch over
Controls how the controller switches back to the primary server.

- When enabled, the controller switches back to the primary server once the primary server becomes available again.
- When disabled, the controller switches back to the primary server only when the secondary server becomes unavailable.

DNS interception
When enabled, the controller intercepts all DNS requests and relays them to the configured DNS servers. DNS interception must be enabled to support:
Network configuration

IP routes

- Redirection of users to the public access interface login page when the controller cannot resolve the domain requested by the user. For example, if the user is using a private or local domain as the default home page in its browser.

- Users configured to use HTTP proxy.

- Users with static IP addresses when the Allow any IP address option is enabled on the Public access > Access control page.

When disabled, the controller does not intercept any DNS requests, enabling devices to use a DNS server other than the controller. To support this option, you must set Network > Address allocation to DHCP relay agent or Static.

Note

When Network > Address allocation is set to DHCP Server the controller always returns its own address as the DNS server. Disabling DNS interception in this case causes all DNS requests to fail.

IP routes

The routing module on the controller provides the following features:

- Compliance with RFC 1812, except for multicast routing

- Supports Classless Inter Domain Routing (CIDR)

- Supports Routing Internet Protocol (RIP) versions 1 and 2 in active or passive mode.

Output from the router is sent to the appropriate logical interface based on the target address of the traffic. Supported logical interfaces include:

- VLAN

- Untagged

- IPSec client

- PPTP client

- GRE tunnel
Configuration

To view and configure IP routes, select **Controller >> Network > IP routes.**

Active routes

This table shows all active routes on the controller. You can add routes by specifying the appropriate parameters and then selecting **Add.**

The routing table is dynamic and is updated as needed. This means that during normal operation the controller adds routes to the table as required. You cannot delete these system routes.

The following information is shown for each active route:

- **Interface:** The port through which traffic is routed. When you add a route, the controller automatically determines the interface to be used based on the **Gateway** address.
- **Destination:** Traffic addressed to this IP address or subnet is routed.
- **Mask:** Number of bits in the destination address that are checked for a match.
- **Gateway:** IP address of the gateway to which the controller forwards routed traffic (known as the next hop).

An asterisk is used by system routes to indicate a directly connected network.

Routes cannot be manually specified for IPSec. These routes are automatically added by the system based on the settings for the IPSec security association.

- **Metric:** Priority of a route. If two routes exist for a destination address, the controller chooses the one with the lower metric.

Default routes

The **Default routes** table shows all default routes on the controller. Default routes are used when traffic does not match any route in the Active routes table. You can add routes by specifying the appropriate parameters and then selecting **Add.**
The routing table is dynamic and is updated as needed. If more than one default route exists, the first route in the table is used.

The following information is shown for each default route:

- **Interface**: The port through which traffic is routed. When you add a route, the controller automatically determines the interface to be used based on the **Gateway** address.

- **Gateway**: IP address of the gateway to which the controller forwards routed traffic (known as the next hop).

 An asterisk is used by system routes to indicate a directly connected network.

- **Metric**: Priority of a route. If two routes exist for a destination address, the controller chooses the one with the lower metric.

Persistent routes

Persistent routes are automatically deleted and then restored each time the interface they are associated with is closed and opened. When the routes are active, they also appear in the Active routes table.

PPTP client

The controller provides an **Auto-route discovery** option to enable it to automatically discover and add routes for IP addresses on the other side of a Point-to-Point Tunnelling Protocol (PPTP) tunnel. The addresses must be part of the remote domain as specified on the Controller >> VPN > PPTP client page. Routes are added only when an attempt is made to access the target addresses.

About PPTP client routes (Internet port)

If you disabled the **Auto-route discovery** option (VPN > PPTP client), or if you need to access IP addresses that are not part of the specified domain, you must define the appropriate persistent routes.

About PPTP server routes (Internet port)

Activation of the route can be triggered by a specific username. When a user establishes a connection with the controller PPTP server, its username is checked against the persistent routes list and if a match is found, the route is enabled.
Network address translation (NAT)

Network address translation is an address mapping service that enables one set of IP addresses to be used on an internal network, and a second set to be used on an external network. NAT handles the mapping between the two sets of addresses.

Generally, NAT is used to map all addresses on an internal network to a single address for use on an external network like the Internet. The main benefits are that NAT:

- Enables several devices to share a single connection
- Effectively hides the IP addresses of all devices on the internal network from the external network.

This is illustrated as follows:

NAT can be useful in conjunction with virtual private network (VPN) connections. When two networks are connected through a VPN tunnel, it may be desirable to obscure the address of local computers for security reasons.

NAT security and static mappings

One of the benefits of NAT is that it effectively hides the IP addresses of all devices on the internal network an external network. In some cases, however, it is useful to make a computer on the internal network accessible externally. For example, a Web server or FTP server.

Static NAT mapping addresses this problem. Static NAT mapping enables you to route specific incoming traffic to an IP address on the internal network. For example, to support a Web server, you can define a static NAT mapping to route traffic on TCP port 80 to an internal computer running a Web server.
A static NAT mapping allows only one internal IP address to act as the destination for a particular protocol (unless you map the protocol to a nonstandard port). For example, you can run only one Web server on the internal network.

Note

- If you use a NAT static mapping to enable a secure (HTTPS) Web server on the internal network on TCP port 443, remote access to the management tool is no longer possible, as all incoming HTTPS requests are routed to the internal Web server and not to the management tool. You can change the default management port (TCP 443) to an alternate unused TCP port in this case.

- If you create a static mapping, the firewall is automatically opened to accept the traffic. However, this firewall rule is not visible on the Firewall configuration page.

Common applications are affected by NAT as follows:

<table>
<thead>
<tr>
<th>Application</th>
<th>NAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP (passive mode)</td>
<td>Requires a static mapping to function.</td>
</tr>
<tr>
<td>FTP (active mode)</td>
<td>Requires a static mapping to function.</td>
</tr>
<tr>
<td>NetMeeting</td>
<td>Requires a static mapping to function.</td>
</tr>
<tr>
<td>Telnet</td>
<td>Requires a static mapping to function.</td>
</tr>
<tr>
<td>Windows networking</td>
<td>No effect</td>
</tr>
</tbody>
</table>

The controller provides pre-configured static mappings for most common applications, which you can enable as needed.

Most Web browsers use FTP in active mode. Some browsers provide a configuration option that enables you to alter this. Use the following steps to change this behavior in Microsoft Internet Explorer.

1. Select **Tools > Internet options** to open the **Internet options** dialog.
2. Select the **Advanced** tab.
3. Under **Browsing**, enable the Use Passive FTP for compatibility with some firewalls and DSL modems checkbox.
NAT example

The following example shows you how to configure static NAT mappings to run a Web server and an FTP server on the internal network. This scenario might occur if you use the controller in an enterprise environment.

Use the following steps to configure the controller to support this example.

1. Select Controller >> Network > NAT > Add New Static NAT Mapping.
2. On the NAT mappings page, select Add New Static NAT Mapping.
3. Under Requests for, select Standard Services, and then select http (TCP 80).
4. Under Translate to, specify the IP address of the Web server, for example 192.168.1.2.
 The Settings box should now look similar to this:

5. Select Add to save your changes and return to the NAT mappings page. The new mapping is added to the table.
6. To support the FTP server, create two additional mappings with the following values:

- Set **Standard Services** to **ftp-data (TCP 20)** and set **IP address** to **192.168.1.3**.
- Set **Standard Services** to **ftp-control (TCP 21)** and set **IP address** to **192.168.1.3**.

The NAT mappings table should now show all three mappings:

<table>
<thead>
<tr>
<th>Server IP Address</th>
<th>Service name</th>
<th>Protocol</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.2</td>
<td>http</td>
<td>TCP</td>
<td>80 → 80</td>
</tr>
<tr>
<td>192.168.1.2</td>
<td>ftp-data</td>
<td>TCP</td>
<td>20 → 20</td>
</tr>
<tr>
<td>192.168.1.3</td>
<td>ftp-control</td>
<td>TCP</td>
<td>21 → 21</td>
</tr>
</tbody>
</table>

VPN One-to-one NAT

This feature can only be used with authenticated, access-controlled users. It is only supported when a static IP address is assigned to the Internet port. (It is configured by selecting **Network > Ports > Internet port > Static > Additional IP addresses**.)

When this feature is enabled, the controller can assign a unique IP address to each IPSec or PPTP VPN connection made by a user to a remote server via the Internet port. Addresses are assigned as defined in the **Address pool**.

To reduce the number of addresses that need to be defined, the controller will use the same address for multiple users as long as they are establishing a connection with different VPN servers.

Use this feature when all of the following conditions are true:

- Users intend to make IPSec or PPTP VPN connections with a remote site via the controller Internet port.
- NAT is enabled on the controller.

In its default configuration, NAT translates all IP address on the local network to a single public IP address: the address assigned to the controller Internet port. As a result, all user sessions to an external resource appear to originate from the same IP address. This can cause a problem with remote VPN servers that require a unique IP address for each user session.

- The remote VPN server requires that each user have a unique IP address.
Assigning addresses to client stations
To make use of this feature, each user account must have the VPN one-to-one NAT option enabled.

- If using the local user accounts (defined on the Controller >> Users menu), enable VPN one-to-one NAT in the account profile that is assigned to the user.
- If using a RADIUS server, add a Colubris AV-Pair to the user’s account with the value one-to-one-nat=1. See Default user one-to-one NAT on page 14-54.

Note
External devices cannot initiate connections with internal client stations via the address assigned using this feature.

RIP
The controller supports Routing Information Protocol (RIP) versions 1 and 2. RIP can operate in one of two modes on the interfaces you select.

- **Passive mode**: The controller listens for routing broadcasts to update the routing table, but does not broadcast its own routes.
- **Active mode**: The controller listens for routing broadcasts to update the routing table, and also broadcast its own routes.

For example:

Note
RIP is not supported if you are using PPPoE on the Internet port.
IP QoS

To ensure that critical applications have access to the required amount of wireless bandwidth, you can classify packets destined for the wireless interface into priority queues based on a number of criteria. For example, you can use any of the following to place data packets in one of four priority queues for transmission onto the wireless interface:

- TCP source port
- UDP source port
- Destination port
- Port ranges

You configure IP quality of service (QoS) by creating IP QoS profiles that you can then associate with VSCs or use for global wireless settings. You can configure as many as 32 IP QoS profiles on the controller. You can associate as many as 10 IP QoS profiles with each VSC.

Configuration

To view and configure IP QoS profiles, select Controller >> Network > IP QoS. Initially, no profiles are defined.

To create an IP QoS profile select Add New Profile.
Settings

- **Profile name**: Specify a unique name to identify the profile.

- **Protocol**: Specify an IP protocol to use to classify traffic by specifying its Internet Assigned Numbers Authority (IANA) protocol number. Protocol numbers are pre-defined for a number of common protocols. If the protocol you require does not appear in the list, select **Other** and specify the appropriate number manually. You can find IANA-assigned protocol numbers on the Internet.

- **Start port/ End port**: Optionally specify the first and last port numbers in the range of ports to which this IP QoS profile applies. To specify a single port, specify the same port number for both **Start port** and **End port**. Port numbers are pre-defined for a number of common protocols. If the protocol you require does not appear in the list, select **Other** and specify the appropriate number manually.

 Note

 To accept traffic on all ports for a specified protocol, set **Start port** to **Other** and **0**. Also set **End port** to **65535**.

- **Priority**: Select the priority level that will be assigned to traffic that meets the criteria specified in this IP QoS profile.

 Note

 It is strongly recommended that you reserve **Very high** priority for voice applications.

Example

This example shows how to create two IP QoS profiles and associated them with a VSC. The two profiles are:

- **Voice**: Provides voice traffic with high priority.

- **Web**: Provides HTTP traffic with low priority.

Create the profiles

1. Select **Network > IP QoS**, and then **Add New Profile**. The **IP QoS Profile** page opens.
2. Under **Profile name**, specify **Voice**.
3. Under **Protocol**, from the drop-down list select **TCP**.
4. Under **Start port**, from the drop-down list select **SIP**. **Start port** and **End port** are automatically populated with the correct value: **5060**.
5. Under **Priority**, from the drop-down list select **Very High**.

![Add/Edit IP QoS profile](image)

6. Select **Save**.

Note

You could also create another profile using the same parameters but for UDP to cope with any kind of SIP traffic.

7. On the **IP QoS Profile** page select **Add New Profile**.

8. Under **Profile name**, specify **Web**.

9. Under **Protocol**, from the drop-down list select **TCP**.

10. Under **Start port**, from the drop-down list select **http**. **Start port** and **End port** are automatically populated with the common HTTP port, **80**.

11. Under **Priority**, from the drop-down list select **Low**.

![Add/Edit IP QoS profile](image)

12. Select **Save**.
Assign the profiles to a VSC

1. In the Network Tree select VSCs (if not visible, first click the + symbol to the left of Controller), and then select one of the VSC profiles in the Name column. Scroll down to the Quality of service section of the Virtual AP box.

2. Set Priority mechanism to IP QoS.

3. In IP QoS profiles, Ctrl-click each profile.

4. Select Save.

IGMP proxy

This feature provides support for multicast routing using IGMP (Internet Group Management Protocol), which is typically required by the controller. When enabled, the controller:

- Routes all multicast traffic received on the Upstream interface to the Downstream interface.
- Listens for IGMP host membership reports from authenticated users on the Downstream interface and forwards them to the Upstream interface. IGMP host membership reports from unauthenticated users are ignored.

Note

- An access list definition must be created to accept the multicast traffic (video streams, etc.)
- Due to the nature of multicast traffic, once a user registers for a stream it automatically becomes visible to unauthenticated users as well. However, unauthenticated users are not able to register with the IGMP group.

To view and configure IGMP proxy settings, select Controller >> Network > IGMP proxy.
Network configuration
IGMP proxy
Working with VSCs

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key concepts</td>
<td>4-3</td>
</tr>
<tr>
<td>Viewing and editing VSC profiles</td>
<td>4-4</td>
</tr>
<tr>
<td>The default VSC</td>
<td>4-4</td>
</tr>
<tr>
<td>VSC configuration options</td>
<td>4-5</td>
</tr>
<tr>
<td>About access control and authentication</td>
<td>4-6</td>
</tr>
<tr>
<td>Summary of VSC configuration options</td>
<td>4-8</td>
</tr>
<tr>
<td>Access control</td>
<td>4-9</td>
</tr>
<tr>
<td>Virtual AP</td>
<td>4-10</td>
</tr>
<tr>
<td>VSC ingress mapping</td>
<td>4-14</td>
</tr>
<tr>
<td>VSC egress mapping</td>
<td>4-15</td>
</tr>
<tr>
<td>Default user data rates</td>
<td>4-16</td>
</tr>
<tr>
<td>Wireless mobility</td>
<td>4-16</td>
</tr>
<tr>
<td>Fast wireless roaming</td>
<td>4-17</td>
</tr>
<tr>
<td>Wireless security filters</td>
<td>4-18</td>
</tr>
<tr>
<td>Wireless protection</td>
<td>4-20</td>
</tr>
<tr>
<td>802.1X authentication</td>
<td>4-23</td>
</tr>
<tr>
<td>RADIUS authentication realms</td>
<td>4-24</td>
</tr>
<tr>
<td>HTML-based user logins</td>
<td>4-25</td>
</tr>
<tr>
<td>VPN-based authentication</td>
<td>4-25</td>
</tr>
<tr>
<td>MAC-based authentication</td>
<td>4-26</td>
</tr>
<tr>
<td>Location-aware</td>
<td>4-26</td>
</tr>
<tr>
<td>Wireless MAC filter</td>
<td>4-27</td>
</tr>
<tr>
<td>Wireless IP filter</td>
<td>4-27</td>
</tr>
<tr>
<td>DHCP server</td>
<td>4-28</td>
</tr>
<tr>
<td>DHCP relay agent</td>
<td>4-29</td>
</tr>
<tr>
<td>VSC traffic flow</td>
<td>4-29</td>
</tr>
<tr>
<td>Access control enabled</td>
<td>4-30</td>
</tr>
<tr>
<td>Access control disabled</td>
<td>4-32</td>
</tr>
</tbody>
</table>
Using multiple VSCs... 4-33
About the default VSC ... 4-34
Quality of service (QoS)... 4-34
 Priority mechanisms ... 4-35
 IP QoS profiles .. 4-37
 Upstream DiffServ tagging ... 4-38
 Upstream/downstream traffic marking .. 4-38
 QoS example ... 4-40
Creating a new VSC.. 4-41
Assigning a VSC to a group .. 4-41
Key concepts

A VSC (virtual service community) is a collection of configuration settings that define key operating characteristics of the controller and controlled APs. In most cases, a VSC is used to define the characteristics of a wireless network.

Multiple VSCs can be active at the same time, allowing for great flexibility in the configuration of services. For example, in the following scenario four VSCs are used to support different types of wireless users. Each VSC is configured with a different wireless network name (SSID), and the quality of service (QoS) feature is used to classify user traffic priority.

![Diagram showing four VSC profiles](image)

VSC #1
SSID=Guest
QoS=Low priority

VSC #2
SSID=Phone
QoS=Very High Priority

VSC #3
SSID=Employee
QoS=Normal priority

VSC #4
SSID=Video
QoS=High priority

Note
The MSM760 and MSM765 controllers can now support up to 64 VSCs. The number of VSCs supported by controlled APs remains unchanged at 16. VSC support on other controllers remains at 32.

Binding VSCs to APs

The controller defines a global pool of VSC profiles that represent the services that are available on the network. From this pool, specific VSC profiles can be bound to one or more groups (and the APs in the groups), to provide a homogeneous wireless offering. See Binding VSCs to groups on page 5-22.
Viewing and editing VSC profiles

The VSC profiles list shows all VSCs that are currently defined on the controller. To open the list, select VSCs in the Network Tree.

The HP ProCurve VSC profile is predefined.

- To add a VSC, select VSCs >> Overview > Add New VSC Profile.
- To edit a VSC, select its name in the VSC list, or in the Network Tree.

In either case, the VSC profile page opens. In this page sample, only the top of the VSC profile page is shown.

The default VSC

The default VSC is used as a fallback for any traffic that goes through the controller and that cannot be identified as coming from an MSM AP. It is also used to handle all non-VLAN traffic from wired devices connected to the controller’s LAN port (i.e., traffic from 3rd-party APs or wired users on the network). See About the default VSC on page 4-34.
VSC configuration options

This section provides an overview of all the configuration options available for a VSC. It will give you a good idea on how the features can be used. For detailed information on each option and its settings, see the online help.

The default VSC is pre-configured as described in the following pages. Below, is an overview of the entire VSC page.
About access control and authentication

The availability of certain VSC features and their functionality is controlled by the settings of two important parameters in the **Global** box. These parameters determine how authentication and access control are handled by the VSC:

Use Controller for: Authentication
Determines if user authentication services (802.1X, WPA, WPA2) are provided by the controller. When enabled, APs forward user login requests to the controller. The controller resolves these requests using the local user accounts, or Active Directory, or acts as a RADIUS proxy for a third-party RADIUS server.

Use Controller for: Access control
This option can only be enabled if the **Authentication** option is enabled first. When enabled, this option creates an access-controlled VSC. This means that access to protected network resources via this VSC are restricted by the access control features on the controller. Access control features include the public access interface and access lists.

The following diagrams provide an overview of how user authentication and data traffic are handled depending on how these options are configured.

When both authentication and access control are enabled on a VSC

In this configuration, the controlled AP forwards authentication requests from users on the VSC to the controller. The controller resolves these requests using the local user list, or the services of a third-party authentication server (Active Directory or RADIUS server). The controller then manages access to the protected network using its access control features (public access, interface, access lists, etc.).
When only authentication is enabled on a VSC

In this configuration, the controlled AP forwards authentication requests from users on the VSC to the controller. The controller resolves these requests using the local user list, or the services of a third-party authentication server (Active Directory or RADIUS server).

The controlled AP forwards all authenticated user traffic from users on the VSC to the protected network (or another device performing access control) according to settings defined on the controlled AP.

When neither option is enabled

In this configuration, the controlled AP can be configured to resolve authentication requests using a third-party RADIUS server and forward authenticated user traffic to the protected network (or another device performing access control). In this scenario, the controller is used for management of the AP only.
Summary of VSC configuration options

The following table lists the VSC configuration options that are available depending on how access control and authentication are configured.

<table>
<thead>
<tr>
<th>VSC configuration option</th>
<th>Use Controller for:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Authentication and Access control</td>
</tr>
<tr>
<td>Access control</td>
<td>■</td>
</tr>
<tr>
<td>Virtual AP</td>
<td>■</td>
</tr>
<tr>
<td>VSC ingress mapping</td>
<td>■</td>
</tr>
<tr>
<td>VSC egress mapping</td>
<td>■</td>
</tr>
<tr>
<td>Default user data rates</td>
<td>■</td>
</tr>
<tr>
<td>Wireless mobility</td>
<td>■</td>
</tr>
<tr>
<td>Fast wireless roaming</td>
<td>■</td>
</tr>
<tr>
<td>Wireless security filters</td>
<td>■</td>
</tr>
<tr>
<td>Wireless protection</td>
<td>■</td>
</tr>
<tr>
<td>802.1X authentication</td>
<td>■</td>
</tr>
<tr>
<td>RADIUS authentication realms</td>
<td>■</td>
</tr>
<tr>
<td>HTML-based user logins</td>
<td>■</td>
</tr>
<tr>
<td>VPN-based authentication</td>
<td>■</td>
</tr>
<tr>
<td>MAC-based authentication</td>
<td>■</td>
</tr>
<tr>
<td>Location-aware</td>
<td>■</td>
</tr>
<tr>
<td>Wireless MAC filter</td>
<td>■</td>
</tr>
<tr>
<td>Wireless IP filter</td>
<td>■</td>
</tr>
<tr>
<td>DHCP server</td>
<td>■</td>
</tr>
<tr>
<td>DHCP relay</td>
<td>■</td>
</tr>
</tbody>
</table>

The sections that follow provide an overview and use of each VSC option. For complete descriptions of individual parameters see the online help in the management tool.
Access control

The settings only apply to access-controlled VSCs.

![Access control options](image)

Present session and welcome page to 802.1X users

Enable this option to have the public access interface present the Welcome, Transport, and Session pages to 802.1X users.

When disabled, these pages are not sent to 802.1X users.

Note

Display of the Session page (and other pages that are part of the public access interface) may not work for all users. These pages will fail if the initial traffic from the user's computer is sent by an application other than the user's browser. For example: messaging software, automatic software update services, email applications.

Identify stations based on IP address only

This option only applies when the **HTML-based user logins** option is enabled.

This option controls how client stations are identified once they are logged in.

- **When enabled**, the controller identifies client stations by their IP address only. This setting provides support for network configurations where the MAC address of wireless stations is not visible to the controller, or for configurations where the MAC address changes when a client station roams.

- **When disabled** (default setting), the controller identifies client stations by both IP address and MAC address. Both addresses must remain the same after login for the client station to remain authenticated.

Local NAS ID

Defines a NAS ID for this profile. This ID is used only when RADIUS authentication is not configured for the profile.
Virtual AP

The virtual AP settings define the characteristics of the wireless network created by the VSC, including its name, the number of clients supported, and QoS settings.

Access control enabled

Access control disabled

Select the Virtual AP checkbox to enable the wireless network defined by this VSC.

WLAN

Name (SSID)

Specify a name to uniquely identify the wireless network associated with this VSC. The wireless network is created by the controlled APs and managed by the controller.

Each wireless user that wants to connect to this VSC must use the WLAN name. The name is case-sensitive.

DTIM count

Specify the DTIM period in the wireless beacon sent by controlled APs. Client stations use the DTIM to wake up from low-power mode to receive multicast traffic.
APs transmit a beacon every 100 ms. The DTIM counts down with each beacon that is sent. Therefore if the DTIM is set to 5, then client stations in low-power mode will wake up every 500 ms (.5 second) to receive multicast traffic.

Broadcast name (SSID)

When this option is enabled, controlled APs will broadcast the wireless network name (SSID) to all client stations. Most wireless adapter cards have a setting that enables them to automatically discover APs that broadcast their names and connect to the one with the strongest signal.

If you disable this option, client stations will have to specify the network name you enter for **Name (SSID)** when they connect.

Advertise Tx power

When this option is enabled, controlled APs broadcast their current transmit power setting in the wireless beacon. It also enables support for 802.1h and 802.11d.

Wireless clients

Max clients per radio

Specify the maximum number of wireless client stations that can be associated with this SSID at the same time on each radio.

Allow traffic between nn wireless clients

Use this option to control how wireless clients that are connected to the same VSC can communicate with each other. The following settings are available:

- **No**: Blocks all inter-client communications.
- **802.1X**: Only authenticated 802.1X clients can communicate.
- **All**: All authenticated and unauthenticated clients can communicate. Default setting.
- **IPV6**: Only authenticated clients using IP version 6 can communicate.

Communicating between different VSCs

Communications between client stations connected to different VSCs can only occur if the same VLANs are assigned in the **VSC egress mapping** option for both VSCs.

For example, to support traffic between authenticated users on two different VSCs, the **Authenticated** option under **VSC egress mapping** must be set to the same VLAN on both VSCs.
In addition, the following rules govern how traffic is exchanged:

- Unicast traffic exchanged between VSCs on the same radio is controlled by the setting of the receiver VSC.
- Unicast traffic exchanged between VSCs on different radios is controlled by the setting of the sender’s VSC.
- Multicast traffic exchanged between VSCs is always controlled by the setting of the sender’s VSC.

Generally, most clients will be involved in the bidirectional exchange of unicast packets. In this case, the rules can be simplified by assuming that the most restrictive setting for this option takes precedence. For example:

- If VSC1 is set to No and VSC2 is set to All, no communication is permitted between clients on the two VSCs, or between clients on VSC1. However, all clients on VSC2 can communicate with each other.
- If VSC1 is set to 802.1X and VSC2 set to All, only 802.1X clients can communicate between the two VSCs.

Client data tunnel

(Only available when Access control is enabled.)

When a VSC is access-controlled, client traffic that is sent between the AP and controller can be carried in the client data tunnel. This provides the following benefits:

- User traffic is segregated from the backbone network and can only travel to the controller.
- Underlying network topology is abstracted enabling full support for L2-connected users across routed networks.

The client data tunnel is always used when the connection between a controlled AP and its controller traverses at least one router. The client data tunnel supports NAT traversal, so it can cross routers that implement NAT.

Optionally, the client data tunnel can also be used when a controlled AP and its controller are on the same subnet. To do this, enable the **Always tunnel client traffic** option.
Performance and security settings for the client data tunnel can be customized by selecting Controller >> Controlled APs > Client data tunnel.

- **Less security/better performance**: This option provides security using a secret key that is attached to each packet. The key is rotated every 200 seconds.

- **High security/less performance**: This option uses HMAC (Hash based message authentication code) to ensure the data integrity and authenticity of each packet. Performance is reduced due to the overhead needed to calculate HMAC.

Regardless of the security method used, the client tunnel does not encrypt the data stream. To protect client traffic with encryption requires that client stations use WPA or VPN software.

- Under Wireless protection, enable WPA with the Terminate WPA at the controller. This requires client stations that support WPA.

- Use VPN-based authentication. See Securing wireless client sessions with VPNs on page 15-3.

Quality of service

The quality of service (QoS) feature provides a number of different mechanisms to prioritize wireless traffic sent to wireless client stations. See Quality of service (QoS) on page 4-34.

Allowed wireless rates

Lets you select the wireless transmission speeds that are supported for each wireless mode.
MSM410 and MSM422 only: For 802.11n, in addition to speeds 1 to 54, 16 MCS values (MCS0 to MCS15) are also included, with MCS0 being the slowest and MCS15 being the fastest.

VSC ingress mapping

These settings apply to the controller only and define how ingress (incoming) user traffic is assigned to a VSC on the controller. The ingress lets you control what type of traffic the VSC will handle.

When access control is enabled, available options are:

The SSID option cannot be disabled. When enabled, the VSC accepts incoming traffic that has its SSID set to the WLAN name (SSID) defined under Virtual AP.

If you enable the VLAN option, you can choose a single VLAN, or a VLAN range enabling the VSC to handle traffic from multiple sources. For example, if you define different Egress networks when binding VSCs to your APs, you could specify a range to have all traffic handled by one VSC. (Ingress VLANs are not supported when controller teaming is active.)
When access control is disabled, available options are:

- **SSID**
- **Ethernet Switch**

When the **SSID** option is enabled, the VSC accepts incoming traffic that has its SSID set to the **WLAN name (SSID)** defined under **Virtual AP**.

The **Ethernet Switch** option enables the VSC to be bound to the switch ports on an MSM317. See the *MSM317 Access Device Installation and Getting Started Guide*.

If a VSC is bound to the MSM317 Ethernet Switch, it cannot handle traffic from wireless clients on the MSM317 or other APs.

For more information, see *VSC traffic flow on page 4-29* and *Traffic flow for wireless users on page 6-6*.

VSC egress mapping

These options select the output interface on the controller on which an access-controlled VSC forwards user traffic. Different egress mappings can be defined depending on whether the user is unauthenticated, authenticated, or being intercepted. (To enable traffic interception for a specific user, you must specify the appropriate setting in the user's RADIUS account. See *Colubris-Intercept on page 14-25*.)

Different types of traffic can be forwarded to different output interfaces, which include: the routing table, VLAN ID, or an IP GRE tunnel. Before you can map traffic to an output interface, the interface must already be defined. For VLANs to appear in the selection list they must be assigned an IP address. (Define VLANs on the **Controller >> Network > Ports** page.)

When the **Default** option is selected, the controller routing table is used for all egress traffic. Therefore, all traffic on this VSC is routed according to the routes defined on the **Controller >> Network > IP routes** page.

For more information, see *VSC traffic flow on page 4-29* and *Traffic flow for wireless users on page 6-6*.
To set VSC egress options for controlled APs, see *Binding VSCs to groups on page 5-22*. On the MSM317, VSCs can also be bound directly to the switch ports. See the *MSM317 Access Device Installation and Getting Started Guide*.

Default user data rates

These options enable you to set the default data rates for authenticated users that do not have a data rate set in their RADIUS accounts, and for unauthenticated users. For details on setting the appropriate RADIUS attributes to accomplish this, see *Chapter 13: Public/guest network access* and *Chapter 14: Working with RADIUS attributes*.

The throughput limits defined on the Controller >> Network > Bandwidth control page always take precedence over user data rates. This means if you set a data rate which exceeds the configured bandwidth level, the rate will be capped at the bandwidth level.

Wireless mobility

The wireless mobility feature provides for seamless roaming of wireless users, while at the same time giving you complete control over how wireless user traffic is distributed onto the wired networking infrastructure. This enables you to implement a wireless networking solution that is perfectly tailored to meet the needs of your users and the topology of your network.

For detailed information on how to use and configure this feature, see *Chapter 8: Mobility traffic manager*.

To use wireless mobility, you must:

- Disable the **Access control** option under **Global**.
- Install a **Mobility** or **Premium** license on the controller.
- Bind the same VSC to all APs that will support roaming.
- Configure the **Wireless security filters** so that they do not interfere with roaming functionality. In most cases, these filters should be disabled. If you need to use them, note that:
 - The **Restrict wireless traffic to: Access point default gateway** option is not supported.
 - The **Restrict wireless traffic to: MAC or Custom** options can be used provided that they restrict traffic to destinations that are reachable from all subnets in the mobility domain.

Mobility traffic manager

Mobility Traffic Manager (MTM) enables you to take advantage of both distributed and centralized strategies when deploying a wireless networking solution. For a complete discussion of this feature and how to use it see, *Chapter 8: Mobility traffic manager on page 8-1*.

If you are using MTM to tunnel the traffic from wireless users to their home networks, set the following parameter to determine how MTM routes traffic if no home network is assigned to a user (via their RADIUS account or local user account), or if the user's home network is not found in the mobility domain.

If no matching network is assigned:
- **Block user**: User access is blocked.
- **Consider the user at home**: The user's home network is considered to be the subnet assigned to the AP.

Subnet-based mobility

This feature has been deprecated. If you are creating a new installation, use Mobility Traffic Manager. If you are upgrading from a previous release, your subnet-based configuration will still work. However, for added benefits and greater flexibility you should migrate your setup to Mobility Traffic Manager.

When Subnet-based mobility is enabled, a user’s home subnet is determined based on the IPv4 address assigned to a user when they connect to the wireless network. If a user's IPv4 address is not within the scope of any of the local subnets assigned to the AP, the user is considered foreign to the network and their traffic is tunnelled via the controller to their home subnet. If the user's subnet does not match any subnets defined in the mobility domain, the user is blocked.

One issue with using this method to determine the home subnet is that a user's IPv4 address is typically retrieved through DHCP. If a user connects to an AP in a new location (rather than roaming to the AP), the IP address assigned through DHCP may identify the user as local to the network, and not roaming.

Fast wireless roaming

WPA2 opportunistic key caching eliminates the delays associated with reauthentication when client stations roam between APs installed on the same subnet.
The controller manages key distribution between the APs so that when wireless users roam between APs, reauthentication is not delayed by having to completely renegotiate key values.

To support fast wireless roaming:

- Disable the Access control option under Global.
- Install a Mobility or Premium license on the controller.
- All APs must be on the same layer 2 network.
- All APs must have VSCs with the same name, SSID, and wireless protection settings.
- Wireless protection must be WPA, or 802.1X authentication must be enabled.

Note

RADIUS accounting is not supported when this option is enabled.

Wireless security filters

APs feature an intelligent bridge that can apply security filters to safeguard the flow of wireless traffic. These filters limit both incoming and outgoing traffic as defined below and force the APs to exchange traffic with a specific upstream device.

When access control is enabled, available options are:

The controlled AP will only allow user traffic that is addressed to the controller. All other traffic is blocked. Make sure that the controller is set as the default gateway for all users. If not, all user traffic will be blocked by the AP.

The default wireless security filters defined below are active.

When access control is disabled, available options are:

Configure security filter settings using the available options as described in the following section.
Restrict wireless traffic to
This setting defines the upstream device to which the AP will forward wireless traffic. If you are using multiple VLANs, each with a different gateway, use the **MAC address** option.

- **Access point's default gateway**: This sends traffic to the default gateway assigned to the AP. The default wireless security filters are in effect for wireless traffic.

- **MAC address**: Specify the MAC address of the upstream device to which all traffic is to be forwarded. The default wireless security filters are in effect for wireless traffic.

- **Custom**: Use this option to define custom wireless security filters and a custom target address for the upstream device. Refer to the **Custom** section that follows for details.

Default wireless security filter definitions
The following filters are defined by default.

Incoming wireless traffic filters
Applies to traffic sent from wireless users to the AP.

Accepted
- Any IP traffic addressed to the controller.
- PPPoE traffic (The PPPoe server must be the upstream device.)
- IP broadcast packets, except NetBIOS
- Certain address management protocols (ARP, DHCP) regardless of their source address.
- Any traffic addressed to the AP, including 802.1X.

Blocked
- All traffic that is not accepted is blocked. This includes NetBIOS traffic regardless of its source/destination address. HTTPS traffic not addressed to the AP (or upstream device) is also blocked, which means wireless users cannot access the management tool on other HP ProCurve APs.

Outgoing wireless traffic filters
Applies to traffic sent from the AP to wireless users.

Accepted
- Any IP traffic coming from the upstream device, except NetBIOS packets.
- PPPoE traffic from the upstream device.
- IP broadcast packets, except NetBIOS
- ARP and DHCP Offer and ACK packets.
- Any traffic coming from the AP itself, including 802.1X.

Blocked
- All other traffic is blocked. This includes NetBIOS traffic regardless of its source/destination address.
Custom wireless security filter definitions

Use this option to define your own security filters to control incoming and outgoing wireless traffic. To use the default filters as a starting point, click Get Default Filters.

Filters are specified using standard pcap syntax with the addition of a few HP ProCurve-specific placeholders. These placeholders can be used to refer to specific MAC addresses and are expanded by the AP when the filter is activated. Once expanded, the filter must respect the pcap syntax. The pcap syntax is documented in the tcpdump man page:

http://www.tcpdump.org/tcpdump_man.html

Placeholders

- %a : MAC address of the controller.
- %b : MAC address of the bridge.
- %g : MAC address of the default gateway assigned to the AP.
- %w : MAC address of AP wireless port.

Wireless mobility considerations

If you enable the wireless mobility feature (to support roaming across different subnets), configuration of the wireless security filters must respect the following guidelines so as not to interfere with roaming functionality.

- The Restrict wireless traffic to: Access point default gateway option is not supported.
- The Restrict wireless traffic to: MAC or Custom options can be used provided that they restrict traffic to destinations that are reachable from all subnets in the mobile domain.

Wireless protection

Two types of wireless protection are offered. WPA and WEP.

Note

MSM410 and MSM422 only: When using 802.11n, WEP protection is never permitted. If selected, WPA or WPA2 protection is used instead. Also, when using pure 802.11n in either the 2.4 or 5 GHz bands, WPA2 protection is used regardless of wireless protection setting that is chosen.

WPA

This option enables support for users with WPA / WPA2 client software.

Mode

Support is provided for

- **WPA (TKIP)**: WPA with TKIP encryption.
- **WPA2 (AES/CCMP)**: WPA2 (802.11i) with AES/CCMP encryption.
- **WPA or WPA2**: Mixed mode supports both WPA (version 1) and WPA2 (version 2) at the same time.

Key source
This option determines how the TKIP keys are generated.

- **Dynamic**: This is a dynamic key that changes each time the user logs in and is authenticated. The MPPE key is used to generate the TKIP keys that encrypt the wireless data stream. The key is generated via the configured 802.1X authentication method. Therefore, when you enable this option, the 802.1X authentication feature is automatically enabled.

 Authentication can occur via the local user accounts and a remote authentication server (Active Directory, or third-party RADIUS server). If both options are enabled, the local accounts are checked first.

- **Preshared Key**: The controller uses the key you specify in the Key field to generate the TKIP keys that encrypt the wireless data stream. Since this is a static key, it is not as secure as the RADIUS option. Specify a key that is between 8 and 63 alphanumeric characters in length. It is recommended that the preshared key be at least 20 characters long, and be a mix of letters and numbers. The double quote character (") should not be used.
Terminate WPA at the controller
This feature is intended for low throughput applications, such as supporting point of sale (POS) terminals.

- When enabled, the controller acts as the termination point for all WPA/WPA2 sessions. This enables the network to meet PCI (Payment Card Industry) compliance supporting the connection of point of sale (POS) terminals.

- When disabled, WPA/WPA2 sessions are terminated at the AP. This means that wireless communication between the client station and AP is secure, but traffic between the AP and controller is not. This is normally sufficient since outsiders do not have access to your wired network. However, in a public venue such as a hotel, if the public has access to your wired network, it may be necessary to provide end-to-end security for certain client stations, such as POS terminals.

Note
This feature supports a maximum of 10 sessions on the MSM710, and 50 sessions on the MSM760 and MSM765.

WEP
This option provides support for users using WEP encryption.

Key source
This option determines how the WEP keys are generated: dynamic or static key.

- **Dynamic**: This is a dynamic key that changes each time the user logs in and is authenticated.

The key is generated via the configured **802.1X authentication** method. Therefore, when you enable this option, the **802.1X authentication** feature is automatically enabled.

Support static WEP: Enables support for users that are using the specified static WEP key. See the definitions below for information on how to define the key.
■ **Static key**: This is a static key that you must define.

- **Key**: The number of characters you specify for the key determines the level of encryption. For 40-bit encryption, specify 5 ASCII characters or 10 HEX digits. For 128-bit encryption, specify 13 ASCII characters or 26 HEX digits.

When encryption is enabled, wireless stations that do not support encryption cannot communicate with the AP. The definition for each encryption key must be the same on the AP and all client stations.

- **Key format**: Select the format used to specify the encryption key:
 - **ASCII**: ASCII keys are much weaker than carefully chosen HEX keys. You can include ASCII characters between 32 and 126, inclusive, in the key. However, note that not all client stations support non-alphanumeric characters such as spaces, punctuation, or special symbols in the key.
 - **HEX**: Your keys should only include the following characters: 0-9, a-f, A-F

802.1X authentication

This option enables you to use 802.1X to authenticate wireless and wireless users. For configuration details, see *Configuring 802.1X support on a VSC on page 9-6.*
RADIUS authentication realms

When realms are enabled for accounting or authentication, selection of the RADIUS server to use is based on the realm name. If no match is found, then the configured RADIUS profile name is used. This applies to any VSC authentication or accounting setting that uses a RADIUS server.

Realm names are extracted from user names as follows: if the username is person1@mydomain.com then mydomain.com is the realm. The authentication request is sent to the RADIUS profile with the realm name mydomain.com. The username sent for authentication is still the complete person1@mydomain.com.

For added flexibility, regular expressions can be used in realm names, enabling a single realm name to match many users. For example, if a realm name is defined with the regular expression ^abc.* then all usernames beginning with abc followed by any number of characters will match. The following usernames would all match:

abc123.biz
abc321.lan
abc1

Important
- Realms are not case sensitive.
- Realms have a maximum length of 64 characters.
- A maximum of 200 realms can be defined across all profiles. However, there is no limit per profile.
- Each RADIUS profile can be associated with one or more realms. However, a realm cannot be associated with more than one profile.
- A realm overrides the authentication RADIUS server only; the server used for accounting is not affected.
- A realm overrides the authentication RADIUS server only. The server used for accounting is not affected.
- When the realm configuration is changed in any way, all authenticated users are logged out.
HTML-based user logins

This option defines settings for users who log in to the public access interface using a Web browser. If you disable this option, the public access interface Login page is not shown to these users. However, login is still possible via other methods such as MAC authentication and 802.1X.

For configuration details, see Configuring 802.1X support on a VSC on page 9-6.

VPN-based authentication

VPN-based authentication can be used to provide secure access for client stations on VSCs that do not have encryption enabled.

For configuration details, see Configuring VPN-based authentication on a VSC on page 9-19.
MAC-based authentication

This option can only be used to authenticate both wireless and wired users, depending on how the VSC is configured. To configure this options, see Configuring MAC-based authentication on a VSC on page 9-13.

This option cannot be used at the same time as HTML-based authentication. If you want to use both MAC-based authentication and HTML-based authentication at the same time, use the global MAC option See MAC-based authentication on page 9-10.

Location-aware

This option enables you to control logins to the public access network based on the AP, or group of APs, to which a user is connected. It is automatically enabled when a VSC is set to Access control.

Location-aware is always enabled when using the controller for authentication or access-control with a remote RADIUS server.

For each user login, location-aware sends the PHY Type, SSID, and VLAN to the remote RADIUS server. It also includes the specified Called-Station-Id content.
Wireless MAC filter

This option enables you to control access to the wireless network based on the MAC address of a device. You can either block access or allow access, depending on your requirements. To configure this options, see *Configuring MAC-based filters on a VSC on page 9-14*.

Wireless IP filter

When this option is enabled, the VSC only allows wireless traffic that is addressed to an IP address that is defined in the list. All other traffic is blocked, except for:

- DNS queries (i.e., TCP/UDP traffic on port 53)
- DHCP requests/responses

A maximum of two addresses can be defined. Each address can target a specific device or a range of addresses.

Examples

To only allow traffic addressed to a gateway at the address 192.168.130.1, define the filter as follows:

- **Address** = 192.168.130.1
- **Mask** = 255.255.255.255

To only allow traffic addressed to the network 192.168.130.0, define the filter as follows:

- **Address** = 192.168.130.0
- **Mask** = 255.255.255.0
DHCP server

This option is only available if the controller is configured as a DHCP server on the Controller >> Network > Address allocation page. See Address allocation on page 3-7.

A separate DHCP server can be enabled on each VSC to provide custom addressing that is different from the base DHCP subnet that is determined by the LAN port IP address.

To receive traffic from users, the controller assigns the Gateway address you specify to its LAN port.

Note

These configuration options do not appear for the default VSC. The default VSC uses the same settings as defined on the Controller >> Network > Address allocation page.
DHCP relay agent

This option is only available if the controller is currently configured as a DHCP relay agent on the Controller >> Network > Address allocation page. See *Address allocation on page 3-7*.

A separate DHCP relay agent can be enabled on each VSC to provide custom addressing to users.

![DHCP relay agent configuration](image)

Note

These DHCP relay agent options do not appear for the default VSC. The default VSC uses the same settings as defined on the Controller >> Network > Address allocation page.

VSC traffic flow

Each VSC provides a number of configurable options, some of which apply exclusively on controlled APs or the controller. The following diagrams illustrate how traffic from wireless users is handled by VSC definitions on a controlled AP and controller, and shows the options that apply on each device. For more on traffic flow, see *Traffic flow for wireless users on page 6-6*.
Access control enabled

This diagram shows traffic flow when an access-controlled VSC is bound to an AP.

VSC on controlled AP

Ingress
The AP only handles traffic from wireless users, except for the MSM317 which can handle traffic from both wireless and wired users. The SSID is the name of the wireless network with which the user associates.

Features
- **Wireless security filters**: Enables the AP to block traffic unless it is addressed to a specific destination, such as the controller. See [Wireless security filters on page 4-18](#).
- **Wireless MAC filter**: Enables the AP to allow or deny access to the wireless network based on specific wireless user MAC addresses.
- **Wireless IP filter**: Enables the AP to only allow wireless-to-wired LAN traffic for specific destination IP addresses.

Egress
- **Bridged onto port 1+2 (untagged)**: Untagged user and authentication traffic is bridged onto ports 1 and 2.
- **Bridged onto port 1 (VLAN)**: VLAN tagged traffic is bridged onto port 1 only. VLAN tags can be assigned on a per-user basis via RADIUS attributes (see [Defining account profiles on page 9-27](#)), or for all traffic on a VSC (see [Assigning egress VLANs to a group on page 5-29](#)).

VSC on service controller

Ingress

- SSID (Centralized data tunnel)
- SSID (LAN port via location-aware)
- VLAN (LAN or Internet port)
- Untagged (LAN port)

Features
- Authentication (MAC, 802.1X, HTML, VPN)
- Access control features

Egress
- Routing table
- VLAN
- IP GRE tunnel
- **Client data tunnel**: When this option is enabled, the AP creates a data tunnel to the controller to carry all user traffic. See *Client data tunnel on page 4-12*.

For a more detailed explanation on how wireless traffic is routed between an AP and controller, see *Traffic flow for wireless users on page 6-6*.

VSC on controller

Ingress

- **SSID (Client data tunnel)**: When a client data tunnel has been created between the AP and the controller, all user traffic comes in on it. See *Client data tunnel on page 4-12*. The tunnel is established using same interface on which the AP was discovered. (LAN or Internet port).

- **SSID**: SSID is retrieved using the location-aware function.

- **VLAN (LAN or Internet port)**: Traffic with a VLAN ID is handled by the VSC with a matching VLAN definition. See *Using multiple VSCs on page 4-33*.

- **Untagged (LAN port)**: Untagged traffic on the LAN port may originate from wired users, or MSM APs operating in autonomous mode.

Features

- **Authentication**: The controller supports 802.1X, MAC, or HTML authentication. To validate user login credentials the controller can use the local user accounts or make use of third-party authentication servers (Active Directory and/or RADIUS). See *Chapter 9: User authentication*.

- **Access control features**: The controller provides a number of features that can be applied to user sessions. Features can be enabled globally or on a per-account basis. See *Account profiles on page 9-22*.

Egress

The controller enables user traffic to be forwarded to different output interfaces, which include the routing table, VLAN ID, or GRE tunnel. See *VSC egress mapping on page 4-15*.
Access control disabled

This diagram shows traffic flow when a non-access-controlled VSC is bound to an AP.

VSC on controlled AP

Ingress
The AP only handles traffic from wireless users, except for the MSM317 which can handle traffic from both wireless and wired users. The SSID is the name of the wireless network with which the user associates.

Features
- **Authentication**: The AP supports 802.1X or MAC authentication. To validate user login credentials the AP makes use of a third-party authentication server (controller or third-party RADIUS server). See *Chapter 9: User authentication*.
- **Wireless security filters**: Enables the AP to block traffic unless it is addressed to a specific destination (like the controller). See *Wireless security filters on page 4-18*.
- **Wireless MAC filter**: Enables the AP to allow or deny access to the wireless network based on specific wireless user MAC addresses.
- **Wireless IP filter**: Enables the AP to only allow wireless-to-wired LAN traffic for specific destination IP addresses.

Egress
- **Bridged onto port 1+2**: Unless a centralized mode tunnel has been established, user and authentication traffic is bridged onto ports 1 and 2.
- **VLAN**: VLAN tags can be assigned for all traffic on a VSC. See *Assigning egress VLANs to a group on page 5-29*.
VSC on controller

Ingress

- **SSID (from RADIUS auth request):** The controller determines the SSID from the RADIUS authentication request sent by the AP, and uses this SSID to determine the VSC to use for authentication.

Features

- **Authentication:** The controller supports 802.1X or MAC authentication. To validate user login credentials the controller can use the local user accounts or make use of third-party authentication servers (Active Directory and/or RADIUS). See *Chapter 9: User authentication*.

Using multiple VSCs

When multiple VSCs are defined, it is important to know how user traffic is matched to a VSC definition. When VSCs have access control enabled, incoming traffic is handled on the controller as follows:

<table>
<thead>
<tr>
<th>Incoming traffic properties</th>
<th>Port</th>
<th>If ...</th>
<th>Then ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSID and untagged LAN</td>
<td>LAN</td>
<td>VSC with matching SSID exists.</td>
<td>Traffic is sent on the egress mapping defined on the matching VSC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No VSC with matching SSID exists.</td>
<td>Traffic is sent on the egress mapping defined on the default VSC.</td>
</tr>
<tr>
<td>SSID and VLAN or VLAN only</td>
<td>LAN or Internet</td>
<td>VSC with matching Ingress VLAN exists.</td>
<td>Traffic is sent on the egress mapping defined on the matching VSC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VLAN exists in VLAN table (but is not assigned to a VSC ingress.)</td>
<td>Traffic is routed according to the global routing table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No VLAN exists.</td>
<td>Traffic is blocked.</td>
</tr>
<tr>
<td>Untagged</td>
<td>LAN</td>
<td></td>
<td>Traffic is sent on the egress mapping defined on the default VSC.</td>
</tr>
</tbody>
</table>
About the default VSC

The default VSC is automatically created by the controller. It is identified with the label *(Default)* in the VSC list. Initially, this VSC is named **HP ProCurve**.

Traffic from wired users is always handled by the default VSC as follows:

- **When access control is disabled on the default VSC**, traffic from wired users connected to the controller LAN port is blocked.

- **When access control is enabled on the default VSC**, traffic from authenticated wired users connected to the controller LAN port is sent on the egress mapping defined on the default VSC. If HTML and 802.1X based authentication methods are disabled, traffic from all users is sent on the egress mapping without the need for authentication.

Quality of service (QoS)

The quality of service (QoS) feature (under Virtual AP) provides a number of different mechanisms to prioritize wireless traffic sent to wireless client stations. This is useful when the controller handles wireless traffic from multiple devices (or multiple applications on a single device), that have different data flow requirements.
The QoS feature defines four traffic queues based on the Wi-Fi Multimedia (WMM) access categories. In order of priority, these queues are:

<table>
<thead>
<tr>
<th>Queue</th>
<th>WMM access category</th>
<th>Typically used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC_VO</td>
<td>Voice traffic</td>
</tr>
<tr>
<td>2</td>
<td>AC_VI</td>
<td>Video traffic</td>
</tr>
<tr>
<td>3</td>
<td>AC_BE</td>
<td>Best effort data traffic</td>
</tr>
<tr>
<td>4</td>
<td>AC_BK</td>
<td>Background data traffic</td>
</tr>
</tbody>
</table>

Outgoing wireless traffic on the VSC is assigned to a queue based on the selected priority mechanism. Traffic delivery is based on strict priority (per the WMM standard). Therefore, if excessive traffic is present on queues 1 or 2, it will reduce the flow of traffic on queue 3 and queue 4.

Regardless of the priority mechanism that is selected:

- Traffic that cannot be classified by a priority mechanism is assigned to queue 3.
- SVP (SpectraLink Voice Protocol) traffic is always assigned to queue 1, except if you select the VSC-based priority mechanism, in which case SVP traffic is assigned to the configured queue.

Priority mechanisms

Priority mechanisms are used to classify traffic on the VSC and assign it to the appropriate queue. The following mechanisms are available:

802.1p

This mechanism classifies traffic based on the value of the VLAN priority field present within the VLAN header.

<table>
<thead>
<tr>
<th>Queue</th>
<th>802.1p (VLAN priority field value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6,7</td>
</tr>
<tr>
<td>2</td>
<td>4,5</td>
</tr>
<tr>
<td>3</td>
<td>0,2</td>
</tr>
<tr>
<td>4</td>
<td>1,3</td>
</tr>
</tbody>
</table>
VSC-based priority

This mechanism is unique to HP ProCurve Networking. It enables you to assign a single priority level to all traffic on a VSC. If you enable the VSC-based priority mechanism, it takes precedence regardless of the priority mechanism supported by associated client stations. For example, if you set VSC-based low priority, then all devices that connect to the VSC have their traffic set at this priority, including SVP clients.

<table>
<thead>
<tr>
<th>Queue</th>
<th>VSC-based priority value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VSC-based Very High</td>
</tr>
<tr>
<td>2</td>
<td>VSC-based High</td>
</tr>
<tr>
<td>3</td>
<td>VSC-based Normal</td>
</tr>
<tr>
<td>4</td>
<td>VSC-based Low</td>
</tr>
</tbody>
</table>

DiffServ (Differentiated Services)

This mechanism classifies traffic based on the value of the Differentiated Services (DS) codepoint field in IPv4 and IPv6 packet headers (as defined in RFC2474). The codepoint is composed of the six most significant bits of the DS field.

<table>
<thead>
<tr>
<th>Queue</th>
<th>DiffServ (DS codepoint value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111000 (Network control) 110000 (Internetwork control)</td>
</tr>
<tr>
<td>2</td>
<td>101000 (Critical) 100000 (Flash override)</td>
</tr>
<tr>
<td>3</td>
<td>011000 (Flash) 000100 (Routine)</td>
</tr>
<tr>
<td>4</td>
<td>010000 (Immediate) 001000 (Priority)</td>
</tr>
</tbody>
</table>

TOS

This mechanism classifies traffic based on value of the TOS (Type of Service) field in an IP packet header.

<table>
<thead>
<tr>
<th>Queue</th>
<th>TOS (Type of Service field value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x30, 0xE0, 0x88, 0xB8</td>
</tr>
<tr>
<td>2</td>
<td>0x28, 0xA0</td>
</tr>
<tr>
<td>3</td>
<td>0x08, 0x20</td>
</tr>
<tr>
<td>4</td>
<td>All other TOS traffic</td>
</tr>
</tbody>
</table>
IP QoS
This option lets you assign traffic to the queues based on the criteria in one or more IP QoS profiles. Each profile lets you target traffic on specific ports or using specific protocols.

Disabled
When QoS traffic prioritization is disabled, all traffic is sent to queue 3.

IP QoS profiles
This option is only available if you set the Priority mechanism to IP QoS.
Select the IP QoS profiles to use for this profile. To add QoS profiles to the list, use the Network > IP QoS page.
Up to 10 profiles can be selected. To select more than one profile, hold down the CTRL key as you select profile names in the list.

To define an IP QoS profile
1. Select Controller >> Network > IP QoS. Initially, no profiles are defined.
2. Select Add New Profile.
3. Configure settings as follows:

Settings
Profile name
Specify a unique name to identify the profile.
Working with VSCs
Quality of service (QoS)

Protocol
Specify an IP protocol to use to classify traffic by specifying its Internet Assigned Numbers Authority (IANA) protocol number. Protocol numbers are pre-defined for a number of common protocols. If the protocol you require does not appear in the list, select Other and specify the appropriate number manually. You can find IANA-assigned protocol numbers on the Internet.

Start port/ End port
Optionally specify the first and last port numbers in the range of ports to which this IP QoS profile applies. To specify a single port, specify the same port number for both Start port and End port. Port numbers are pre-defined for a number of common protocols. If the protocol you require does not appear in the list, select Other and specify the appropriate number manually.

Note
To accept traffic on all ports for a specified protocol, set Start port to Other and 0.

Priority
Select the priority level that will be assigned to traffic that meets the criteria specified in this IP QoS profile.

Note
It is strongly recommended that you reserve Very high priority for voice applications.

Upstream DiffServ tagging
Enable this option to have the AP apply differentiated services marking to upstream traffic.

Layer 3 upstream marking ensures end-to-end quality of service in your network. Data originating on the wireless network can now be carried throughout the network (wireless and wired) with a consistent quality of service and priority. This feature is enabled by default.

When this feature is enabled, packets received on the wireless interface that include Wi-Fi Multimedia (WMM) QoS values are remarked using IP TOS/DiffServ values when transmitted to the wired network.

Upstream/downstream traffic marking
Depending on the priority mechanism that is active, upstream and downstream traffic is marked as described in this section.
Upstream traffic marking

This table describes the marking applied to wireless traffic sent by connected client stations to an AP and then forwarded onto the wired network by the AP.

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>INCOMING TRAFFIC</th>
<th>OUTGOING TRAFFIC</th>
<th>L3 marking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wireless traffic sent from client stations to the AP</td>
<td>Traffic sent by the AP to the network</td>
<td>Upstream DiffServ tagging is enabled</td>
</tr>
<tr>
<td>802.1p</td>
<td>WMM</td>
<td>802.1p (requires an egress VLAN to be defined for the VSC)</td>
<td>DiffServ</td>
</tr>
<tr>
<td>DiffServ</td>
<td>DiffServ</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>TOS</td>
<td>TOS</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VSC-based</td>
<td>WMM Non-WMM</td>
<td>802.1p (requires an egress VLAN to be defined for the VSC)</td>
<td></td>
</tr>
<tr>
<td>IP QoS</td>
<td>WMM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Downstream traffic marking

This table describes the marking applied to traffic received from the wired network by an AP and then sent to connected wireless client stations.

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>INCOMING TRAFFIC</th>
<th>OUTGOING TRAFFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Traffic received from wired network</td>
<td>Wireless traffic sent from the controller to client stations</td>
</tr>
<tr>
<td>802.1p</td>
<td>802.1p</td>
<td>WMM + HPQ (WMM marking done according to the rules for the mechanism.)</td>
</tr>
<tr>
<td>DiffServ</td>
<td>DiffServ</td>
<td>HPQ (hardware priority queueing)</td>
</tr>
<tr>
<td>TOS</td>
<td>TOS</td>
<td></td>
</tr>
<tr>
<td>VSC-based</td>
<td>All traffic on the VSC</td>
<td></td>
</tr>
<tr>
<td>IP QoS</td>
<td>All traffic that matches the ports/protocols specified in the selected IP QoS profiles</td>
<td></td>
</tr>
</tbody>
</table>
Although the WMM specification refers to 802.1D and not 802.1p, this guide uses the term 802.1p because it is more widely recognized. (The updated IEEE 802.1D: ISO/IEC 15802-3 (MAC Bridges) standard covers all parts of the Traffic Class Expediting and Dynamic Multicast Filtering described in the IEEE 802.1p standard.)

QoS example

In this example, a single controller provides voice and data wireless support with different quality of service settings for guests and employees.

VSCs are defined with the following SSIDs and QoS settings:

- **Phone**: Supports wireless phones using very high priority.
- **Video**: Supports high-priority video traffic for video conferences.
- **Employee**: Used by employees. Features a higher QoS setting than the guest profile.
- **Guest**: Used by guests. Guest get the lowest traffic priority, to reserve bandwidth for employees.
Creating a new VSC

To add a VSC, select Controller > VSCs >>VSC Profiles > Add New VSC Profile.
Define VSC parameters and select Save. Familiarize yourself with sections of interest in VSC configuration options on page 4-5. See the online help for parameter descriptions.

Assigning a VSC to a group

When working with controlled APs, VSC definitions must be bound to a group so that they will automatically be activated on the APs in the group. For information on how to bind (assign) a VSC to a group, see Binding a VSC to a group on page 5-25.

On the MSM317, VSCs can also be bound to a switch port. See the MSM317 Access Device Installation and Getting Started Guide.

Note

When working with autonomous APs, the VSC definition you create on the controller must be manually configured on each autonomous AP. See Working with autonomous APs on page 18-1 and the MSM3xx/MSM4xx Management and Configuration Guide.
Working with VSCs
Assigning a VSC to a group
Working with controlled APs

Contents

Key concepts ... 5-3
Key controlled-mode events ... 5-4

Discovery of controllers by controlled APs .. 5-6
 Discovery overview ... 5-6
 Discovery methods ... 5-7
 Discovery order ... 5-9
 Discovery recommendations ... 5-9
 Discovery priority .. 5-10
 Discovery considerations ... 5-12
 Monitoring the discovery process ... 5-12

Authentication of controlled APs... 5-18
 Building the AP authentication list ... 5-18

Configuring APs .. 5-21
 Overview ... 5-21
 Inheritance ... 5-22
 Configuration strategy .. 5-23
 Working with groups ... 5-24
 Working with APs .. 5-26
 Assigning egress VLANs to a group ... 5-29

Provisioning APs .. 5-30
 Provisioning methods .. 5-30
 Displaying the provisioning pages ... 5-31
 Provisioning connectivity ... 5-33
 Provisioning discovery ... 5-36
 Provisioning summary .. 5-37
 Provisioning example ... 5-38
AeroScout RTLS .. 5-39
Software retrieval/update.. 5-40
Monitoring... 5-40
Key concepts

The controller provides centralized management of APs operating in controlled mode. Controlled mode greatly simplifies the set up and maintenance of a Wi-Fi infrastructure by centralizing the configuration and management of distributed APs.

Note

Starting with software version 5.x, APs operate in controlled mode by default. If you update an AP from an earlier release, the AP boots in autonomous mode. Subsequently resetting the AP to factory defaults switches it to controlled mode. For details on working with autonomous APs, see Working with autonomous APs on page 18-1, and Resetting to factory defaults on page C-1.

Plug and play installation

In most cases, initial configuration of an AP is not required. Simply power it up and plug it into a network that provides access to a controller. The AP will automatically discover and authenticate itself with the controller. The AP does not offer wireless services until it successfully connects and synchronizes with a controller. Layer 3 networks may require the APs first to be provisioned.

Automatic software updates

Once an AP establishes a management tunnel with a controller its software is automatically updated to match the version installed on the controller.

Centralized configuration management

All AP configuration settings are defined using the controller management tool and are automatically uploaded to all controlled APs with a single mouse click. For added flexibility, APs can be assigned to groups, enabling each group to have customized configuration settings. If needed, the individual settings for each AP in a group can also be customized.

Manual provisioning

By default, APs operating in controlled mode will automatically discover and connect with a controller on most network topologies. However, in certain cases it may be necessary to manually configure (provision) connectivity and discovery options. Manual provisioning can be done directly on the AP, or via the controller. When using the controller, provisioning can be applied to entire groups making it easy to customize many APs at once. When working with a controller team, APs must be provisioned to discover each team member to ensure that failover is supported. The APs must be able to migrate to a new team member if the current team member with which they are associated becomes unavailable.

Secure management tunnel

Once authenticated, a secure management tunnel is established between the AP and the controller to support the exchange of management traffic between the two devices.
AP authentication

The controller can be configured to authenticate APs by their MAC address before they are managed. The authentication can be defined locally on the controller, via a third-party RADIUS server, or using a remote text-based control file.

Key controlled-mode events

The following diagram provides an overview of key events that occur when working with APs in controlled mode.

1. **Controller**
 - Deploy the controller.
 - Configure AP authentication. For security purposes, the controller can require that APs be authenticated before they can be managed.
 - See *Authentication of controlled APs on page 5-18*.
 - Set up groups. Groups allow you to apply the same configuration settings to many APs at the same time. You can create multiple groups, allowing you to maintain distinct settings for different types of APs. If no groups are created, all APs are assigned to a default group.
 - See *Configuring APs on page 5-21*.

2. **AP**
 - Deploy an AP with its default configuration OR manually provision initial AP configuration.
 - On most network topologies, if you deploy an AP with factory default settings it will automatically find and connect with a controller on the network.
 - In some cases, it may be necessary or desirable to provision an AP before it is deployed to ensure that discovery is successful, or to force a specific discovery option.
 - The AP does not offer wireless services until it discovers and connects with a controller.
 - See *Provisioning APs on page 5-30*.
Working with controlled APs

Key controlled-mode events

<table>
<thead>
<tr>
<th>Controller</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>The controller receives a discovery request.</td>
<td>When started, the AP attempts to discover all controllers that are operating on the local network.</td>
</tr>
<tr>
<td>The controller sends a discovery reply. (If the AP authentication option is enabled, the AP needs to be authenticated first.)</td>
<td>— See Discovery of controllers by controlled APs on page 5-6.</td>
</tr>
<tr>
<td>Controller adds the AP to a group. This will either be the default group (if the AP is new/unknown) or an existing group (to which the AP was previously assigned).</td>
<td>AP receives discovery reply. If more than one reply is received, the AP chooses the controller with the highest priority setting.</td>
</tr>
<tr>
<td>— See Configuring APs on page 5-21.</td>
<td>— See Controlled AP discovery on page 2-10.</td>
</tr>
<tr>
<td>If AP software is out of date, controller tells the AP to update its software.</td>
<td>AP joins with the selected controller.</td>
</tr>
<tr>
<td>Controller accepts the secure management tunnel.</td>
<td>AP fetches the software from the controller, installs it, and then restarts itself. Discovery is performed again.</td>
</tr>
<tr>
<td>The controller updates the AP configuration.</td>
<td>AP establishes secure management tunnel with the controller.</td>
</tr>
<tr>
<td></td>
<td>AP receives new software and configuration.</td>
</tr>
</tbody>
</table>
Discovery of controllers by controlled APs

This section describes how the discovery process works and how it can be customized.

Discovery is the process by which a controlled AP finds a controller (or controller team) on a network and establishes a secure management tunnel with it. To see how the discovery process fits into overall controlled mode operations, see Key controlled-mode events on page 5-4.

In most cases, the factory default configuration of an AP will result in automatic discovery of a controller with no configuration required. However, for some network topologies it may be necessary to configure the discovery process as described in this section.

See Discovery recommendations on page 5-9 for examples of topologies that can use automatic discovery and those that require discovery to be configured.

Note
- If you intend to manage controlled APs via local mesh, see Local mesh on page 12-1.
- Provisioning can limit the discovery of potential controllers. See Provisioning APs on page 5-30.

Discovery overview

Although the specifics of the discovery process vary depending on whether an AP is unprovisioned (in its factory default state) or provisioned (had its connectivity or discovery settings changed from their factory default settings), the discovery process can be summarized as follows:

1. The AP uses various methods to locate one or more controllers that are reachable on the network. The preferred way to monitor AP discovery is via the controller management tool (see Monitoring the discovery process on page 5-12). When in visual range of the APs, you can watch the status lights for an indication of discovery progress. See the status light information in the AP Quickstart (provided and available online).
2. Discovered controllers send a discovery reply to the AP. If the controller is configured to require AP authentication, the reply is only sent after the AP is authenticated by the controller.

3. The controller adds the AP to a group. This will either be the default group (if the AP is new/unknown) or an existing group (to which the AP was previously assigned).

4. The AP is now managed by the controller, and it can be configured and monitored using the controller management tool.

Note
- APs must be connected to the network via Port 1 (or the Uplink port on an MSM317) for discovery to work.
- Unprovisioned APs must obtain an IP address from a DHCP server before discovery can be initiated. When discovery occurs on a VLAN, the DHCP server must be active on the VLAN.

Discovery is performed whenever an AP:
- Is restarted (or reset to factory defaults)
- Loses connectivity with its controller
- Is removed and rediscovered using an action on the Controlled APs >> Overview > Discovered APs page.

Discovery methods
Four discovery methods are available. The following table summarizes their features and recommended applications.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Supported by</th>
<th>Suggested use</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP broadcast</td>
<td>AP issues UDP broadcasts to discover controllers on the same subnet.</td>
<td>Unprovisioned APs</td>
<td>Both the controller and AP reside on the same subnet.</td>
</tr>
<tr>
<td>DHCP</td>
<td>AP obtains controller address from a specially configured DHCP server.</td>
<td>Unprovisioned APs</td>
<td>The AP is on a different subnet than the controller.</td>
</tr>
<tr>
<td>DNS</td>
<td>AP obtains controller address from a DNS server using predefined host names.</td>
<td>Unprovisioned APs Provisioned APs</td>
<td>The AP is on a different subnet than the controller.</td>
</tr>
<tr>
<td>Specific IP addresses</td>
<td>AP connects to a specific controller using a pre-configured static IP address.</td>
<td>Provisioned APs</td>
<td>DHCP and DNS are not used and the AP is on a different subnet than the controller.</td>
</tr>
</tbody>
</table>
A controller listens for discovery requests on its LAN port and/or Internet port as configured on the Controller >> Management > Device Discovery page. (See Device discovery on page 2-8).

UDP broadcast discovery

The AP sends a UDP broadcast to discover all controllers that are on the same subnet as the AP.

DHCP discovery

When configured as DHCP client (which is the factory default setting for all APs), an AP can obtain the IP addresses of controllers on the network from any DHCP server configured to support the Colubris Vendor Class (DHCP option 43).

Vendor Class enables an administrator to define a list of up to five available controllers on the network to which APs can connect.

- If the controller is configured to operate as the DHCP server for the network, you can define the list of available controllers by selecting Controller >> Network > Address allocation > DHCP server and then configure the Controller discovery option. See Controller discovery option on page 3-10.

- If an external DHCP server is used, it must have Option 43 configured. For examples on how to configure some popular third-party DHCP servers, see Appendix E: DHCP servers and Colubris vendor classes.

DNS discovery

DNS discovery is attempted using UDP unicast discovery requests which are issued by the AP to the following default controller names:

- cnsrv1
- cnsrv2
- cnsrv3
- cnsrv4
- cnsrv5

This method enables discovery across various network configurations. It requires that at least one controller name is resolvable via a DNS server.

The AP appends the default domain name returned by a DHCP server (when it assigns an IP address to the AP) to the controller name. For example, if the DHCP server returns mydomain.com, then the AP will search for the following controllers in this order:

- cnsrv1.mydomain.com
- cnsrv2.mydomain.com
- cnsrv3.mydomain.com
Discovery using specific IP addresses
Provisioned APs can be configured to connect with a controller at a specific IP address. A list of addresses can be defined, allowing the AP to search for multiple controllers.

This can also be used to strengthen the security on a local network to make sure that the AP goes to a specific controller for management.

Discovery order
Discovery occurs differently for unprovisioned and provisioned APs.

Unprovisioned APs
Once an unprovisioned AP has received its IP address from a DHCP server, it attempts to discover a controller using the following methods, in order:

- UDP broadcast
- DHCP
- DNS

These discovery methods are applied on the following interfaces, in order:

- Last interface on which a controller was discovered. (Only applies to APs that have previously discovered a controller)
- Untagged on the Port 1
- All other detected VLANs (in sequence) on Port 1

Provisioned APs
If discovery settings are provisioned on the AP, then the AP uses only the provisioned settings (see Provisioning discovery on page 5-36). The following discovery settings are available on provisioned APs:

- DNS discovery: Enables custom controller names and domains to be used for discovery.
- Discovery using specific IP addresses: Enables the AP to find controllers operating at specific IP addresses.

Discovery recommendations

Note
When controller teaming is active, controlled APs discover a team in the same way that they discover non-teaming controllers.

- If the AP is on the same subnet as the controller, then UDP discovery will work with no configuration required on either the AP or controller. This applies whether the
controller is operating as the DHCP server for the network or if a third-party DHCP server is used.

If VLANs are being used, then UDP discovery will also work with no configuration. However, to speed up the discovery process you can provision the AP with a specific VLAN ID. This will eliminate the need for the AP to find and attempt discovery on all available VLANs.

- **If the AP is on a different subnet than the controller**, UDP discovery will not work. Instead, DHCP or DNS discovery must be used, or direct IP address discovery must be provisioned.

 - **DHCP discovery**: If you have control of the DHCP server, enable support for the Colubris Vendor Class as explained in *DHCP discovery on page 5-8*.

 - **DNS discovery**: If you have control of the DNS server, you can configure it to resolve the default controller names that an AP will search for. To use custom names, you must provision discovery settings on the AP. For more information on using custom names, see *Provisioning discovery on page 5-36*.

 - **Specific IP discovery**: This method needs to be used when you do not have control over the DHCP and DNS servers and no domain is registered to the controller. For example, if the connection to the controller is routed over the public Internet.

 For discovery to succeed, the AP must be provisioned with the controller IP address. See *Provisioning discovery on page 5-36*.

- **When working with a controller team**, APs should be provisioned to discover all controllers that make up the team, not just the team manager. This is required for proper fail-over operation.

Discovery priority

Each controller that receives a discovery request sends the requesting AP a discovery reply. If the AP authentication option is enabled, the AP needs to be authenticated first. Requests from unauthenticated APs are ignored.

If an AP receives discovery replies from multiple controllers, the AP selects the controller that has the highest discovery priority setting.
Each controller or team must have a different priority setting otherwise AP discovery will fail with the diagnostic **Priority conflict**. See Viewing all discovered APs on page 5-13.

Discovery priority is set on a controller using the **Discovery priority of this controller** option on the **Controller >> Management > Device Discovery** page.

On a non-teamed controller

[Diagram of Discovery settings]

On a controller team

[Diagram of Discovery settings]

If two controllers have the same high-priority setting, the AP will appear on the **Overview > Discovered APs** page of both controllers with a **Diagnostic** value of **Priority Conflict**. To resolve the conflict, change the priority setting of one of the controllers on its Discovery page.

If only connectivity settings are provisioned, then the AP attempts to discover a controller using the same methods as for unprovisioned APs, namely:

- UDP broadcast
- DHCP (the AP must be configured as a DHCP client for this to work)
- DNS

Tip For more information on provisioning APs, see **Provisioning APs on page 5-30**.
Discovery considerations

If controlled APs are behind a firewall or NAT device, refer to the following sections.

Firewall

If the network path between an AP and a controller traverses a firewall the following ports must be opened for management and discovery to work:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Open these ports</th>
<th>Ports are used by</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
<td>Source and destination = 38212 (9544 hex)</td>
<td>Discovery protocol the AP uses to find a controller.</td>
</tr>
<tr>
<td>UDP</td>
<td>Destination = 1194 (4AA hex)</td>
<td>Management tunnel that is established between an AP and a controller.</td>
</tr>
<tr>
<td>TCP</td>
<td>Source and destination = 1194 (4AA hex)</td>
<td>Software updates and certificate exchanges (for the management tunnel).</td>
</tr>
<tr>
<td>UDP</td>
<td>Source and destination = 3001 (BB9 hex)</td>
<td>Client data tunnel.</td>
</tr>
<tr>
<td>UDP</td>
<td>Source = 39064 (9898 hex) Destination = 1800 (708 hex), 1812 (714 hex), 1813 (715 hex), 30840 (7878 hex)</td>
<td>Location aware. This is only necessary if autonomous APs are using the access-controlled (public access) interface.</td>
</tr>
</tbody>
</table>

NAT

If the network path between an AP and a controller implements NAT (network address translation), discovery will only work if NAT functions on outbound traffic sent from the AP to the controller. If NAT operates in the other direction, discovery will fail.

Monitoring the discovery process

This Summary menu lists the number of controlled APs discovered by the controller. APs are grouped according to their management state. For example: Synchronized, Detected, Configured, Pending.

An AP may be active in more than one state at the same time. For example, an AP may be both Detected and Synchronized. Select the state name to display information about all APs in that state.
Viewing all discovered APs

To display information about APs discovered by the controller, select **Controlled APs >> Overview > Discovered APs.**

The **Discovered APs** page provides the following information:

- **Number of access points:** Indicates the number of APs that were discovered.

- **Select the action to apply to all listed APs:** Lets you apply the selected action to all APs in the list. Select an action and then **Apply.**

- **Status:**
 - Green: The AP is synchronized, meaning that the AP is connected, running, and has received its configuration from the controller.
 - Yellow: The AP is unsynchronized, meaning that the AP is operational but does not have the same configuration as the controller, yet.
 - Red: The AP is not part of the controlled network and is not providing wireless services. See the **Diagnostic** column for details.
 - Grey blinking: An action is pending.
 - Grey: The AP is configured in a group, but has not been discovered on the network.

- **AP name:** Name assigned to the AP.

- **Serial number:** Unique serial number assigned to the AP at the factory. Cannot be changed.

- **Wireless services:** Indicates the status of wireless services on the AP. A separate icon appears for each radio on the AP. See the legend under the table for the meaning of each icon.

- **Wireless clients:** Indicates the number of wireless clients currently associated with the AP. Select the number to see more information.
- **Diagnostic**: Indicates the status of the AP with regards to management by the controller, as shown in the following table.

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>The AP was detected by the controller.</td>
</tr>
<tr>
<td>Enabling VSC services</td>
<td>The AP is enabling wireless services for all VSCs.</td>
</tr>
<tr>
<td>Establishing tunnel</td>
<td>A secure management connection is being established to the AP.</td>
</tr>
<tr>
<td>Firmware failure</td>
<td>New firmware failed to upload to the AP. The controller will retry soon.</td>
</tr>
<tr>
<td>Incompatible settings</td>
<td>Local mesh has been provisioned on the AP but:</td>
</tr>
<tr>
<td></td>
<td>- The APs radio is disabled.</td>
</tr>
<tr>
<td></td>
<td>- The AP radio operating mode does not support local mesh.</td>
</tr>
<tr>
<td></td>
<td>- The APs radio wireless mode does not match the one provisioned.</td>
</tr>
<tr>
<td></td>
<td>- The mesh ID is not uniquely assigned.</td>
</tr>
<tr>
<td>Installing firmware</td>
<td>New firmware has been successfully uploaded to the AP. Wait until the AP restarts to activate the new firmware.</td>
</tr>
<tr>
<td>Invalid country</td>
<td>The AP cannot be configured with the current country settings defined on the controller. This can occur when an AP manufactured for use in a specific country is deployed in another country.</td>
</tr>
<tr>
<td></td>
<td>You should replace the AP with one configured for the same country as the controller. Depending on the regulations, it may be possible to set the AP to the correct country.</td>
</tr>
<tr>
<td>Not authorized</td>
<td>The AP could not be authenticated by the controller. This may be due to invalid authentication credentials supplied by the AP. (Authentication settings used by the controller are defined on the Controller >> Security >> Controlled APs page.)</td>
</tr>
<tr>
<td></td>
<td>You should accept the AP unless it is an actual rogue.</td>
</tr>
<tr>
<td>Not responding</td>
<td>The AP has stopped sending management information to the controller. Rediscovery may re-establish the connection. If not the AP may have lost power or a network failure has occurred.</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Priority conflict</td>
<td>More than one controller responded to the AP discovery request with the same priority. The AP is therefore unable to select a controller to function as its controller. The AP will retry its discovery request shortly.</td>
</tr>
<tr>
<td></td>
<td>You must fix the priority conflict by changing the priority setting for one of the controllers (Controller >> Management >> Device discovery).</td>
</tr>
<tr>
<td>Waiting for manager</td>
<td>When teaming is active, a newly discovered AP will temporarily be in this state while it waits for the team manager to add it to the network tree.</td>
</tr>
<tr>
<td>Rebooting</td>
<td>The AP is restarting.</td>
</tr>
<tr>
<td>Resetting configuration</td>
<td>The AP configuration is being reset to factory defaults. This is normal and will occur when the firmware version on the controller is changed or if the AP is not synchronized.</td>
</tr>
<tr>
<td>Restoring configuration</td>
<td>The AP is currently restoring its previous configuration settings.</td>
</tr>
<tr>
<td>Suspicious device</td>
<td>The AP unexpectedly requested new authentication certificates from the controller. Possible causes are as follows:</td>
</tr>
<tr>
<td></td>
<td>- A previously synchronized AP was reset to factory defaults.</td>
</tr>
<tr>
<td></td>
<td>- An unauthorized AP may be using the same MAC address.</td>
</tr>
<tr>
<td></td>
<td>This is a possible security breach that should be investigated before authorizing the AP again.</td>
</tr>
<tr>
<td>Synchronized</td>
<td>The AP is up and running, offers wireless services, and had its firmware and configuration settings successfully updated by the controller.</td>
</tr>
<tr>
<td>Synchronized/License violation</td>
<td>Although the AP is synchronized it is non-functional (quarantined) due to a license violation.</td>
</tr>
<tr>
<td></td>
<td>You must change the configuration to omit the affected licensed feature or acquire and install a valid license.</td>
</tr>
<tr>
<td>Unconfigurable</td>
<td>This AP cannot be added because the maximum number of configured APs has been reached. To add this AP you must first remove one or more currently configured APs.</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Unsupported product</td>
<td>No suitable firmware is available for this AP on the controller. You should upgrade the controller firmware so that the newly-introduced product can be recognized.</td>
</tr>
<tr>
<td>Unsynchronized</td>
<td>The AP is up and running and offers wireless services. However, its configuration settings do not match the settings defined on the controller (at the group or AP level). You should Synchronize the AP.</td>
</tr>
<tr>
<td>Unsynchronized/License violation</td>
<td>The AP is not synchronized but can continue operation. However, if synchronized, it will become non-functional as described above for Synchronized/License violation. Before synchronizing, either change the configuration to omit the affected licensed feature or acquire and install a valid license.</td>
</tr>
<tr>
<td>Uploading configuration</td>
<td>Configuration settings are currently being sent to the AP.</td>
</tr>
<tr>
<td>Uploading firmware</td>
<td>The controller is uploading new firmware to the AP. Wait until the operation completes.</td>
</tr>
<tr>
<td>Validating configuration</td>
<td>The controller is waiting for the AP to send its configuration.</td>
</tr>
<tr>
<td>Validating firmware</td>
<td>The controller is waiting for the AP to send its firmware version number.</td>
</tr>
<tr>
<td>Waiting for acceptance</td>
<td>The AP has been authorized by the controller. However, the AP has not yet selected the controller to function as its controller. (If multiple controllers replied to the APs discovery request, the AP may choose to connect with another controller.)</td>
</tr>
<tr>
<td>Wrong product</td>
<td>The AP was created with a product type that does not match the detected product type. This can occur when an AP is manually added to a group with the wrong product type. You should verify and fix the product type.</td>
</tr>
<tr>
<td>Validating capabilities</td>
<td>The capabilities of the AP are being identified by the controller.</td>
</tr>
</tbody>
</table>

- **Action**: Indicates the recommended administrative action to be taken to resolve a diagnostic condition.
Viewing all configured APs

To display information about APs configured by the controller, select Controlled APs >> Overview > Configured APs.

The Configured APs page provides the following information:

- **Number of displayed access points**: Number of configured APs that were discovered.
- **Detected**: Status light icon indicating if the AP has been detected.
 - Green: The AP has been discovered and is listed on the AP overview page, where more information is provided on the AP.
 - Red: The AP has not been discovered.
- **AP name**: Name assigned to the AP. Select the name to open its AP management page.
- **Serial number**: Serial number assigned to the AP. Select the serial number to open its AP management page.
- **Group Name**: Group that the AP is part of.
- **Product**: Product name of the MSM AP.
- **Creation mode**:
 - **Local**: AP was added manually, or was manually authenticated after being discovered.
 - **RADIUS**: AP was successfully authenticated via RADIUS and then created.
 - **External file**: AP was successfully authenticated using the external file option.
 - **Discovered**: Automatically detected by the controller based on discovery-time parameter exchange.
 - **Already Seen**: The AP established a management tunnel to the controller at least once in the past.
Authentication of controlled APs

For security purposes, the controller can require that APs be authenticated before they are managed. Authentication is enabled by selecting Controller >> Controlled APs > Authentication.

Note

The AP authentication option is disabled by default, meaning that all discovered APs are authorized (no authentication is required).

The controller authenticates APs using their MAC addresses. When an AP sends a discovery request to the controller, it includes its Ethernet Base MAC address. The controller validates this address against its AP address authentication list. If the address appears in the list, the AP is authenticated and gains access to the controller's service control features.

If authentication fails (for example, this is a new AP), and the Use the local authentication list option is enabled, then the AP is added to the Default Group and flagged as requiring authentication. The AP must then be manually authenticated by a manager using the Controlled APs >> Overview > Discovered APs page. Once authenticated, the AP can be managed.

Note

APs remain visible in this list as long as they have been detected and authorized at least once. If an AP is no longer part of the network then a manager must manually remove it.

Building the AP authentication list

The controller can retrieve authentication list entries from several sources: a RADIUS account, a file, or using the set of locally configured APs. All entries are merged to create a combined list.
The controller retrieves authentication list entries when:

- The **Authentication interval** expires
- **Authenticate Now** is clicked
- **Save** is clicked
- Each time the controller starts up.

Each time the authentication list entries are retrieved, all connected APs are checked against it. If an AP MAC address is no longer listed, its connection is terminated.

Note

Although the same RADIUS account can be shared between this option and the Public access > Attributes page, it is recommended that a separate RADIUS account be created for each option.

General settings

Authentication interval

Specifies the interval at which the controller retrieves authentication list entries from the selected authentication sources. After the entries are retrieved all controlled APs are evaluated against the new list.

Authenticate Now

Causes the controller to retrieve authentication list entries from all selected sources.

Use file authentication list

When this option is selected, the controller retrieves authentication list entries from a file. This must be an ASCII file with one or more MAC addresses in it. Each address must be entered on a separate line. For example:

00:03:52:00:00:01
00:03:52:00:00:02
00:03:52:00:00:03

A label affixed to each AP indicates its Ethernet Base MAC Address. This is the address to specify in the authentication list.

File location

Specify the location of the file to use for authentication of APs using either HTTP or FTP. For example:

ftp://mydomain.com/auth_list
ftp://username:password@mydomain.com/auth_list
http://mydomain.com/auth_list

Use RADIUS authentication list

When this option is selected, the controller retrieves authentication list entries from a RADIUS server. List entries must be defined in the RADIUS account for the controller using the following Colubris-AVPair value string:

`managed-ap=MAC_address`
Where \textit{MAC_address} is the Ethernet Base port MAC address of the controlled AP (which is printed on a sticker affixed to the AP case). Use colons to separate characters in the address.

For example: \textit{00:20:E0:6B:4B:44}.

To define multiple addresses, specify additional entries as needed.

This attribute conforms to RADIUS RFC 2865. You may need to define this attribute on your RADIUS server if it is not already present as follows:

- SMI network management private enterprise code = 8744
- Vendor-specific attribute type number = 0
- Attribute type = string

RADIUS profile

When the \textbf{Authentication} source is \textbf{RADIUS}, this option specifies the name of the RADIUS profile to use. There is no default. To configure RADIUS profiles, select Controller >> Authentication > RADIUS profiles.

RADIUS username

When the \textbf{Authentication} source is \textbf{RADIUS}, specifies the RADIUS username assigned to the controller.

RADIUS password / Confirm RADIUS password

Specifies the password that corresponds with \textbf{RADIUS username}.

Use the local authentication list

When this option is selected, the controller creates authentication list entries based on the set of APs that are currently defined on the controller. For reference purposes, the table shows the \textbf{AP name}, \textbf{Serial number} and \textbf{MAC address} of all APs that are defined and will be included in the authentication list.

\textbf{Note}:

When the local authentication list is enabled, the first time an AP tries to connect to the controller, a manager must manually accept the AP on the Controlled APs >> Overview > Discovered APs page by clicking the Authorize in the Action column for the AP. Otherwise, the AP will not be able to connect to the controller.
Configuring APs

This section explains how to configure APs using the Controlled APs menu in the Network Tree.

Overview

To make the configuration of multiple APs easier to manage, parameters settings are managed using a hierarchical structure, where the configuration settings at lower levels are inherited from those at higher levels. There are three levels to the hierarchy: base group, group, and AP. For example:

- **Base group**: The base group is called **Controlled APs**. This name cannot be changed and you cannot create an additional base group. Settings made to the base group are inherited by groups and APs.
- **Group**: Group-level configuration enables you to define settings that are shared by APs with similar characteristics. For example, if you have several APs at a location that are all providing the same service, putting them in the same group makes them easier to manage. The **Default Group** is always present. All newly-discovered APs are initially placed into this group. You can create multiple groups.
- **APs**: AP-level configuration enables you to specify configuration settings for a particular AP that overrides corresponding group-level settings.

Note
Assignment of VSCs can only be done at the group level. This means that all APs in a group always have the same VSC settings. The only exception to this is the MSM317 which allows VSCs to be bound to individual ports on its integrated switch. See the *MSM317 Access Device Installation and Getting Started Guide*.
Inheritance

Configuration settings are inherited as follows:

- Settings made at the **Controlled APs** level are inherited by all groups.
- Settings made at the **Group** level are inherited by all the APs in a group.

To change inherited configuration settings you must first clear the **Inherited** checkbox. For example, the following image shows the **802.1X** page with the **Inherited** checkbox cleared, allowing all settings on this page to be customized.

Binding VSCs to groups

The controller defines a global pool of VSCs (see *Working with VSCs on page 4-1*) that represents all services that are available. From this pool, specific VSCs can be **bound** to one or more groups, to define the features that will be offered to users throughout the wireless network.

Note

VSCs cannot be bound to individual APs or to the base group. VSC can only be bound to a group.

Any changes to a bound VSC affect all groups (and APs) to which the VSC is bound, making it easy to manage configuration changes network-wide.
A key setting when binding a VSC to a group is the **Egress network**. If you enable this option, it can alter where the APs send user traffic. See *Traffic flow for wireless users on page 6-6* for detailed information on how the Egress network in a VSC binding can be affected by different configuration settings.

![Group: Default Group | VSC binding](image)

Note

On the MSM317, VSCs can also be bound directly to the switch ports. See the *MSM317 Access Device Installation and Getting Started Guide*.

Synchronizing APs

After making configuration changes to an AP or a group, you must update all affected controlled APs with the new settings by synchronizing them. See *Synchronizing APs on page 5-28*.

Configuration strategy

There are two ways to approach AP configuration:

Discover APs and then configure groups

This strategy works as follows:

1. Deploy the APs in their default configuration on the network.
2. Allow the discovery process to find the APs and place them in the default group.
3. Create group definitions and then move the APs to the appropriate group.

Tip

Configure the default group to disable all radios. In this way, the default group becomes a staging area to hold newly added APs. Once discovered, the new AP can be moved to its appropriate group where its radio is activated.

Configure groups and then discover APs

This strategy works as follows:

1. Create group definitions.
2. Manually define each AP in the appropriate group.
3. Deploy the APs in their default configuration on the network.
4. Allow the discovery process to find the APs and place them in the pre-configured groups.

Working with groups

Adding a new group

To create a new group, do the following:

1. Select **Controlled APs >> Group management**.
2. Select **Add New Group**.
3. Specify the name of the new group and select **Save**.

Deleting a group

Note

You must remove all APs from a group before you delete it.

To delete a group, do the following:

1. Select **Controlled APs >> Group management**.
2. Select the name of the group you want to delete.
3. Select **Delete**.
Binding a VSC to a group

To bind a VSC to a group, do the following:

1. Select the target group under **Controlled APs**.

2. In the right pane, select **VSC bindings**, then select **Add New Binding**.

3. Select the **VSC profile** to which the group will be bound.

4. If you want to assign an egress mapping to the binding, select **Egress network** and select the required **Network profile**. The Egress network can be used to assign all traffic on the group to a specific VLAN. Other uses are also possible depending on the type of VSC to which the group is being bound. For more information, see *Traffic flow for wireless users on page 6-6*.

5. Select **Save**.
Working with APs

Manually adding a new AP

You can manually add APs to the controller before connecting the APs to the network. This is useful, for example, when you want to pre-designate the group into which an AP will be placed.

1. Select Controlled APs >> Overview > Configured APs.
2. Select Add.
3. In the Device box, identify the new AP, specifying at a minimum, Device Name, Ethernet BASE MAC (printed on the label affixed to each AP), and Group.

Select Save. The AP is added to the selected group in the Network tree and will also be shown in the Configured APs list.
Note
- When the AP is physically connected to the network, it will discover the controller and automatically be accepted into the selected group. Make sure you configure the correct MAC address, otherwise the AP will just be discovered as a new AP and will not be placed into the selected group.
- If an AP is created with the wrong product type it will go into the **Wrong product** state when discovered. (For example, if you specify MSM310 for an AP that is an MSM320.) To remedy this, select **Overview > Discovered APs** and select the **Accept Products** link in the **Action** column. (This action will override the pre-configured product setting by the information discovered from the actual physical AP.)

Deleting an AP

Note
When the AP authentication feature is disabled, a deleted AP may automatically rediscover the controller if the AP is left connected to the network. Therefore, before deleting, disconnect the AP unless you want it to rediscover the controller.

1. To delete an AP, select the AP in the **Network tree**, and then in the **Configured APs** list, select the AP name in the **Link** column.
2. On the **AP management** page, select **Delete**. The AP is deleted.

Moving an AP to a different group

Note
Moving an AP to a different group causes it to be restarted.

Using drag-and-drop
The easiest way to move an AP to a different group is to drag-and-drop it from the old group to the new group. Both groups must be visible in the Network tree for this to work.

The move to the different group does not actually occur until the AP is synchronized as described in the next section, *Synchronizing APs on page 5-28.*
Using menus

1. In the **Network tree** select the AP and then on the main menu, select **Device Management > AP management**.

2. Under Access point settings, select the desired **Group** and select **Save**.

This puts the AP into the unsynchronized state (it will be displayed in orange). The move does not occur until the AP is synchronized as described in the next section.

Synchronizing APs

Depending on the type of configuration changes that are being synchronized, wireless users may be forced to reassociate or log in again.

After making configuration changes, you must synchronize the APs with the updated configuration as follows:

1. In the **Network tree**, select the group that contains the APs, and then in the right pane, select **Discovered APs**. For example, **Secondary Group**.
APs requiring synchronization are displayed with an orange background and show **Unsynchronized** in the Diagnostic column.

2. Select a **Synch** link in the Action column to synchronize a single AP.

 Or, to synchronize all unsynchronized APs in the group, select **Synchronize Configuration** in the Select the action to apply to all listed APs list, and select Apply.

3. Monitor synchronization progress by watching the Diagnostic column. Messages such as **Resetting configuration** and **Restoring configuration** will appear during the synchronization process.

4. As each synchronization completes, the **Status** light icon and background color of the synchronized AP changes to green. The status light icon next to the AP name under the pertinent group name in the Network tree also changes to green. This indicates that the AP is fully operational and using its new configuration.

Assigning egress VLANs to a group

When you bind an AP to a VSC, you are able to assign an egress network to the binding. The egress network can be used to assign all the traffic on the group to a specific VLAN. Other uses are also possible depending on the type of VSC to which the group is being bound. For more information, see *Traffic flow for wireless users on page 6-6*.
Provisioning APs

Provisioning is the means by which you can change the factory default IP addressing method and controller discovery settings on controlled APs.

Provisioning is generally not required when deploying controlled APs in simple network topologies. However, it is required as follows:

- Controlled APs do not have layer 2 connectivity to a controller and where it is not possible to control the DNS or DHCP server configuration. See Discovery recommendations on page 5-9.
- Controlled APs need to be deployed with static IP addresses.
- Controlled APs use a local mesh to connect to the controller. See Provisioning local mesh links on page 12-11. This feature is not supported on the MSM317.
- For discovery process acceleration on networks with a large number of VLANs, or when many VLANs are connected to many controllers.
- When multiple controllers are available to an AP and you want to make sure an AP always connects to the same controller.

Provisioning methods

Provisioning can be done in two ways: provision settings using the controller or provision settings directly on APs.

Using the controller to provision APs

On the controller, provisioning can be done at the group or AP level for added flexibility. Provisioning via the controller enables you to quickly provision many APs at once.

In certain scenarios it may be practical to use one controller to provision APs, and then have the APs associate with another controller after being deployed. For example, provisioning could occur at the network operations center by connecting APs to the same subnet as a controller. Once provisioned, the APs can then be deployed in the field where they will discover a controller already in operation.

To enable a controller to send provisioned settings to controlled APs, you must first activate the Enable provisioning of controlled APs option on the Controller >> Controlled APs > Provisioning page.
Define provisioning settings as described in *Displaying the provisioning pages on page 5-31*.

Note
- Until this option is enabled, provisioned settings defined on the controller are not sent to any controlled APs.
- After an AP has been updated with provisioned settings, these settings do not become active *until the AP is restarted*, or a **Remove and rediscover** action is executed on the **Controlled APs >> Configured APs** page.

Directly provisioning an AP using its management tool

In its factory default state, the AP provides a provisioning menu with the same options that are available on the controller. Use this method when there is no local controller on which to perform the provisioning. See *Displaying the provisioning pages on page 5-31*.

Note

Once an AP has established the secure management tunnel with a controller, the provisioning menu on the AP is no longer accessible.

In both cases, the configuration settings that you have access to are the same. They are described in the following sections.

Displaying the provisioning pages

To display the provisioning pages, do the following:

On a controller

1. Select one of the following in the Network tree:
 - Controlled APs
 - A group
 - An AP
2. In the right pane, select **Provisioning > Connectivity**.
3. Configure provisioning settings as described in the sections that follow.
On an AP in its factory-default state

1. Log in to its management tool.

2. Select **Provision** at the bottom of the home page.

 ![Provisioning APs Screen](image)

 Note

 The **Provision** button is only available if the AP is in its factory-default state, meaning it has not yet been provisioned and that the AP has never discovered a controller (since last factory default). To force an AP into its factory-default state, press and hold its reset button until the status lights blink three times.

3. Configure provisioning settings as described in the sections that follow.
Provisioning connectivity

Use the Provisioning > Connectivity page to provision connectivity settings for a controlled AP. The following page will appear on all APs except for the MSM317.
The following page will appear on the MSM317.

Enable provisioning here:

Interface
Select the interface you want to configure and then define its settings using the other options on this page. Set **VLAN ID** if applicable.

Assign IP address via
- **DHCP client**: Address is assigned using a DHCP server. Enable this option to have the interface act as a DHCP client. The AP sends DHCP requests on the specified VLAN. If no VLAN is specified, the request is sent untagged.
- **Static**: Select this option to manually assign an IP address to the interface.

Static IP settings
When you select **Static** for **Assign IP address via**, configure settings in this box.
- **IP address**: Specify the IP address you want to assign to the interface.
- **Address mask**: Specify the appropriate subnet mask for the IP address you specified.
- **Default gateway**: Specify the IP address of the default gateway.

Local mesh settings
For information on provisioning these settings, see *Local mesh on page 12-1*.
Country
Select the country in which the AP is operating.

Caution
- Selecting the wrong country may result in illegal operation and may cause harmful interference to other systems. Please consult with a professional installer who is trained in RF installation and knowledgeable about local regulations to ensure that the service controller is operating in accordance with channel, power, indoor/outdoor restrictions and license requirements for the intended country.
- The Country option is not available on APs delivered with a fixed country setting.

802.1X
Enable this option when the AP is connected to a secured switch port that requires 802.1X authentication. Once the AP is authenticated, controller discovery proceeds as usual.

Note
- If this option is enabled and the AP is connected to a unsecured switch port, 802.1X is ignored and discovery proceeds as usual.
- The switch port is expected to be multi-homed, so that once authentication is successful, tagged and untagged traffic for any MAC addresses (including wireless clients) will be accepted by the switch.

In this type of environment, deployment can be a challenge, since the AP must already be configured with the correct 802.1X username and password before it is connected to the secured switch port. There are three solutions to this problem:

- During AP deployment, 802.1X is deactivated on the switch ports. The APs are connected and provisioned with the correct 802.1X settings by the controller. Once all APs are synchronized, 802.1X authentication can be enabled on the switch ports.

- Before being deployed, the APs are first connected to a controller via a non-secure switch. The APs are provisioned and synchronized with the correct 802.1X settings by the controller. Next, the APs are deployed to their final location.

- For small deployments, the administrator could connect each AP in turn to a computer and configure the appropriate 802.1X settings using the AP provisioning interface. This solution is time consuming and is not a realistic option for a large deployments.

EAP method
Select the extensible authentication protocol method to use:

- **PEAP version 0:** Authentication occurs using MS-CHAP V2.
- **PEAP version 1:** Authentication occurs using EAP-GTC.
- **TTLS:** The Tunneled Transport Layer Security protocol requires that the switch first authenticate itself to the AP by sending a PKI certificate. The AP authenticates itself to the switch by supplying a username and password over the secure tunnel.

Username
Username that the AP will use inside the TLS tunnel.
Password / Confirm password
Password assigned to the AP.

Anonymous
Name used outside the TLS tunnel by all three EAP methods. If this field is blank, then the value specified for Username is used instead.

Provisioning discovery
Use the Provisioning > Discovery page to provision the method a controlled AP uses to discover a controller. Two options can be provisioned: DNS discovery or discovery via IP address. The following page shows Discovery using DNS provisioned.

Discover using DNS
The AP attempts to connect with a controller using the names in the order that they appear in this list.

To discover the controller on the network, the AP appends each name with the specified Domain name.

In the above example, the AP will search for controllers with the names:

- service-controller-1.mydomain.com
- service-controller-2.mydomain.com
If you define a name that contains a dot, then the domain name is not appended. For example, if the name is `controller.yourdomain.com`, no domain name is appended.

If the AP is operating as a DHCP client, the DHCP server will generally return a domain name when it assigns an IP address to the AP. If you leave the **Domain name** field on this page blank, then the DHCP domain name is appended to the specified names instead.

Discover using IP address

The AP attempts to connect with a controller using the IP addresses in the order that they appear in this list.

Provisioning summary

The following table defines the potential outcome for all provisioning scenarios.

<table>
<thead>
<tr>
<th>Connectivity provisioned</th>
<th>Discovery provisioned</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>Default behavior is used for connectivity and discovery. See Discovery of controllers by controlled APs on page 5-6.</td>
</tr>
</tbody>
</table>
| No | Yes | Discovery occurs using the provisioned methods on the following interfaces:
 - Last interface on which a controller was discovered. (Only applies to APs that have previously discovered a controller.)
 - Untagged on port 1 (Uplink port on the MSM317).
 - All detected VLANs (in sequence) on port 1 (Uplink port on the MSM317). |
| Yes | No | Discovery methods are used according to the provisioned connectivity settings. See *Discovery of controllers by controlled APs on page 5-6*.
Note: DHCP discovery is not executed if a static IP address is provisioned. |
| Yes | Yes | Discovery occurs using the provisioned methods over the provisioned connectivity. The provisioned discovery method is retried indefinitely if it fails, however other discovery methods are not attempted. |
Provisioning example

The following example shows how to use the default group as a staging area, where APs are discovered and then provisioned before being moved into their actual production group.

1. Select **Controller >> Controlled APs > Provisioning**.

2. Select the **Enable provisioning of controlled APs** option.

3. Select **Save**.

4. Select **Controller > Controlled APs > Default group >> Configuration > Radios**.

5. Select each product in the table in turn, and disable its radio(s).

6. Select **Controller > Controlled APs > Default group >> VSC bindings**.

7. Disable any active VSC bindings.

8. Connect all APs that need to be provisioned. Wait until they are discovered and assigned to the default group.

9. Select **Controller > Controlled APs > Default group >> Provisioning > Connectivity**. Configure provisioning settings as required. For details, see *Provisioning connectivity on page 5-33*.

10. Select **Controller > Controlled APs > Default group >> Provisioning > Discovery**. Configure provisioning settings as required. For details, see *Provisioning discovery on page 5-36*.

11. If required, select individual APs and define provisioning settings accordingly.

12. Synchronize the APs. For details, see *Synchronizing APs on page 5-28*. The provisioned settings are not active at this point.

13. Move the APs from the default group to their actual production group. For details, see *Moving an AP to a different group on page 5-27*. This will force a restart of the APs and initiate the provisioned settings.
AeroScout RTLS

Controllers and their controlled APs can be used to provide the Wi-Fi infrastructure for an AeroScout Real-Time Location Tracking (RTLS) system. APs, AeroScout Wi-Fi RFID tags, and the AeroScout MobileView software work together for the purpose of wirelessly tracking the location of valuable assets in real time. The controller forwards AeroScout tag information from controlled APs to a computer running the AeroScout Engine and MobileView software.

Note

- HP ProCurve Networking does not sell or promote AeroScout products. Contact AeroScout for information on obtaining its MobileView software, Wi-Fi RFID tags, and associated hardware. Consult the AeroScout documentation for deployment information.
- To work with MSM APs, the Wi-Fi RFID tags must be configured to send data in the WDS format (4 addresses). Channel allocation on the AP and tag must match as well.
- AeroScout MobileView should be configured with the team IP address of the team that is managing the controlled AP.

To enable AeroScout support

AeroScout support is only available for controlled APs, with radios configured as Access point only or Access point and Local mesh, and operating in the 2.4 GHz band.

To configure the controller (and all its controlled APs) to work with AeroScout:

1. Select Controller >> Controlled APs > RTLS.
2. Select Enable support for AeroScout tags.
3. Select Save.
Working with controlled APs

Software retrieval/update

Viewing status information

Basic AP and AeroScout tag status information is available by selecting Controller > Controlled APs >> Overview > RTLS. For example:

```
<table>
<thead>
<tr>
<th>AP name</th>
<th>AP MAC address</th>
<th>Radio</th>
<th>Engine</th>
<th>Authn state</th>
<th>Oper state</th>
<th>WiFi MAC address</th>
<th>Tag msg</th>
<th>Tag adj msg</th>
</tr>
</thead>
<tbody>
<tr>
<td>K041-00024</td>
<td>00:00:52:09:46:84</td>
<td>1</td>
<td>0.0.0.0/0 Disabled</td>
<td>Disabled</td>
<td>C1:60:00:00:00</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>K041-00025</td>
<td>00:00:52:09:46:84</td>
<td>2</td>
<td>0.0.0.0/0 Disabled</td>
<td>Disabled</td>
<td>C1:60:00:00:00</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>K070-00026</td>
<td>00:00:52:09:73:66</td>
<td>1</td>
<td>0.0.0.0/0 Disabled</td>
<td>Disabled</td>
<td>C1:60:00:00:00</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>K070-00025</td>
<td>00:00:52:09:73:66</td>
<td>2</td>
<td>0.0.0.0/0 Disabled</td>
<td>Disabled</td>
<td>C1:60:00:00:00</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```

All AeroScout management and monitoring is performed in the AeroScout software itself. Aeroscout documentation and AeroScout software must be used to operate and monitor the tags.

Software retrieval/update

Software management of controlled APs is automatically performed by the controller after the AP is discovered (see Key controlled-mode events on page 5-4). If the software version on the AP does not match the version installed on the controller, new software is installed on the AP by the controller.

For information on how to update the controller software see Software updates on page 19-4.

Monitoring

The controller provides a series of pages that present monitoring and status information for controlled APs. You can view these pages for all controlled APs, for all APs in a group, or for just a specific AP. All options appear on the Overview menu, which can be reached by selecting:

- Controlled APs >> Overview.
- Controlled APs >> [Group name] >> Overview.
- Controlled APs >> [Group name] > [AP name] >> Overview.

See the online help for details about the information provided on these status pages.
Working with VLANs

Contents

Key concepts ... 6-2
VLAN usage ... 6-2
Defining a VLAN ... 6-3
 Creating a network profile .. 6-3
 Defining a VLAN ... 6-4
 Defining a VLAN on a controller port .. 6-4
User-assigned VLANs ... 6-6
Traffic flow for wireless users .. 6-6
Traffic flow examples .. 6-10
Key concepts

The controller provides a robust and flexible virtual local area network (VLAN) implementation that supports a wide variety of scenarios.

Up to 80 VLAN definitions can be created on the controller. VLAN ranges are supported, enabling a single definition to span a range of VLAN IDs.

The following controller features are supported on a VLAN:

- Network address translation *(However, static NAT mappings are not supported.)*
- Management tool access
- SNMP access
- SOAP access
- VPN traffic
- L3 mobility

VLAN usage

VLANs can be used in a number of different ways to affect traffic routing on a controller and its APs. The following is a list of the most common VLAN uses:

- **Controller VSC ingress:** VLANs can be used to determine how incoming traffic is mapped to a VSC on a controller. Assigning a VLAN range enables a single VSC to handle incoming traffic on multiple VLANs.

- **Controller VSC egress:** VLANs can be used to control how traffic is forwarded onto the wired network by a VSC on the controller. Traffic can be sent to the LAN port or Internet port, either untagged (no VLAN), tagged with a specific VLAN ID, or distributed across a range of VLAN IDs (using a round-robin mechanism).

- **VSC binding:** When an AP group is bound to a VSC, an egress VLAN can be specified. This egress is used in several different ways to route traffic depending on the features that are active on the VSC. For example, when the Mobility traffic manager is active, this VLAN becomes the user’s home network. See *Traffic flow for wireless users on page 6-6*.

- **Switch port VLANs:** The switch ports on the MSM317 can be bound to a specific VLAN. See the *MSM317 Installation and Getting Started Guide*.

- **User account profile VLAN:** A VLAN can be assigned in a user account profile, enabling you to configure VLAN usage for groups of users.

- **VLAN assignment via RADIUS attributes:** A VLAN can be assigned in a user’s RADIUS account, enabling you to customize VLANs on a per-user basis. For example, when Mobility traffic manager support is enabled on a VSC, RADIUS VLAN attributes can be used to define a user’s home network.

- **Discovery VLAN:** APs can be provisioned to discover controllers on a specific VLAN. See *Provisioning APs on page 5-30*.
Defining a VLAN

To create a new VLAN definition, first you must define a network profile with the required VLAN ID. Next, you use the profile to define a VLAN on a port, VSC interface, or user account.

Creating a network profile

1. Select Controller >> Network > Network profiles. By default the list contains two definitions: Internet port network and LAN port network.

2. Select Add New Profile.

3. Under Settings, specify a Name to identify the profile.

4. Select VLAN, and then set ID to the VLAN ID you want to assign. You can also define a range of VLANs in the form X-Y, where X and Y can be 1 to 4094. For example: 50-60.

 This enables a single VLAN definition to accept traffic for one or more VLAN IDs, making it easy to manage a large number of contiguously assigned VLANs. You can define more than one VLAN range, but each range must be distinct and contiguous. VLANS with ranges cannot be assigned an IP address.

5. Select Save. The definition is added to the Network profiles page.
Defining a VLAN

Once you have created a network profile with a VLAN ID, you can use the profile to define a VLAN on the controller and APs. Some of the more frequently defined VLANs are listed in the following table.

<table>
<thead>
<tr>
<th>To define a VLAN on ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A controller port</td>
<td>Defining a VLAN on a controller port on page 6-4</td>
</tr>
<tr>
<td>The ingress mapping in a VSC profile</td>
<td>VSC ingress mapping on page 4-14</td>
</tr>
<tr>
<td>The egress mapping in a VSC profile</td>
<td>VSC egress mapping on page 4-15</td>
</tr>
<tr>
<td>The egress network in a VSC binding</td>
<td>Binding VSCs to groups on page 5-22</td>
</tr>
</tbody>
</table>

Defining a VLAN on a controller port

Define a VLAN on a controller port as follows:

1. Select Controller >> Network > Ports. By default, no VLANs are defined.
2. Select **Add New VLAN**. The **Add/Edit VLAN** page opens.

![Add/Edit VLAN](image)

3. Under **General**, select the port to which the VLAN will be bound. Once a VLAN has been defined on a port, the port assignment cannot be changed. To assign the VLAN to a different port, delete the VLAN definition and create a new one on the required port.

4. Under **VLAN**, select the VLAN ID to assign. The list contains all network profiles that are defined with a VLAN ID or range.

5. Specify how the VLAN obtains an IP address.

 An IP address cannot be assigned to a VLAN range.

 - **DHCP client**: The VLAN obtains its IP address from a DHCP server on the same VLAN. Note: There is no support for obtaining a default gateway from the DHCP server.

 - **Static**: Enables you to manually assign an IP address to the VLAN. If you select this option, you must specify a static **IP address, Mask, and Gateway**.

 - **None**: Specifies that this VLAN has no IP address, so that you can use the VLAN for a VSC ingress mapping.

6. Enable NAT support if required. (Available only if addressing is **DHCP client** or **Static**.) By default NAT is disabled. See **Network address translation (NAT) on page 3-23**.

7. Select **Save**.
User-assigned VLANs

VLANs can be assigned on a per-user basis using attributes defined in a user's RADIUS account, or via VLAN definitions in a local user account or profile. These user-assigned VLANs are also called dynamic VLANs because they are applied dynamically after a user is authenticated and override the static definitions on VSCs or VSC bindings.

For a complete description on how VLANs affect traffic flow, see *Traffic flow for wireless users on page 6-6*.

VLAN assignment via RADIUS

To define a VLAN in a user's RADIUS account, you need to set the RADIUS attributes Tunnel-Medium-Type, Tunnel-Private-Group-ID, and Tunnel-Type. The Tunnel-Private-Group-ID attribute should be set to the name the VLAN. A VLAN number can also be specified, but this not recommended.

See the Access Accept section under *User attribute definitions on page 14-20* for more information on these attributes.

VLAN assignment via the local user accounts

VLANs can be assigned on a per-user basis by configuring a user account or account profile with the appropriate VLAN number. See *Defining a user account on page 9-25* and *Defining account profiles on page 9-27*.

Traffic flow for wireless users

Due to the large number of features that can make use of VLANs, and the way in which these features interact, VLAN settings at different points in the configuration can affect traffic flow for wireless users in different ways. The following tables provide an overview of all possible configuration settings and how they affect data flow. The tables are organized according to the type of VSC that is being bound to an AP.
Binding to a VSC that has *Wireless mobility* disabled

<table>
<thead>
<tr>
<th>VSC type</th>
<th>Egress network in VSC binding</th>
<th>Client data tunnel</th>
<th>User-assigned VLAN is not assigned via RADIUS or local user accounts</th>
<th>User-assigned VLAN exists on AP or controller</th>
<th>User-assigned VLAN does not exist on AP or controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access-controlled</td>
<td>Defined</td>
<td>Active</td>
<td>The Egress network setting in the VSC binding is ignored. Traffic is sent to the controller in the client data tunnel. It exits the controller on the egress mapping defined on the appropriate VSC.</td>
<td>The Egress network setting in the VSC binding is ignored. Traffic is sent to the controller in the client data tunnel. It exits the controller on the user-assigned VLAN, which overrides any egress mapping defined on the controller's VSC.</td>
<td>User traffic will never reach its destination because the user-assigned VLAN does not match any VLAN IDs defined on the AP or controller.</td>
</tr>
<tr>
<td>Disabled</td>
<td>Traffic is sent on the AP Ethernet port tagged with the VLAN specified by the Egress network in the VSC binding. The Egress network VLAN must match the ingress VLAN on the bound VSC (or be altered by a switch between the AP and the controller to do so) otherwise traffic from the AP will not reach the controller. Traffic exits the controller on the egress mapping defined on the appropriate VSC.</td>
<td>Traffic is sent on the AP Ethernet port tagged with the VLAN specified by the Egress network in the VSC binding. The Egress network VLAN must match the ingress VLAN on the bound VSC (or be altered by a switch between the AP and the controller to do so) otherwise traffic from the AP will not reach the controller. Traffic exits the controller on the user-assigned VLAN, which overrides any egress mapping defined on the controller's VSC.</td>
<td>Traffic is sent on the AP Ethernet port tagged with the VLAN specified by the Egress network in the VSC binding. The Egress network VLAN must match the ingress VLAN on the bound VSC (or be altered by a switch between the AP and the controller to do so) otherwise traffic from the AP will not reach the controller. Traffic exits the controller on the egress mapping defined on the appropriate VSC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not defined</td>
<td>Active</td>
<td>Traffic is sent to the controller in the client data tunnel and is mapped to a VSC on the controller by SSID. It exits the controller on the egress mapping defined on the appropriate VSC.</td>
<td>Traffic is sent to the controller in the client data tunnel and is mapped to a VSC on the controller by SSID. It exits the controller on the user-assigned VLAN, which overrides any egress mapping defined on the controller's VSC.</td>
<td>Traffic is sent to the controller in the client data tunnel and is mapped to a VSC on the controller by SSID. It exits the controller on the egress mapping defined on the appropriate VSC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disabled</td>
<td>Traffic is sent to the controller untagged via the AP Ethernet port and is mapped to a VSC on the controller by SSID. It exits the controller on the egress mapping defined on the appropriate VSC.</td>
<td>Traffic is sent to the controller untagged via the AP Ethernet port and is mapped to a VSC on the controller by SSID. It exits the controller on the user-assigned VLAN, which overrides any egress mapping defined on the controller's VSC.</td>
<td>Traffic is sent to the controller untagged via the AP Ethernet port and is mapped to a VSC on the controller by SSID. It exits the controller on the egress mapping defined on the appropriate VSC.</td>
<td></td>
</tr>
</tbody>
</table>
Working with VLANs

Traffic flow for wireless users

<table>
<thead>
<tr>
<th>VSC type</th>
<th>Egress network in VSC binding</th>
<th>Client data tunnel</th>
<th>User-assigned VLAN is not assigned via RADIUS or local user accounts</th>
<th>User-assigned VLAN is assigned via RADIUS or local user accounts</th>
<th>User-assigned VLAN does not exist on AP or controller</th>
<th>VLAN ID</th>
<th>VLAN name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-access-controlled</td>
<td>Defined</td>
<td>Does not apply</td>
<td>Traffic is sent on the AP Ethernet port tagged with the VLAN specified by the Egress network in the VSC binding.</td>
<td>The Egress network setting in the VSC binding is ignored. Traffic is sent on the AP Ethernet port tagged with the user-assigned VLAN.</td>
<td>The user is disconnected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not defined</td>
<td>Does not apply</td>
<td>Traffic is sent on the AP Ethernet port untagged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Binding to a VSC that has Wireless mobility and Mobility traffic manager enabled

<table>
<thead>
<tr>
<th>Egress network in VSC binding</th>
<th>User-assigned VLAN is not assigned via RADIUS or local user accounts</th>
<th>User-assigned VLAN exists in the mobility domain</th>
<th>User-assigned VLAN does not exist in the mobility domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined</td>
<td>Assign the Egress network defined in the VSC binding as the user's home network.</td>
<td>The Egress network setting in the VSC binding is ignored. The first network that is found with the same VLAN ID specified in the user-assigned VLAN is assigned as the user's home network.</td>
<td>Use the fallback setting defined by the VSC option If no matching network is assigned (either block user or consider the user at home).</td>
</tr>
<tr>
<td>Not defined</td>
<td>Use the fallback setting defined by the VSC option If no matching network is assigned (either block user or consider the user at home).</td>
<td>The first network that is found with the same VLAN ID specified in the user-assigned VLAN, is assigned as the user's home network.</td>
<td>The VLAN name contained in the user-assigned VLAN is assigned as the user's home network.</td>
</tr>
</tbody>
</table>

Use the fallback setting defined by the VSC option If no matching network is assigned (either block user or consider the user at home).
Binding to a VSC that has *Wireless mobility* and *Subnet-based mobility* enabled

<table>
<thead>
<tr>
<th>Egress network in VSC binding</th>
<th>User-assigned VLAN is not assigned via RADIUS or local user accounts</th>
<th>User-assigned VLAN is assigned via RADIUS or local user account</th>
<th>User-assigned VLAN does not exist in the mobility domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined.</td>
<td>The IP address of the user is compared against the list of home subnets defined for the AP to determine if the user is at home or roaming. If the user is at home, traffic is sent on the AP Ethernet port tagged with the VLAN specified by the Egress network in the VSC binding. If the user is roaming, traffic is tunneled to the users home subnet within the mobility domain, where it egresses tagged with the VLAN specified by the Egress network in the VSC binding.</td>
<td>The IP address of the user and the VLAN ID are compared against the list of home subnets defined for the AP to determine if the user is at home or roaming. (Both the IP and VLAN must match the home subnet.) If the user is at home, traffic is sent on the AP Ethernet port tagged with the user-assigned VLAN. The Egress network in the VSC binding is ignored. If the user is roaming, traffic is tunneled to the users home network within the mobility domain, where it will egress tagged with the user-assigned VLAN.</td>
<td>The Egress network setting in the VSC binding is ignored. User is considered to be at home and traffic is sent on the AP's Ethernet port tagged with the user-assigned VLAN.</td>
</tr>
<tr>
<td>Not defined.</td>
<td>The IP address of the user is compared to the IP address of the AP's Ethernet port to determine if the user is at home or roaming. If the user is at home, traffic is sent on the AP Ethernet port untagged. If the user is roaming, traffic is tunneled to the users home network within the mobility domain, where it will egress untagged.</td>
<td>The IP address of the user and the VLAN ID are compared against the list of home subnets defined for the AP to determine if the user is at home or roaming. (Both the IP and VLAN must match the home subnet.) If the user is at home, traffic is sent on the AP Ethernet port tagged with the user-assigned VLAN. If the user is roaming, traffic is tunneled to the users home network within the mobility domain, where it will egress tagged with the user-assigned VLAN.</td>
<td>User is considered to be at home and traffic is sent on the AP's ethernet port tagged with the user-assigned VLAN.</td>
</tr>
</tbody>
</table>
Terms used in the tables

- **Egress network in VSC binding**: This column refers to the Egress network option that can be configured when an AP group is bound to a VSC. The egress network can be used to assign a specific VLAN. How this VLAN is applied to the routing of traffic is illustrated by the tables.

- **Client data tunnel**: The client data tunnel can be used by an AP to transport wireless user traffic to the controller. The client data tunnel is automatically used if the network path between an AP and the controller traverses a router. In the case where the AP is on the same layer 2 subnet as the controller, the client data tunnel is not automatically used, but can be manually activated by enabling the **Always tunnel client traffic option** on the VSC configuration page. Available on access-controlled VSCs only.

- **User-assigned VLAN is not assigned via RADIUS or local user accounts**: This column indicates what happens when a user-assigned VLAN attribute is not assigned via RADIUS or via a local user account or account profile.

- **User-assigned VLAN exists in the mobility domain**: This column indicates what happens when a user-assigned VLAN attribute is assigned via RADIUS or via a local user account or account profile, and if that VLAN (or network) is defined within the mobility domain. In some cases the behavior is different if the VLAN attribute specifies a network profile name or an actual VLAN ID (number).

- **User-assigned VLAN does not exist in the mobility domain**: This column indicates what happens when a user-assigned VLAN attribute is assigned via RADIUS or via a local user account or account profile, and if that VLAN (or network) is not defined within the mobility domain. In some cases the behavior is different if the VLAN attribute specifies a network profile name or an actual VLAN ID (number).

Traffic flow examples

The following examples illustrate some typical VLAN scenarios using the information from the tables in section *Traffic flow for wireless users on page 6-6*.

To help cross-reference with the tables, all configuration settings are shown using the headings and descriptions from the tables.

Example 1: Overriding a VSC egress with a user-assigned VLAN

This example illustrates how a user-assigned VLAN can override a VSC egress setting on the controller.

Configuration summary

- APs are bound to a VSC that has Mobility traffic manager disabled
- **VSC type**: Access controlled
- **Egress network in VSC binding**: Defined = 10
- **Client data tunnel**: Disabled
- **User-assigned VLAN is assigned via RADIUS or local user accounts**: Assigned = 30
- **User-assigned VLAN exists on AP or controller**: VLAN is defined on the controller’s Internet port

Result: Traffic is sent on the APs Ethernet port tagged with the VLAN specified by the Egress network in the VSC binding. The Egress network VLAN must match the ingress VLAN on the bound VSC (or be altered by a switch between the AP and the controller to do so) otherwise traffic from the AP will not reach the controller. Traffic exits the controller on the user-assigned VLAN, which overrides any egress mapping defined on the controller’s VSC.

In this example, the **Egress network** in the VSC binding is set to 10. The AP sends user wireless traffic to the controller on VLAN 10. This traffic is picked up by the VSC with Ingress set to 10.

A VLAN of 30 is assigned to the user via RADIUS, which overrides the egress setting for the VSC on the controller. As a result, the user’s traffic exits the controller on VLAN 30, which is mapped to the Internet port.
Example 2: Overriding the egress network in a VSC binding with a user-assigned VLAN

In this scenario, a non-access-controller VSC is used to illustrate how a user-assigned VLAN can override the egress network defined for a VSC binding.

Configuration summary

- APs are bound to a VSC that has Mobility traffic manager disabled
- VSC type: Non-access-controlled
- Egress network in VSC binding: Defined = 10
- Client data tunnel: Disabled
- User-assigned VLAN is assigned via RADIUS or local user accounts: Assigned = 30
- User-assigned VLAN exists on AP or controller: VLAN is defined on the controller's Internet port
- Result: The Egress network setting in the VSC binding is ignored. Traffic is sent on the AP's Ethernet port tagged with the user-assigned VLAN.

In this example, the AP is bound to an non-access-controlled VSC. A VLAN of 30 is assigned to the user via RADIUS, which overrides the egress network defined in the VSC binding. As a result, user traffic is sent on the AP's Ethernet port tagged with VLAN 30, allowing it to reach the private network.
Controller teaming

Contents

Key concepts... 7-2
 Centralized configuration management .. 7-2
 Centralized monitoring and operation... 7-2
 Redundancy and failover support ... 7-3
 Scalability ... 7-3
 Deployment considerations .. 7-3
 Limitations.. 7-4

Creating a team.. 7-5
 Configuration example ... 7-6

Controller discovery .. 7-10
 Monitoring the discovery process .. 7-11
 Viewing all discovered controllers .. 7-14

Viewing all team members ... 7-16

Team configuration .. 7-17
 Accessing the team manager ... 7-18
 Team configuration options .. 7-18
 Removing a controller from a team .. 7-19
 Editing team member settings ... 7-20

Failover.. 7-22
 Reserve AP capacity for failover ... 7-22
 Supporting more than one controller failure .. 7-23
 Primary team manager failure .. 7-24

Mobility support .. 7-26
 Single controller team operating alone .. 7-27
 Single controller team operating with non-teamed controllers 7-28
 Multiple teamed and non-teamed controllers .. 7-29
Key concepts

Controller teaming enables you to easily configure and monitor multiple controllers and their access points, providing the following key benefits: centralized management and monitoring, service scalability, and redundancy in case of controller failure.

Up to five controllers can be combined into a team enabling support for up to 800 APs (four controllers x 200 APs per controller plus one additional controller for backup/redundancy). For example:

Centralized configuration management

Each controller that is part of a team is called a team member. To centralize management and control of the team, one controller is designated as the team manager. Configuration and monitoring of team members and their APs is performed on the team manager using its management tool. For more information, see Team configuration on page 7-17.

Team IP address

To simplify access to the management tool on the team manager, an IP address is assigned to the team. This is called the team IP address. This address is independent of the address assigned to the manager's LAN or Internet ports, and can therefore be transferred to another controller if the manager is unavailable and another team member must take over as manager.

Firmware updates

The team manager is responsible for enforcing and updating the firmware of team members. An update to the team manager firmware triggers an update of all members and their controlled APs, ensuring that the entire network is running the same firmware. The synchronization of firmware between controllers and APs alleviates any potential issue regarding compatibility.

Centralized monitoring and operation

The team manager is responsible for handling the addition and deletion of controlled APs, including newly discovered APs. It also displays status information for all team members and their APs, as well as APs directly connected to the manager. For more information, see Viewing all team members on page 7-16.
Redundancy and failover support

The team provides for service redundancy in case of failure. If one of the controllers in a team becomes inoperative (due to network problems, hardware failure, etc.), its APs will automatically migrate to another controller in the team allowing for continuation of services. For this to work, sufficient capacity must be available on the remaining controllers in the team to support the APs from the inoperative controller. For more information see, Failover on page 7-22.

Scalability

Controller teaming enables you to scale up your wireless network as your needs increase. Simply add additional APs, controllers, and licenses to meet the required demand. Up to 800 APs are supported per team in its maximum configuration (four controllers x 200 APs per controller plus one additional controller for backup/redundancy).

Deployment considerations

Controllers/APs
- Teaming is only supported on the MSM760 and MSM765 controllers.
- A controller can only be a member of one team at a time.
- Controllers must be the same model type as the team manager.
- Up to five controllers can be combined into a team supporting up to 800 APs (four controllers x 200 APs per controller + one controller reserved for backup purposes).

Licensing
- MSM760 Controllers must have the Premium license installed to support teaming. (Licenses must be installed individually on each controller that is part of the team.)
- MSM765 Controllers come with this license preinstalled.
- You must install enough AP licenses to support all the APs you intend to manage with the team. When teaming is enabled, AP licenses are pooled across all controllers. See Failover on page 7-22 for more information on how AP licenses are managed.

Networking
- The LAN and Internet ports on all team members must be configured with the same networking options (subnet, VLAN, etc.). For example, if you configure the LAN port on the manager to be on the 192.168.1.0 subnet, then all other team members must have their LAN ports on the same subnet. The LAN port and Internet port cannot be on the same subnet.

IMPORTANT: All team members must have an IP address assigned to their LAN port. This must be done even if the LAN port is not connected or not used in your setup.
- The DHCP server feature is not supported when controller teaming is active, therefore an external DHCP server needs to be installed to support dynamic addresses assignment to controlled APs and their users.
Controller teaming

Key concepts

- APs do not have to be located on the same subnet as the team, but can be connected to the team via an L3 network. However, all APs must reach the team on the same interface (port, VLAN, etc.).

- If the APs are provisioned for controller discovery, than the APs must be provisioned to discover all controllers in the team, not just the team manager, otherwise failover is not supported.

- Multiple teams can be installed on the same subnet.

- To successfully support controller teaming, the network that connects the controllers must not block TCP port 4999 and UDP ports 4999, 38215, 51936.

Public access

- Customization of the public access interface web content should be done via attributes retrieved from a third-party RADIUS server. If RADIUS is not available, you must manually configure each controller in the team with matching settings.

- Payment services are not supported.

Users

- Wired users are only supported via the MSM317 switch ports. Wired users cannot connect directly to a team via the LAN or Internet ports.

- The local user accounts do not support subscription plans when teaming is enabled.

- Accounting persistence is not supported.

Firmware

- When a controller becomes a member of a team, its firmware and configuration will be updated by the team manager. This means that almost all configuration settings on the controller will be lost, including any VSC definitions. You can keep a record of the settings on the controller by backing up its configuration before enabling teaming.

Limitations

The following features are not supported when teaming is enabled:

- DHCP server
- L2TP server
- PPTP server
- PPTP client
- Subscription plans
- Payment services
- Accounting persistence
- Billing records
- Ingress VLAN on a VSC and untagged traffic on the LAN port (All APs use the client data tunnel to send traffic to the team.)
- Wired client connected to the LAN port on a controller
- sFlow
- LLDP dynamic naming
Creating a team

The following list is an overview of the key steps you need to execute when creating a controller team. The Configuration example on page 7-6 shows how to apply these steps to actually create a team.

- **Configure connectivity**: Configure each controller that will be part of the team with a static IP address on the same subnet. Make sure to define a DNS server and default gateway on each controller.

- **Configure DHCP services**: Configure a third-party DHCP server to handle address assignment for APs and wireless users. (The DHCP server feature on all team members is automatically disabled when the teaming is enabled.) In addition, you may need to enable DHCP relay on the team, depending on your network topology, to forward DHCP requests to the third-party DHCP server.

- **Install licenses**: Install the Premium licenses on each controller and the required number of AP licenses. (MSM765 controllers come with the Premium license preinstalled.) AP licenses are pooled when controllers are teamed. For more information, see Failover on page 7-22.

- **Configure the team**: Enable teaming on each controller by selecting Controller >> Management > Teaming. On the controller that will act as the team manager, set the Team name and Team IP address.

- **Authorize discovered controllers**: The first time that a controller is discovered by the team manager, it must be manually authorized by an administrator (unless the controller was manually added to the team). To authorize a discovered controller, select Controllers >> Overview > Discovered controllers and select Authorize in the Action column.

- **Install APs**: Connect all APs. The APs will automatically discover the team (if on the same subnet) and be synchronized with the firmware and configuration settings on the manager. If APs are installed on a different subnet than the controller, their discovery settings may need to be provisioned for them to successfully discovery the team.

About the team IP address

Once a team is operational, you should always use the team IP address to reach the management tool on the team manager, and not the physical address assigned to the manager. In case of failover, the team IP address will be assigned to the interim manager. This way, you will always be able to configure the team.

Important notes about the team IP address.

- The team IP address cannot be used when provisioning AP for discovery. AP must be provisioned with the actual IP addresses assigned to each team member.

- When configuring RTLS, the team IP address should be used. See AeroScout RTLS on page 5-39.
When mobility discovery is configured, the team IP address should be used to identify the controller team. See Mobility support on page 7-26.

Configuration example

The following example illustrates the team creation process in detail using a simple topology featuring three teamed controllers and four APs. The topology for this example looks like this:

The controllers are connected to the network (192.168.1.0) via their LAN ports. Static addressing is used on each port.

The APs are also connected to the 192.168.1.0 network. Address assignment for the APs and all wireless users is provided by the DHCP server at 192.168.1.1.

Configure connectivity and licenses on each controller

Use the management station to connect to each controller in turn and do the following:

1. Select Controller >> Maintenance > Licenses. Install the Premium license and any required AP licenses. For information on how to install licenses, see Licenses on page 19-6.

2. Select Controller >> Network > Ports.

3. Select LAN port. Set the static IP address as shown in the diagram.
Configure the team

On controller 2 and controller 3, do the following:
1. Select Controller >> Management > Teaming.
2. Select the Controller teaming checkbox.

3. Under Connectivity, set Communicate using to LAN port.
4. Click Save.
5. The Network Tree will no longer be visible. The Summary box will show Teaming with a blinking gray status light. This indicates that the controller is searching for a team.

Once the controller successfully joins a team, the status light turns green.

On controller 1, do the following:
1. Select Controller >> Management > Teaming.
2. Select the Controller teaming checkbox.
3. Under Connectivity, set Communicate using to LAN port.

4. Select the Team manager checkbox, and configure the following settings under it:

 - Set Team name to a name that identifies the team. This example uses 1st Floor. The team name provides a convenient way to identify a team.
 - Set Team IP address to the virtual IP address that will be used to provide access to the team manager. This example uses the address 192.168.1.99.
 - Set Mask to 255.255.255.0.

 Note: If the Team IP address is on the same subnet as the physical address assigned to the selected Interface, then you must set Mask to match the IP mask set on the physical interface. This applies even if the physical interface is set to act as a DHCP client.

 - Set Interface to LAN port. This makes the Team IP address available on the LAN port.
 - Leave Reserve AP capacity for failover selected. For more information on using this option, see Reserve AP capacity for failover on page 7-22.

5. Click Save.

6. Controller 2 and 3 will now attempt to discover the manager. Monitor the Summary box until you see two Unauthorized controllers in the list.

 ![Summary box](image)

 - Indicates that the manager is synchronized.
 - Shows that two new APs have been discovered.
 - Indicates that manager and the two new APs were detected.
 - Indicates that the manager is configured.
7. Under **Network Tree**, click **Controllers** to view more detailed information about the discovery process. The two new controllers should be listed in red. Select **Authorize** in the **Action** column for each controller.

8. The manager will now attempt to authorize and synchronize controllers 2 and 3. Once synchronized, their status will change to green.

For more information on summary states and the network tree, see *Monitoring the discovery process on page 7-11*.

Once all members are synchronized, the team is ready for further configuration. See *Team configuration on page 7-17* for details.
Controller discovery

The following is an overview of key events that occur when a controller attempts to discover and join a team for the first time.

Manager

The team manager receives a discovery request.

If this is the first time that the controller is discovered by the team, the controller must be manually authorized by an administrator before it can join the team and become an active member.

The manager sends a discovery reply.

The manager adds the controller to the team.

If controller has software that is out of date, the manager tells the controller to update its software.

The manager accepts the secure management tunnel.

Controller

The controller sends a discovery request onto the local network.

The controller receives the discovery reply. If more than one reply is received, the controller chooses the manager that replied first.

The controller joins the team associated with the selected manager.

The controller retrieves new software from the manager, installs it, and then restarts. Discovery is performed again.

Once the manager has been discovered, the controller establishes a secure management tunnel with the manager.
Monitoring the discovery process

The Summary box and Network Tree on the team manager provide an overview of the discovery process.

Summary box

The summary box provides an overview of the status of controllers and controlled APs.

Teaming light

This light indicates how the team is being managed.

- **Green**: This controller is the primary team manager.
- **Yellow**: The primary team manager has become inoperative and an interim team manager has taken over. For details, see *Failover on page 7-22*
Controllers
This section shows the number of controllers that are active in each management state. A controller may be active in more than one state at the same time. For example, a controller may be both Detected and Synchronized. Select the state name to display information about all controllers in that state.

- **Configured**: These controllers are configured as part of the team.
- **Synchronized**: These controllers had their software and configuration settings successfully updated by the team manager and are fully operational.
- **Unsynchronized**: This can occur if the primary manager becomes non-functional during the synchronization process leaving one or more team members with partially updated configurations. When the interim manager takes over, it cannot update these controllers. Therefore, the solution is to promote the interim manager to become the primary manager. It can fully synchronize the configuration settings on all controllers.
- **Pending**: An action is in progress. For example, firmware or configuration may be uploading to the controller or the controller is restarting.
- **Unresponding**: These controllers have stopped sending management information to the manager. Rediscovery may re-establish the connection. If not, a network failure may have occurred or the controllers may be inoperative.
- **Unauthorized**: These controllers have not yet been authorized to join the team. Authorization must be performed manually by an administrator by selecting Controllers >> Overview > Discovered controllers and then selecting Authorize in the Action column.
- **Unconfigurable**: These controllers cannot be added because the team already has the maximum number of supported members. To add these controllers you must first remove one or more team members by selecting Controllers >> Overview > Team members, then selecting the name of the controller you want to delete and then selecting Delete.
- **Detected**: These controllers have sent a discovery request to the team manager and the team manager has replied.
- **Configured**: These controllers are members of the team. They may have been automatically discovered or manually added.

Controlled APs
This section lists the number of controlled APs discovered by the team. APs are grouped according to their management state. For a complete description of all management states, see Monitoring the discovery process on page 5-12.
Network Tree
The network tree provides access to configuration options for the team. And shows a status light for each controller.

![Network Tree](image)

Team: team name
Select Team: [name] to access configuration items that apply to all members of the team and their controlled APs. Configure these options using the main menu in the right pane.

VSC
Click the VSCs node to manage the virtual service communities that are defined on the team. Once you define a VSC it is automatically synchronized on all member controllers, and can be assigned (bound) to one or more controlled APs.

Status lights
A status is light is displayed for each VSC.

- **Green**: Indicates that the VSC is properly configured.
- **Red**: Indicates that the VSC has a configuration problem.

Once you define a VSC it is automatically active on the controller.

Controllers
This section lists all controllers that are members of the team. Team members are controllers that fall into one of the following categories:

- The controller was discovered on the network, authorized by an administrator, and successfully joined the team at least once.

 or

- The controller was manually added to the team by selecting Add New Controller on the Overview > Configured controllers page.

Each controller is identified by a name (which is initially set to the controller's serial number for discovered controllers). Click a controller's name to access configuration items that are specific to the controller. These configuration items are presented in the main menu in the right pane.
Status lights
Controllers that are part of the team are listed under Controllers in the Network Tree. The status lights provide an indication of their state as follows:

- **Green**: The controller has joined the team and its configuration is synchronized with the settings defined on the team manager. It is fully operational.
- **Red**: The controller is not functioning normally. Select Overview > Discovered controllers and refer to the Diagnostic column for details.
- **Grey flashing**: An action is pending. Select Overview > Discovered controllers and refer to the Action column for details.
- **Grey solid**: The controller is configured as a member of the team, but is currently not active.

Viewing all discovered controllers
To display information about controllers discovered by the manager, select Controllers >> Overview > Discovered controllers.

The Discovered controllers page provides the following:

- **Select the action to apply to all listed controllers**: Lets you apply the selected action to all controllers in the list. Select an action and then Apply.

- **Status lights**

 A status light is displayed for each controller as follows:

 - **Green**: The controller has joined the team and its configuration is synchronized with the settings defined on the team manager. It is fully operational.
 - **Red**: The controller is not functioning normally. Select Overview > Discovered controllers and refer to the Diagnostic column for details.
 - **Grey flashing**: An action is pending. Select Overview > Discovered controllers and refer to the Action column for details.
 - **Grey solid**: The controller is configured as a member of the team, but is currently not active.

 Controller name: Name assigned to the controller. By default, this is the controller serial number.
- **Serial number**: Unique serial number assigned to the controller at the factory. Cannot be changed.

- **Access points**: Indicates number of APs connected to the controller.

- **Diagnostic**: Indicates the status of the controller as shown in the following table.

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>The controller sent a discovery request to the team manager and the team manager has replied.</td>
</tr>
<tr>
<td>Establishing tunnel</td>
<td>A secure management connection is being established between the team manager and the controller.</td>
</tr>
<tr>
<td>Firmware failure</td>
<td>New software failed to upload to the controller. The manager will retry soon.</td>
</tr>
<tr>
<td>Installing firmware</td>
<td>New software has been successfully uploaded to the controller. The controller will restart to activate the new software.</td>
</tr>
<tr>
<td>Not authorized</td>
<td>The controller has not yet been authorized to join the team. Authorization must be performed manually by an administrator by clicking Authorize in the Action column.</td>
</tr>
<tr>
<td>Not responding</td>
<td>The controller has stopped sending management information to the team manager. Rediscovery may re-establish the connection. If not, a network failure may have occurred or the controller may be inoperative.</td>
</tr>
<tr>
<td>Resetting configuration</td>
<td>The controller configuration is being reset to factory defaults. This is normal and will occur when the software version on the manager is changed or if the controller is not synchronized.</td>
</tr>
<tr>
<td>Restoring configuration</td>
<td>The controller is currently restoring its previous configuration settings.</td>
</tr>
<tr>
<td>Synchronized</td>
<td>The controller had its software and configuration settings successfully updated by the team manager and is fully operational.</td>
</tr>
<tr>
<td>Unconfigurable</td>
<td>The controller cannot be added because the team already has the maximum number of supported members. To add the controller you must first remove one or more team members.</td>
</tr>
<tr>
<td>Unsupported product</td>
<td>The product type of the controller is not supported on this team. All controllers must have the same product type as the team manager.</td>
</tr>
</tbody>
</table>
Controller teaming
Viewing all team members

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uploading configuration</td>
<td>Configuration settings are currently being sent to the controller.</td>
</tr>
<tr>
<td>Uploading firmware</td>
<td>The team manager is uploading new software to the controller. Wait until the operation completes.</td>
</tr>
<tr>
<td>Validating capabilities</td>
<td>The capabilities of the controller are being identified by the team manager.</td>
</tr>
<tr>
<td>Validating configuration</td>
<td>The team manager is waiting for the controller to send its configuration.</td>
</tr>
<tr>
<td>Validating firmware</td>
<td>The team manager is waiting for the controller to send its software version number.</td>
</tr>
<tr>
<td>Waiting for acceptance</td>
<td>The controller has been authorized by the team manager. However, the controller has not yet decided to join this team. (If multiple managers replied to the controller discovery request, the controller may choose to connect with another team.)</td>
</tr>
</tbody>
</table>

- **Action**: Indicates the recommended administrative action to be taken to resolve a diagnostic condition.

Viewing all team members

To display information about controllers that are members of the team, select **Controllers >> Overview > Team members**.

<table>
<thead>
<tr>
<th>Controllers: All</th>
<th>Team members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of displayed controllers: 4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detected</th>
<th>Controller name</th>
<th>Serial number</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New controller</td>
<td></td>
<td>M51760</td>
</tr>
<tr>
<td></td>
<td>085163201T</td>
<td>085163201T</td>
<td>M51760</td>
</tr>
<tr>
<td></td>
<td>085312007X</td>
<td>085312007X</td>
<td>M51760</td>
</tr>
<tr>
<td></td>
<td>062312007M</td>
<td>062312007M</td>
<td>M51760</td>
</tr>
</tbody>
</table>

Team members are controllers that fall into one of the following categories:

- The controller was discovered on the network, authorized by an administrator, and successfully joined the team at least once.

- The controller was manually added to the team by selecting **Add New Controller** on the **Overview > Configured controllers** page.
Click the title of a column to sort the table according to the values in the column.

The Team members page provides the following information:

- **Number of controllers**: Number of controllers that are configured as members of the team.
- **Detected**: Status light icon indicating if the controller has been discovered on the network.
 - **Green**: The controller has been discovered on the network and is listed on the Overview > Discovered controllers page, where more information is provided about the controller.
 - **Red**: The controller was manually added to the team, but it has never been discovered and successfully joined the team.
- **Controller name**: Name assigned to the controller. Click the name to configure controller settings.
- **Serial number**: Serial number assigned to the controller. Click the name to configure controller settings.
- **Product**: Product name of the controller.

Team configuration

Once a team is operational, configuration and management of VSCs and controlled APs occurs via the team manager, using the VSC and Controlled APs options in the Network Tree. Configuration of these elements is the same as during non-teamed operation. Refer to Chapter 4: Working with VSCs and Chapter 5: Working with controlled APs for more information.

Configuration settings for the team members however, can occur at three different levels:

- **Team**: These are global configuration settings that are defined using the management tool on the team manager and are synchronized on all team members. Most team configuration settings fall into this category.
- **Controller**: The team manager provides a separate configuration menu for each controller in a team, including the team manager. This allows individual settings specific to a controller to be defined.
- **Local**: The management tool on each controller can also be accessed directly to define any options that are not directly configurable using the team manager. For example, some connectivity settings must be defined locally on each controller.
Accessing the team manager

To reach the management tool on the team manager, you should always point your browser to the team IP address, and not the physical address assigned to the manager. In case of failover, the team IP address will be assigned to the interim manager. This way, you will always be able to configure the team.

Team configuration options

This section describes the configuration options available on the team manager.

When you select Team in the Network Tree, the menu in the right pane presents all configuration options that are common to all team members. Any settings that you make using this menu are synchronized on all team members.

The available options on this menu are identical to what you would see on a non-teamed controller, except for a few options that are not supported in teaming mode, or if supported, must be defined individually on each controller. On the team manager, these settings can be defined by selecting the manager under Controller. Settings for team members must be defined by directly accessing their management tools.

The following table lists the configuration options that are affected when teaming is active.

<table>
<thead>
<tr>
<th>Configuration option</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network > Ports page</td>
<td>The Port configuration option is not available at the team level. VLAN and GRE configuration options are available.</td>
</tr>
<tr>
<td>Network > Address allocation</td>
<td>The DHCP server option is not supported when teaming is enabled. The VPN address pool option is not supported when teaming is enabled.</td>
</tr>
<tr>
<td>Security > Certificate stores</td>
<td>Not available at the team level.</td>
</tr>
<tr>
<td>Security > Certificate usage</td>
<td>Not available at the team level.</td>
</tr>
<tr>
<td>VPN > IPSec</td>
<td>Not available at the team level.</td>
</tr>
<tr>
<td>VPN > L2TP server</td>
<td>Not supported when teaming is enabled.</td>
</tr>
<tr>
<td>VPN > PPTP server</td>
<td>Not supported when teaming is enabled.</td>
</tr>
<tr>
<td>VPN > PPTP client</td>
<td>Not supported when teaming is enabled.</td>
</tr>
<tr>
<td>Authentication > Active Directory</td>
<td>The General and Join options are not available at the team level.</td>
</tr>
</tbody>
</table>
Removing a controller from a team

To remove a controller from a team, do the following:

Remove the controller from the team

1. Under **Controllers**, select a team member.
2. In the right pane, select **Device management**.
3. Select **Delete**.
4. Select **Save**.

Disable teaming on the controller

1. Open the management tool directly on the controller.
2. Select **Management > Teaming**.

3. Disable the **Controller teaming** option.
4. Select **Save**.

Editing team member settings

To change settings for a team member:

1. Under **Controllers**, select a team member.
2. In the right pane, select **Device management**.

3. Change settings as required. Note that the **Ethernet base MAC** address cannot be changed. To change the MAC address you must delete the controller and then add it again.
4. Click **Save**.

Manually adding a controller to a team

Instead of using the automatic discovery to find controllers and add controllers to the team, you can manually preconfigure one or more controllers as team members. The main advantages of doing this is that manually added controllers do not have to be manually authorized the first time they are discovered. Instead, they automatically become active team members.

To manually add a controller:

1. **Select Controllers >> Overview > Team members.**

2. **Click Add.**

3. **Define settings as follows:**
 - **Controller name:** Specify a name to identify the controller.
 - **Ethernet base MAC:** Displays the MAC address of the controller. This value cannot be changed once the controller information is saved.
 - **Product:** Select the product type of the controller.
 - **Contact:** Specify contact information for the controller.
 - **Location:** Specify the location where the controller is installed.
4. Click Save.

5. The new controller will appear in the team members list with a red status light until it is discovered on the network.

<table>
<thead>
<tr>
<th>Controllers: All</th>
<th>Team members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of displayed controllers: 4</td>
<td></td>
</tr>
<tr>
<td>Detected</td>
<td>Controller name</td>
</tr>
<tr>
<td>-</td>
<td>New controller</td>
</tr>
<tr>
<td>-</td>
<td>639913079</td>
</tr>
<tr>
<td>-</td>
<td>639913079</td>
</tr>
<tr>
<td>-</td>
<td>639913079</td>
</tr>
</tbody>
</table>

Failover

During normal operation, the team manager and team members are in continuous contact to ensure the integrity of the team. This allows for quick detection of an inoperative or unreachable team member, and implementation of failover procedures to ensure continuity of network services.

Reserve AP capacity for failover

If a team member becomes inoperative, its APs automatically migrate to other controllers in the team if enough licence space is available. To ensure that license space is available, you need to enable the Reserve AP capacity for failover option on the Management > Teaming page.
This option automatically limits the number of APs you can deploy to ensure enough capacity is reserved to support all APs if one controller becomes inoperative. If you are not concerned about providing support for failover, you can disable this option. This allows you to use all your licenses to support APs.

The following table shows how the **Reserve AP capacity for failover** option affects AP deployment for a number of different licensing scenarios.

<table>
<thead>
<tr>
<th>Number of controllers</th>
<th>Maximum number of AP licenses that can be installed</th>
<th>Maximum number of APs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Reserve AP for failover ON</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>600</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>800</td>
</tr>
</tbody>
</table>

Supporting more than one controller failure

The **Reserve AP capacity for failover** option guarantees that the team will be able to support failure of one controller when the maximum number of licences are installed. However, if you deploy a team with less than the maximum number of licenses, the team may be able to continue operating after more than one controller failure depending on the number of controllers and APs licenses you have installed.

<table>
<thead>
<tr>
<th>Number of controllers</th>
<th>Number of AP licenses that are installed</th>
<th>Number of controller failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>600</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>4</td>
</tr>
</tbody>
</table>

(A maximum of 200 APs can be supported by single controller.)
Primary team manager failure

The controller that is designated as the team manager on the Controllers >> Management >> Teaming page is called the primary team manager.

If the primary team manager becomes inoperative, an interim team manager is automatically selected by the existing team members. The interim manager assumes the team IP address and all management functions until the primary team manager returns, with the following limitation: the interim manager cannot modify the configuration or update the firmware for members. This is done to avoid the situation where configuration changes made by interim manager are undone by the primary manager when it comes back online.

When an interim manager is active, the Teaming status light in the Summary box will be yellow.

All configurable settings on the menus in the right pane will be grayed out. Status information however, will be visible.

Replacing the team manager

If the primary team manager has failed and will not be returning, you can promote the interim manager to primary so that configuration options will be available.

Important

Once you promote the interim manager to primary manager, you cannot return the old team manager to the team without changing its configuration so that it becomes a team member. Only one manager is supported per team.

1. Under Controllers, select the team manager (which is now the interim manager).

2. In the right pane, select Management > Teaming.
3. Enable the **Team manager** option. The settings for this option should already be defined with the values that were set on the primary team manager.

4. Click **Save**.
Mobility support

Mobility support when controller teaming is active is very similar to mobility support on non-teamed controllers. This section discusses the differences and configuration issues involved. For an explanation of mobility concepts used in this section, see Chapter 8: Mobility traffic manager on page 8-1.

The key benefit of using a team to provide a mobility solution is support for failover if the primary mobility controller becomes inoperative. The following diagram shows two identical setups, except that one is a team and the other is independent controllers.

In the controller team, the primary mobility controller is also the team manager. If the team manager becomes inoperative, then controller 2 is automatically promoted to become the interim manager and assumes the role of primary mobility controller as well.

If the primary mobility controller fails in the independent controllers setup, mobility services are interrupted until you manually reconfigure controller 2 as the primary mobility controller.
Single controller team operating alone

If you have a single controller team, the mobility domain is automatically created when you do the following:

1. Start the management tool on the team manager by pointing your browser to the team IP address.

3. Select Mobility controller discovery.

4. Select This is the primary mobility controller.

5. Select Save.

You can now configure mobility options, such as home networks, as explained in Chapter 8: Mobility traffic manager.
Single controller team operating with non-teamed controllers

In this type of setup, the team is configured as the primary mobility controller and the non-teamed controllers set the **IP address of primary controller** parameter to the team IP address. (In this scenario, the team IP address is defined on the LAN port of the team manager.)

Configure the team

1. Start the management tool on the team manager by pointing your browser to the team IP address.

2. Select **Team: [name]** >> Management > Device discovery.

3. Select **Mobility controller discovery**.

4. Select **This is the primary mobility controller**.
5. Select Save.

Configure controller #3 and #4

1. Start the management tool each independent controller by pointing your browser to appropriate IP address.

2. Select Management > Device discovery.

3. Select Mobility controller discovery.

4. Set IP address of the primary mobility controller to 192.168.1.99.

![Diagram of Mobility controller discovery](Image)

5. Select Save.

You can now configure wireless mobility options, as explained in *Chapter 8: Mobility traffic manager*.

Multiple teamed and non-teamed controllers

If you have multiple teams with or without multiple non-teamed controllers, mobility support is configured as follows: Choose one team as the primary mobility controller. On all other teams/non-teamed controllers set the **IP address of primary mobility controller** parameter to the team IP address of the primary mobility controller.
Chapter 8: Mobility traffic manager

Contents

Key concepts ... 8-3
The mobility domain ... 8-5
Home networks .. 8-6
Local networks .. 8-7

Configuring Mobility Traffic Manager ... 8-8
Defining the mobility domain 8-8
Defining network profiles ... 8-9
Assigning a home network to a user ... 8-10
Defining local networks on a controller ... 8-11
Assigning local networks to an AP ... 8-12
Configuring the mobility settings for a VSC ... 8-13
Binding a VSC to an AP ... 8-14

Monitoring the mobility domain ... 8-15
Controllers .. 8-16
Networks in the mobility domain .. 8-16
Travelers .. 8-16
Visitors .. 8-17

Scenario 1: Centralizing traffic on a controller .. 8-18
How it works .. 8-18
Configuration overview .. 8-18

Scenario 2: Centralized traffic on a controller with VLAN egress 8-21
How it works .. 8-21
Configuration overview .. 8-21

Scenario 3: Centralized traffic on a controller with per-user traffic routing 8-25
How it works .. 8-25
Configuration overview .. 8-25
Scenario 4: Assigning home networks on a per-user basis ..8-35
 How it works ..8-35
 Configuration overview ..8-36

Scenario 5: Traffic routing using VLANs ..8-41
 How it works ..8-41
 Configuration overview ..8-42

Scenario 6: Distributing traffic using VLAN ranges ..8-49
 How it works ..8-49
 Configuration overview ..8-50

Subnet-based mobility ..8-57
Key concepts

Note

This chapter discusses how to use and configure Mobility traffic manager (MTM) with non-teamed controllers. If you are working with a controller team, most of the same information applies. Essentially, a controller team is treated the same way as a single non-teamed controller. For more information, see Mobility support on page 7-26.

MTM provides for seamless roaming of wireless users, while at the same time giving you complete control over how wireless user traffic is distributed onto the wired networking infrastructure. MTM enables you to implement a wireless networking solution using both centralized and distributed strategies, allowing you to create a wireless network that is perfectly tailored to meet the needs of your users and the requirements of your network. Some of the deployment strategies that you can use with MTM include:

- **Centralized wireless traffic**: All traffic from wireless users is tunneled back to a central controller where it is egressed onto the wired infrastructure. Wireless users can be connected to any AP within the layer 3 network serviced by MTM.

 The following diagram shows a deployment where all wireless traffic is egressed onto a specific network segment (192.168.30.0).

 ![Diagram of Centralized Wireless Traffic](image)

 MTM can also be used to send traffic to different networks or VLANs based on criteria such as username, network location, VSC, or AP group.

- **Traffic distribution using home networks**: A home network can be assigned to each wireless user (via RADIUS, local user accounts, or through a VSC egress). MTM can then be used to tunnel the user's traffic to their home network, regardless of the AP to which a user connects within the mobility domain.
The following diagram shows a deployment where the wireless traffic for each user is egressed onto a specific network segment by assigning a home network to each user.

If a user roams between APs, MTM adjusts the tunnel to maintain the user's connection to their home network.
- **Automatic traffic distribution**: VLAN ranges can be used to automatically spread wireless user traffic across multiple VLANs on the wired infrastructure. See *Scenario 6: Distributing traffic using VLAN ranges*

Important
- MTM is only available on non-access-controlled VSCs.
- The same VSCs must be defined on all controllers in the mobility domain, even on controllers that are not managing any APs.

The mobility domain

The mobility domain is an interconnection between controllers allowing for the exchange of information about wireless users and the home/local networks managed by controllers. The mobility domain can span multiple controllers and controller teams, whether they are installed on the same subnet or on different subnets, and includes all controlled APs managed by the controllers.

In the following example the mobility domain spans three controllers and their APs operating on three different subnets.

MTM makes use of the mobility domain to locate the home network for roaming users, or the target network when tunneling traffic to a specific network on the wired infrastructure.

For each mobility domain, one controller is defined as the primary mobility controller. This controller acts as the central site for the distribution of mobility information to all other controllers. (When controller teaming is active, an entire team is defined as the primary mobility controller. See *Mobility support on page 7-26.*)
Mobility traffic manager
Key concepts

Note
Discovery automatically takes place on both the LAN port and Internet port. **VLANs are not supported.**

Network requirements
The network that interconnects the controllers and APs that make up a mobility domain must not block any of the following ports/protocols:

- UDP port 1194
- UDP port 12141
- UDP port 3000
- UDP port 3001
- UDP port 3518
- TCP port 5432
- Internet protocol number 47 (GRE)

Home networks
A home network is the root network for a user within a mobility domain. The home network specifies the network on which a user's wireless traffic is sent onto the wired infrastructure. A user's connection is always local to their home network, regardless of where their wireless connection is made within the mobility domain. For example, if a user roams between an AP that is directly connected to their home network, to an AP on a different subnet, MTM creates a tunnel that connects the user back to their home network.

When a user first connects to an AP, MTM must determine whether the user is at home (i.e., connected to the user's home network) or roaming (connected to an AP on a different network). MTM does this by comparing the home network assigned to the user with the list of local networks associated with the AP.

- If a match is found, the user is considered to be at home and the user's traffic is sent onto the wired network via the AP's Ethernet port.
- If no match is found, MTM then tries to locate the user's network within the mobility domain. If found, MTM creates a tunnel between the AP and the controller to carry the user's traffic. If the network is not defined on any controller within the mobility domain, the user is blocked (or assigned to the network on which the AP discovered the controller, depending on how MTM support is configured on the VSC).

Note
Certain configuration settings on the controller may override the specific configuration settings that you define on a VSC to assign user traffic to a home network. For details, see *Traffic flow for wireless users* on page 6-6.
Example

In following example, User A roams between AP # 1 and AP #2. When connected to AP #2, User A is identified as roaming and traffic is tunneled back to subnet 10.0 via controller 1 and controller 2.

Local networks

In order for a wireless user's traffic to be sent to the appropriate destination within the mobility network, local networks must be defined on controllers, and optionally APs.

When a user is roaming, the path to the user's home network cannot end at an AP. This means that each home network that is assigned to a user must be defined as the local network on at least one controller in the mobility domain.

- When an AP is directly connected to a user's home network, the user's data will only reach the wired network through the AP's Ethernet port when the user is directly connected to the AP.
- When roaming, the user's traffic is always tunneled to the controller that provides the data path to the user's home network.

In the previous example, when User A is directly connected to AP 1, traffic reaches Network 1 via the APs Ethernet port. When User A roams to AP 2, traffic reaches Network 1 via the LAN port on controller 1.
Configuring Mobility Traffic Manager

MTM configuration can be separated into the following tasks:

- Define the mobility domain.
- Define network profiles.
- Assign home networks to users.
- Define local networks on controllers and APs.
- Configure mobility settings for each VSC. (*The same VSCs must be defined on all controllers in the mobility domain, even on controllers that are not managing any APs.*)
- Bind VSCs to the APs.

Each task is described in more detail in the sections that follow.

Defining the mobility domain

When MTM will be used on more than one controller, or with a controller team, you must define a mobility domain. The following instructions apply to non-teamed controllers. If you are working with a controller team, see *Mobility support on page 7-26*.

Connect to the management tool on the controller that will be the primary mobility controller, and do the following:

1. Select **Controller >> Management > Device discovery**.
 - Select **Mobility controller discovery**.
 - Select **This is the primary mobility controller**.

2. Connect to the management tool on all other controllers, that will be part of the mobility domain and do the following:

 1. Select **Save**.
1. Select **Controller >> Management > Device discovery**.

2. Select **Mobility controller discovery**.

3. Specify the **IP address of the primary mobility controller**. This can be the address of its Internet port or LAN port as long as the port is reachable. For example, if the primary is at 192.168.5.1, you would configure the other controllers as follows:

4. Select **Save**.

Defining network profiles

Global definitions for all home networks and local networks are created using the network profiles feature which is found on the **Controller >> Network > Network profiles** page. Initially, two profiles are defined as shown.

To create a new profile, select **Add New Profile**.

For each network profile you can define a VLAN ID or just a name.
About the default profiles

Two network profiles are created by default: **LAN port network** and **Internet port network**. These profiles are associated with the two physical Ethernet ports on the controller. You can rename these profiles, but you cannot assign a VLAN to them or delete them. You can use these profiles to send untagged traffic to a specific port on the controller.

Both ports are considered to be local networks on the controller, which means that they automatically map the network that is assigned to each physical port as a local network on the controller. However, the LAN and Internet port network profiles can also be assigned as a local network on an AP (for example, using the **Controlled APs >> Configuration > Local networks** page). When this is done, both profiles refer to the untagged Ethernet port on the AP.

Assigning a home network to a user

When you activate MTM support for a VSC, a user's home network is defined in one of the following ways:

- It can be configured in the user's account on a third-party RADIUS server by setting the attributes Tunnel-Medium-Type, Tunnel-Private-Group-ID, and Tunnel-Type. For details on how to set these attributes, see [User attributes on page 14-14](#).

 The Tunnel-Private-Group-ID attribute should be set to the name of the network profile that identifies the user's home network (A VLAN number can also be specified, but is not recommended since two profiles could exist with the same VLAN ID but bound to different physical ports or VLAN ports.)

- Configured in a locally defined user account or user account profile. (User accounts are defined by selecting **Controller >> Users**.) Currently this method only supports VLAN ID. To specify a network profile name, Use the Custom attributes option in a network profile to specify the attributes Tunnel-Medium-Type, Tunnel-Private-Group-ID, and Tunnel-Type.

- Configured by setting the **Egress network** option when binding the VSC to an AP group. This lets you assign the same home network to a group of APs. Any user connected to one of these APs then gets the specified home network. Note that if both the Egress network and a RADIUS attribute are assigned, the Egress network is overwritten by the RADIUS attribute.

A number of configuration settings on the controller can affect how user traffic is routed. Some of these settings may override the choices you make to assign user traffic to a home network. See [Traffic flow for wireless users on page 6-6](#).

Note

At least one controller must be assigned to each home network defined in the mobility domain. See [Local networks on page 8-7](#).
Defining local networks on a controller

Local networks on a controller are composed of the following interfaces:

- The network connected to the LAN port. Identified by the network profile LAN port network.
- The network connected to the Internet port. Identified by the network profile Internet port network.
- Any VLAN definition created on the Controller >> Network >> Ports page.

To add additional VLANs on a controller, do the following:

1. Select Controller > Network > Ports.

2. Select Add New VLAN.

3. Under General, set Port to LAN port or Internet port.

4. Under VLAN, set VLAN ID to the appropriate network profile.

5. Under Assign IP address via, select an addressing method.
6. Select **Save**.

Assigning local networks to an AP

Each AP can be configured to support one (or more) local networks. By comparing the home network assigned to a user with the list of local networks associated with an AP, MTM can determine if the user is at home or roaming.

Local networks can be assigned by selecting one of the following (depending on whether you want to define local networks for all APs, a group of APs, or a single AP):

- **Controller > Controlled APs >> Configuration > Local networks**
- **Controller > Controlled APs > [group] >> Configuration > Local networks**
- **Controller > Controlled APs > [AP_name] >> Configuration > Local networks**

In all cases you will see the Home networks configuration page.

Local networks

Select the local networks that are connected to the Ethernet port(s) on the AP.

- **Available networks**: This box lists all network profiles defined on the controller. Select a network profile and then click the right arrow to assign it as a local network on the AP.

- **Local networks**: This box lists all the networks that are local to the AP. These networks are used to determine if a user is roaming or at home when they connect to the AP.
- If a user’s home network matches a local network on the AP, the user is considered to be at home, and their traffic is bridged onto the wired network via the Ethernet port on the AP.

- If a user’s home network does not match a local network on the AP, the user is considered to be roaming, and their traffic is tunneled to appropriate home network via the controllers that make up the mobility domain.

Note
This Subnets feature has been deprecated. See *Subnet-based mobility* for more information.

Configuring the mobility settings for a VSC

Once all home and local networks have been assigned, you can configure VSC definitions to support MTM.

1. Select the **Controller > VSCs > [VSC_name]**.

2. Disable the **Access control** option under **General**.

3. Select **Wireless mobility**, and under it, select **Mobility traffic manager**.

If you are using MTM to tunnel the traffic from wireless users to their home networks, set the following parameter to determine how MTM routes traffic if no home network is assigned to a user (via their RADIUS account or local user account), or if the user’s home network is not found in the mobility domain.

If no matching network is assigned

- **Block user**: User access is blocked.

- **Consider the user at home**: The user’s home network is considered to be the network assigned to the AP’s Ethernet port and traffic is bridged locally by the AP.

4. Select **Save**.
5. Configure the **Wireless security filters** so that they do not interfere with roaming functionality. In most cases, these filters should be disabled. If you need to use them, note that:

- The **Restrict wireless traffic to: Custom** option can be used provided that it restricts traffic to destinations that are reachable from all subnets in the mobility domain.

- Neither the **Restrict wireless traffic to: Access point’s default gateway** nor **Restrict wireless traffic to: MAC address** options can be used.

Binding a VSC to an AP

After you have defined a VSC, you need to bind it to all the APs in the mobility domain.

1. Select **Controller > Controlled APs > [group] >> VSC bindings** and then the VSC configured for mobility. The VSC binding page opens.

![VSC Binding Page]

For **VSC profile**, select the VSC that you just configured for mobility.

You have the option of assigning an **Egress network** to the binding. When mobility is active on the VSC, the Egress network is assigned as the user’s home network (unless a dynamic VLAN is assigned to the user). You also have the option of selecting any untagged interfaces, such as the default profiles for the LAN port and Internet port.

A number of configuration settings on the controller can affect how user traffic is routed. Some of these settings may override the choices you make to assign user traffic to a home network. See *Traffic flow for wireless users on page 6-6*.
Monitoring the mobility domain

The mobility overview page displays status information for the mobility domain. For example:

```
<table>
<thead>
<tr>
<th>Controllers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>IP address</td>
</tr>
<tr>
<td>No controllers.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Networks in the mobility domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP subnet</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Travelers</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
</tr>
<tr>
<td>192.168.30.121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forwarding table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
</tr>
<tr>
<td>LAN port</td>
</tr>
<tr>
<td>LAN port</td>
</tr>
<tr>
<td>Data tunnel</td>
</tr>
<tr>
<td>LAN port</td>
</tr>
</tbody>
</table>
```

To view this page:
- On a non-teamed controller, select **Controller >> Status >> Mobility**.
- On a controller team, select **Team:[Team-name] > Controllers [Team-manager] >> Status >> Mobility**.

Note

When the current controller terminates the traffic of a roaming client, this client will appear in both the traveler and visitor tables. In this case, the controller is playing both roles. The client is seen as visitor because it is not associated/connected on its home network. It is also a traveller, because the home network of the client is managed by the current controller.
Controllers

This table lists all controllers that are part of the mobility domain.

- **Name:** Name assigned to the controller.
- **IP address:** IP address of the controller.
- **MAC address:** Medium access control address of the associated controller.

Networks in the mobility domain

This table lists all networks that are defined in the mobility domain and indicates the address of the **Handler** (AP or controller) that provides the data path to each network.

This list should be identical on all controllers that are part of the mobility domain. The handler will differ on each controller, depending on whether the network is supported locally or not.

IP subnet

(This field does not apply when using Mobility Traffic Manager.)

IP subnet assigned to the network, if applicable. For example, if the network is a VLAN, then no IP subnet/mask information is shown.

Mask

Network mask associated with the IP subnet, if applicable.

VLAN ID

VLAN ID associated with the network.

Handler

A handler is the AP or controller that provides the data path to a network.

- If the network is handled by an AP managed by this controller, then this column shows the names of controlled APs supporting the network. Up to five APs can be displayed (the first five APs registered by the controller for the specific network).
- If the network is local to this controller, then this column shows **This controller**.
- If the network is directly connected to another controller, then this column shows the name of the other controller.

Network

Name of the network.

Travelers

Travelers are users whose home networks are managed by this controller, but who are currently roaming, and are connected to another network within the mobility domain.
IP address
IP address of the traveling user.

VLAN ID
VLAN ID assigned to the traveling user's traffic when on their home network.

MAC address
Media access control (hardware) address of the traveling user.

Home AP
IP address of the AP that provides the data path to the traveling user's home network.

If more than one AP is associated with a user's home network, this column shows the IP address of the AP that was last visited by the traveling user when connected to their home network. If the first time a user logs into the network they do so on a foreign network (i.e., they are roaming), then the controller arbitrarily chooses one of the APs as the home AP.

Foreign controller
IP address of the controller that is managing the AP to which this traveling user has roamed.

Network
The name of the traveling user's home network.

Visitors
Visitors are users that have roamed outside their home network. This table lists visitors that have roamed onto a network managed by this controller or one of its APs.

IP address
IP address of the visiting user.

VLAN ID
VLAN ID assigned to the visiting user's traffic when on their home network.

MAC address
Media access control (hardware) address of the visiting user.

Home controller
IP address of the controller that provides the data path to the visiting user's home network.

The home network may be directly connected to the home controller, and to an AP managed by the home controller.

Foreign AP
IP address of the AP with which the visiting user is currently associated.

Network
The name of the visiting user's home network.
 Scenario 1: Centralizing traffic on a controller

This scenario illustrates how to centralize the traffic from a VSC that is deployed on several APs on different subnets.

How it works

In this scenario, a single controller manages several APs deployed on different subnets. The default VSC (named HP ProCurve) is assigned to each AP and is used to provide wireless services for users. All traffic on this VSC is tunneled to the controller by MTM, where it is egressed onto the wired network. To accomplish this, the egress network in the VSC binding is set to the network profile that is assigned to the controller's LAN port.

Configuration overview

The following sections provide a summary of the configuration settings needed to enable MTM support only. It is assumed that installation and configuration of all controllers and APs so that they are fully operational on the network was performed as explained in the other chapters in this guide.
VSC configuration
Enable MTM support on the VSC.

1. Select Controller > VSCs > HP ProCurve.
 - Under Global, clear Access control.

 ![Global screenshot](image)
 (For complete screenshot see VSC configuration options on page 4-5.)
 - Select Wireless mobility, then under it:
 - Select Mobility traffic manager.
 - Select Block user.

 ![Wireless mobility screenshot](image)
 (For complete screenshot see VSC configuration options on page 4-5.)

2. Either disable Wireless security filters or set it to Custom.
3. Select Save.

Network profiles
This scenario uses the default network profiles, so no configuration is necessary.
VSC binding

This scenario assumes that all APs are part of the Default Group. Set the egress for the group to the Internet port on the controller.

1. Select Controller > Controlled APs > Default Group >> VSC bindings and then select HP ProCurve. The VSC binding page appears.

 - Under VSC Profile, set VSC profile to HP ProCurve.
 - Select Egress network, and under it, set Network profile to LAN port network.

2. Select Save.
Scenario 2: Centralized traffic on a controller with VLAN egress

This scenario illustrates how to centralize the traffic from a VSC that is deployed on several APs on different subnets and send it to one or more VLANs via the controller.

How it works

In this scenario, a single controller manages several APs deployed on different subnets. The default VSC (named HP ProCurve) is assigned to each AP and is used to provide wireless services for users. All traffic on this VSC is tunneled to the controller by MTM, where it is egressed onto the wired network on VLAN 40. To accomplish this, the egress network in the VSC binding is set to a network profile that defines a VLAN on the controller’s Internet port.

Configuration overview

The following sections provide a summary of the configuration settings needed to enable MTM support only. It is assumed that installation and configuration of all controllers and APs so that they are fully operational on the network was performed as explained in the other chapters in this guide.
VSC configuration

Enable MTM support on the VSC.

1. Select **Controller > VSCs > HP ProCurve**.
 - Under **Global**, clear **Access control**.
 - Select **Wireless mobility**, then under it:
 - Select **Mobility traffic manager**.
 - Select **Block user**.

 (For complete screenshot see [VSC configuration options on page 4-5](#).)

2. Either disable **Wireless security filters** or set it to **Custom**.
3. Select **Save**.

Network profiles

Define a network profile that maps VLAN 40 to the Internet port on the controller.

1. Select **Controller > Network > Network profiles**.

 ![Network profiles](image)

2. Select **Add New Profile**.
3. Under **Settings**, set **Name** to **All-Traffic**.
4. Select VLAN, and under it, set ID to 40.

![Add/Edit network profile]

5. Select Save.

Create the VLAN

Create a VLAN on the Internet port using the network profile you just defined.

1. Select Controller > Network > Ports. Initially, the VLAN configuration list will be empty.

![VLAN configuration]

2. Select Add New VLAN.

![Add/Edit VLAN]

- Under General, set Port to Internet port.
- Under VLAN, set VLAN ID to 40 (All-Traffic).
- Under Assign IP address via, let the setting None. An address is not needed.

3. Select Save.
VSC binding
This scenario assumes that all APs are part of the Default Group.

1. Select **Controller > Controlled APs > Default Group >> VSC bindings** and then select **HP ProCurve**. The VSC binding page appears.

- Under VSC Profile, set VSC profile to **HP ProCurve**.
- Select **Egress network**, and under it set **Network profile** to **Internet port network**.

2. Select **Save**.
Scenario 3: Centralized traffic on a controller with per-user traffic routing

This scenario illustrates how to centralize the traffic from a VSC that is deployed on several APs on different subnets and send it to different VLANs for different groups of users.

How it works

In this scenario, a single controller manages several APs deployed on different subnets. The default VSC (named HP ProCurve) is assigned to each AP and is used to provide wireless services for users. All traffic on this VSC is tunneled to the controller by MTM, where it is egressed onto different VLANs for different user groups.

An account profile is created for each user that define the egress VLAN for their traffic. This profile is then associated with the user's account.

WPA is enabled on the VSC to control user authentication. When the user logs in, the VLAN is retrieved from the account profile and is used by MTM to route the user's traffic to the appropriate network via the Internet port.

Configuration overview

The following sections provide a summary of the configuration settings needed to enable mobility support only. It is assumed that installation and configuration of all controllers and APs so that they are fully operational on the network was performed as explained in the other chapters in this guide.
VSC configuration

Enable MTM support on the VSC.

1. Select Controller > VSCs > HP ProCurve.
 - Under Global, clear Access control.

 ![Global Configuration Screen](image1)

 (For complete screenshot see VSC configuration options on page 4-5.)

 - Select Wireless mobility, then under it:
 - Select Mobility traffic manager.
 - Select Block user.

 ![Wireless Mobility Configuration Screen](image2)

 - Select Wireless protection, and then select WPA. Under it, do the following:
 - Set Mode to WPA (TKIP).
 - Set Key source to Dynamic.

 ![Wireless Protection Configuration Screen](image3)
This will automatically enable the **802.1X authentication** option and set it to use the local user accounts.

2. Either disable **Wireless security filters** or set it to **Custom**.

3. Select **Save**.

Network profiles

Define network profiles that map VLAN 30 and 40 to the Internet port on the controller.

1. Select **Controller > Network > Network profiles**.

2. Select **Add New Profile**.

3. Under **Settings**, set **Name** to **Network 3**.

4. Select **VLAN**, and under it, set **ID** to **30**.

5. Select **Save**.

6. Select **Add New Profile**.

7. Under **Settings**, set **Name** to **Network 4**.
8. Select VLAN, and under it, set ID to 40.

9. Select Save.

Create the VLANs
Create VLANs on the Internet port using the network profiles you just defined.

1. Select Controller > Network > Ports. Initially, the VLAN configuration list will be empty.

2. Select Add New VLAN.

- Under General, set Port to Internet port.
- Under VLAN, set VLAN ID to 30 (Network 3).
- Under Assign IP address via, let the setting None. An address is not needed.

3. Select Save.
4. Select **Add New VLAN**.

- Under **General**, set **Port** to **Internet port**.
- Under **VLAN**, set **VLAN ID** to **40 (Network 4)**.
- Under **Assign IP address** via, let the setting **None**. An address is not needed.

5. Select **Save**.

User accounts

Next you need to define user accounts and account profiles.

1. Select **Controller >> Users > Account profiles**.

2. Select **Add New Profile**.

3. Under **General**, set **Profile name** to **Network 3** and disable **Access-controlled profile**.
4. Select **Egress interface**, and under it select **Egress VLAN ID** and set it to **30**.

5. Select **Save**.

6. Select **Add New Profile**.

7. Under **General**, set **Profile name** to **Network 4** and disable **Access-controlled profile**.
8. Select **Egress interface**, and under it select **Egress VLAN ID** and set it to **40**.

![Add/Edit account profile](image)

9. Select **Save**. The profiles list should now look like this:

![Account profiles](image)

10. Select **Controller >> Users > User accounts**. Initially, no accounts are defined.

![User accounts](image)
11. Select **Add New Account**.

![Add/Edit user account](image)

12. Under **General**:
 - Set **User name** to **User A**.
 - Set **Password** to a secure password.
 - Clear **Access-controlled account**.

13. Select **Account profiles**, and under it move **Network 3** to the box titled **Set account attributes using these profiles**.

14. Select **Save**.
15. Select **Add New Account**.

16. Under **General**:
 - Set **User name** to **User B**.
 - Set **Password** to a secure password.
 - Clear **Access-controlled account**.

17. Select **Account profiles**, and under it move **Network 4** to the box titled **Set account attributes using these profiles**.

18. Select **Save**.
VSC binding

This scenario assumes that all APs are part of the Default Group.

1. Select Controller > Controlled APs > Default Group >> VSC bindings and then select HP ProCurve. The VSC binding page appears.

 - Under VSC Profile, set VSC profile to HP ProCurve.

2. Select Save.
Scenario 4: Assigning home networks on a per-user basis

This scenario illustrates how to assign home networks on a per-user basis using RADIUS attributes.

How it works

In this scenario, wireless services have been added to two wired networks. A single controller and multiple APs are installed on each network. The two networks are connected with an L3 switch. The following diagram provides an overview of the setup. (A single AP is shown on each network for clarity).

Wireless clients receive their DHCP address from the controller on their network, or use a static IP addressing scheme.
A single VSC is used in this scenario. It is configured with the Wireless mobility, Mobility traffic manager option enabled. Home network assignment for users is done by setting RADIUS VLAN attributes which map users to one of two network profiles:

<table>
<thead>
<tr>
<th>Network profile name</th>
<th>Assigned to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net1</td>
<td>Controller 1 LAN port</td>
</tr>
<tr>
<td></td>
<td>All APs attached to network 10.0 use this as their home network</td>
</tr>
<tr>
<td>Net2</td>
<td>Controller 2 LAN port</td>
</tr>
<tr>
<td></td>
<td>All APs attached to network 20.0 use this as their home network</td>
</tr>
</tbody>
</table>

Each profile must be assigned to an AP as well as a controller. This is done to ensure that when a user logs in on an AP installed on the same subnet as the home network, traffic is not routed through the controller, but is sent directly onto the network via the Ethernet port not the AP. For example:

- When User A logs onto AP 1, RADIUS returns the VLAN ID Net1. Since Net1 is defined as a home network on AP 1, traffic is sent directly onto network 1 via the Ethernet port on the AP.
- When User A roams to (or logs into) AP 2, RADIUS returns the VLAN ID Net1. Since Net1 is not defined as a home network on AP 2, MTM tunnels the user’s traffic back to network 1.

A RADIUS account is defined for each user with attributes set as follows to identify the home network using a network profile name:

<table>
<thead>
<tr>
<th>RADIUS attribute</th>
<th>Network 1 users</th>
<th>Network 2 users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel-Medium-Type</td>
<td>802</td>
<td>802</td>
</tr>
<tr>
<td>Tunnel-Private-Group-ID</td>
<td>Net1</td>
<td>Net2</td>
</tr>
<tr>
<td>Tunnel-Type</td>
<td>VLAN</td>
<td>VLAN</td>
</tr>
</tbody>
</table>

Configuration overview

The following sections provide a summary of the configuration settings needed to enable mobility support only. It is assumed that installation and configuration of all controllers and APs so that they are fully operational on the network was performed as explained in the other chapters in this guide.
Controller 1 configuration

Mobility domain
1. Select Controller >> Management > Device discovery.
 - Select Mobility controller discovery.
 - Select This is the primary mobility controller.

 ![Mobility controller discovery](image)

 (For complete screenshot see Defining the mobility domain on page 8-8.)

 2. Select Save.

VSC
1. Select Controller > VSCs > HP ProCurve.
 - Under Global
 - Clear Access control.

 ![Global settings](image)

 (For complete screenshot see VSC configuration options on page 4-5.)

 - Select Wireless mobility, then under it:
 - Select Mobility traffic manager.
 - Select Block user.

 ![Wireless mobility settings](image)

 (For complete screenshot see VSC configuration options on page 4-5.)

2. Either disable Wireless security filters or set it to Custom.
3. Select Save.
Network profiles
1. Select Controller > Network > Network profiles.

![Network profiles screenshot]

2. Select LAN port network.
3. Under Settings, change Name to Net1.

![Add/Edit network profile screenshot]

4. Select Save.

Controller 2 configuration
Mobility domain
1. Select Controller >> Management > Device discovery.

![Mobility controller discovery screenshot]

(For complete screenshot see *Defining the mobility domain on page 8-8.*)

- Select Mobility controller discovery.
- Clear This is the primary mobility controller.
- Specify the IP address of the primary mobility controller. In this example: 192.168.10.1.

2. Select Save.

VSC
VSC configuration is the same as for controller 1.
Network profiles
1. Select Controller >> Network > Network profiles.

 ![Network profiles table]

2. Select LAN port network.
3. Under Settings, change Name to Net2.

 ![Add/Edit network profile]

4. Select Save.

AP configuration

VSC binding
1. Select Controller > Controlled APs > Default Group >> VSC bindings and then select HP ProCurve. The VSC binding page appears.

 ![VSC binding screen]

 (For complete screenshot see VSC configuration options on page 4-5.)

 - Set VSC profile to HP ProCurve.
2. Select Save.
Local network assignment

1. Select Controller > Controlled APs > Default group >> Configuration > Home networks.
 - For each AP on network 1, double-click Net1 to add it to the Local networks list.
 - For each AP on network 2, double-click Net2 to add it to the Local networks list.

2. Select Save.
Scenario 5: Traffic routing using VLANs

This scenario explains how to route the traffic from users onto specific VLANs on the wired network.

How it works

In this scenario, traffic on a corporate network is routed using VLANs, creating several logical networks to isolate the network resources for each workgroup. A number of wireless APs are distributed throughout the company and are connected using VLAN 2. Network administrators use VLAN 1 for all equipment installed on the network and in the network operations center (NOC).

The following diagram provides a logical overview of the setup. (Only two APs are shown for clarity).

Wireless clients receive their DHCP address from the DHCP server on the network.
A single VSC is used. It is configured with the Mobility traffic manager option enabled. Home networks for users are determined by setting RADIUS VLAN attributes, which map users to the following network profiles:

<table>
<thead>
<tr>
<th>Network profile name</th>
<th>Assigned to LAN port on</th>
<th>Assigned to VLAN ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net1</td>
<td>Controller 1</td>
<td>10</td>
</tr>
<tr>
<td>Net2</td>
<td>Controller 2</td>
<td>20</td>
</tr>
<tr>
<td>Net3</td>
<td>Controller 2</td>
<td>30</td>
</tr>
<tr>
<td>NOC</td>
<td>Controller 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Since all traffic is routed to the VLANs through the LAN port on either controller 1 or 2, no home networks are assigned on the APs.

By assigning different VLANs to different controller ports, traffic can be split between controllers. To reduce the amount of traffic that needs to be tunneled between controllers, APs are assigned to controllers based on their expected use:

- AP 1 is physically located in an area where most of the users are assigned to network 1, therefore it is managed by controller 1.
- AP 2 is physically located in an area where most of the users are assigned to network 2, therefore it is managed by controller 2.

A RADIUS account is defined for each user with attributes set to identify their home network using one of the network profile names:

<table>
<thead>
<tr>
<th>RADIUS attribute</th>
<th>Network 1 users</th>
<th>Network 2 users</th>
<th>Network 3 users</th>
<th>Network administrators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel-Medium-Type</td>
<td>802</td>
<td>802</td>
<td>802</td>
<td>802</td>
</tr>
<tr>
<td>Tunnel-Private-Group-ID</td>
<td>Net1</td>
<td>Net2</td>
<td>Net3</td>
<td>NOC</td>
</tr>
<tr>
<td>Tunnel-Type</td>
<td>VLAN</td>
<td>VLAN</td>
<td>VLAN</td>
<td>VLAN</td>
</tr>
</tbody>
</table>

Configuration overview

The following sections provide a summary of the configuration settings needed to enable mobility support only. It is assumed that installation and configuration of all controllers and APs so that they are fully operational on the network was performed as explained in the other chapters in this guide.
Controller 1 configuration

Mobility domain

1. Select Controller >> Management > Device discovery.
 - Select Mobility controller discovery.
 - Select This is the primary mobility controller.

 ![Mobility controller discovery](image)

 (For complete screenshot see Defining the mobility domain on page 8-8.)

2. Select Save.

VSC

1. Select Controller >> VSCs > HP ProCurve.
 - Under Global, disable Access control.

 ![Global](image)

 (For complete screenshot see VSC configuration options on page 4-5.)

 - Select Wireless mobility, then under it:
 - Select Mobility traffic manager.
 - Select Block user.

 ![Wireless mobility](image)

 (For complete screenshot see VSC configuration options on page 4-5.)

2. Either disable Wireless security filters or set it to Custom.
3. Select Save.
Network profiles
1. Select Controller >> Network > Network profiles.

<table>
<thead>
<tr>
<th>Name</th>
<th>VLAN</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet port network</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LAN port networks</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

2. Select Add New Profile.

- Under **Settings**, set **Name** to **Net1**.
- Select **VLAN**.
- Under **VLAN**, set **ID** to **10**.

3. Select **Save**.

4. Repeat steps 2 and 3 to define the following profiles:
 - Profile name = Net1, VLAN ID = 10
 - Profile name = NOC, VLAN ID = 1
 - Profile name = APs, VLAN ID = 2

5. When done, the list of network profiles should look like this:
VLANs

1. Select **Controller > Network > Ports**. Initially, the VLAN configuration list will be empty.

![VLAN configuration](image)

2. Select **Add New VLAN**.

![Add/Edit VLAN](image)

- Under **General**, set **Port** to **LAN port**.
- Under **VLAN**, set **VLAN ID** to **10 (Net1)**.

3. Select **Save**.

4. Repeat steps 2 and 3 to define the following VLANs:
 - Port = LAN port, VLAN ID = 1 (NOC)
 - Port = LAN port, VLAN ID = 2 (APs)

5. When done, the list of VLANs should look like this:

![VLAN configuration](image)
Controller 2 configuration

Mobility domain
1. Select Controller >> Management > Device discovery.

(For complete screenshot see Defining the mobility domain on page 8-8.)
- Select Mobility controller discovery.
- Clear This is the primary mobility controller.
- Set the IP address of the primary mobility controller to 192.168.5.2.

2. Select Save.

VSC
Configuration is the same as for controller 1.

Network profiles
1. Select Controller >> Network > Network profiles.

2. Select Add New Profile.

- Under Settings, set Name to Net1.
- Select VLAN.
- Under VLAN, set ID to 10.

3. Select Save.
4. Repeat steps 2 and 3 to define the following profiles:
 - Profile name = Net2, VLAN ID = 20
 - Profile name = Net3, VLAN ID = 30
 - Profile name = APs, VLAN ID = 2

5. When done, the list of network profiles should look like this:

<table>
<thead>
<tr>
<th>Name</th>
<th>VLAN</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet port</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Service port</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Net1</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>Net2</td>
<td>20</td>
<td>N/A</td>
</tr>
<tr>
<td>Net3</td>
<td>30</td>
<td>N/A</td>
</tr>
<tr>
<td>APs</td>
<td>2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

VLANs

1. Select **Controller > Network > Ports**. Initially, the VLAN configuration list will be empty.

2. Select **Add New VLAN**.

 - Under **General**, set **Port** to **LAN port**.
 - Under **VLAN**, set **VLAN ID** to **10 (Net1)**.

3. Select **Save**.

4. Repeat steps 2 and 3 to define the following VLANs:
Mobility traffic manager
Scenario 5: Traffic routing using VLANs

- Port = LAN port, VLAN ID = 20 (Net2)
- Port = LAN port, VLAN ID = 30 (Net3)
- Port = LAN port, VLAN ID = 2 (APs)

5. When done, the list of VLANs should look like this:

<table>
<thead>
<tr>
<th>Name</th>
<th>Port</th>
<th>VLAN</th>
<th>IP address</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net2</td>
<td>LAN port</td>
<td>20</td>
<td>[none]</td>
<td>[none]</td>
</tr>
<tr>
<td>Net3</td>
<td>LAN port</td>
<td>30</td>
<td>[none]</td>
<td>[none]</td>
</tr>
<tr>
<td>APs</td>
<td>LAN port</td>
<td>2</td>
<td>[none]</td>
<td>[none]</td>
</tr>
</tbody>
</table>

AP configuration

VSC binding

1. Select Controller > Controlled APs > Default Group >> VSC bindings and then select HP ProCurve. The VSC binding page appears.

(For complete screenshot see Binding a VSC to a group on page 5-25.)

- Set VSC profile to HP ProCurve.

2. Select Save.
Scenario 6: Distributing traffic using VLAN ranges

This scenario explains how to automatically distribute wireless network traffic onto multiple VLANs on the wired network.

How it works

In this scenario, traffic on a corporate network is segmented onto multiple VLANs to address performance and scalability issues. Traffic from the users on wireless APs needs to be deployed in the same manner. Rather than manually assigning APs and/or groups of users to specific VLANs, MTM can be configured to automatically disperse traffic across a VLAN range. In fact, by defining multiple network profiles, traffic can be mapped to several different ranges, allowing groups of users or APs to be mapped to specific VLAN ranges.

The following diagram provides a logical overview of the setup. (Only two APs are shown for clarity).

Wireless clients receive their DHCP address from the DHCP server on the network.
A single VSC is used. It is configured with the **Wireless mobility, Mobility traffic manager** option enabled. The home network for users is defined by setting the Egress network when the VSC is bound to the APs. The Egress network is mapped to a network profile that defines a range of VLANs on the LAN port on the controller.

<table>
<thead>
<tr>
<th>Network profile name</th>
<th>Assigned to LAN port on</th>
<th>Assigned to VLAN range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net1</td>
<td>Controller 1</td>
<td>10-30</td>
</tr>
<tr>
<td>Net2</td>
<td>Controller 2</td>
<td>31-50</td>
</tr>
</tbody>
</table>

By assigning a different profile name to AP groups, traffic can be split between controllers. In this example, the APs are split into two groups:

- Group 1: The VSC binding is configured with Egress network set to Net1, putting traffic from this group onto VLAN range 10-30.
- Group 2: The VSC binding is configured with Egress network set to Net2, putting traffic from this group onto VLAN range 11-51.

MTM uses a round-robin mechanism to distribute traffic across the VLANs range. The first wireless user is assigned to the first VLAN in the range. Subsequent users are assigned to the next VLAN in the range. When the range is exhausted, assignment starts with the first VLAN again. For example, if the VLAN range is defined as VLAN IDs 1 to 20, the first user is assigned to VLAN 1. The second is assigned to VLAN 2. The 21st user is assigned to VLAN 1 again. Although VLAN assignment is sequential through the range, from the user's point of view, VLAN assignment will appear to be random.

Configuration overview

The following sections provide a summary of the configuration settings needed to enable mobility support only. It is assumed that installation and configuration of all controllers and APs so that they are fully operational on the network was performed as explained in the other chapters in this guide.
Controller 1 configuration

Mobility domain
1. Select Controller >> Management > Device discovery.
 - Select Mobility controller discovery.
 - Select This is the primary mobility controller.

 (For complete screenshot see Defining the mobility domain on page 8-8.)

2. Select Save.

VSC
1. Select Controller >> VSCs > HP ProCurve.
 Under Global
 - Clear Access control.

 (For complete screenshot see VSC configuration options on page 4-5.)

 - Select Wireless mobility, then under it:
 - Select Mobility traffic manager.
 - Select Block user.

 (For complete screenshot see VSC configuration options on page 4-5.)

2. Either disable Wireless security filters or set it to Custom.
3. Select Save.
Network profiles
1. Select Controller >> Network > Network profiles.

<table>
<thead>
<tr>
<th>Network profiles</th>
<th>VLAN</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet port network</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>All port network</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

2. Select Add New Profile.

- Under Settings, set Name to Net1.
- Select VLAN.
- Under VLAN, set ID to 10-30.

3. Select Save.

VLANs
1. Select Controller >> Network > Ports. Initially, the VLAN configuration list will be empty.
2. Select **Add New VLAN**.

![Add/Edit VLAN](image)

- Under **General**, set **Port** to **LAN port**.
- Under **VLAN**, set **VLAN ID** to **10-30 (Net1)**.

3. Select **Save**.

Controller 2 configuration

Mobility domain
1. Select **Controller >> Management > Device discovery**.

![Mobility controller discovery](image)

(For complete screenshot see *Defining the mobility domain on page 8-8.*)

- Select **Mobility controller discovery**.
- Clear **This is the primary mobility controller**.
- Set the **IP address of the primary mobility controller** to **192.168.5.2**.

2. Select **Save**.

VSC
Configuration is the same as for controller 1.
Network profiles

1. Select Controller >> Network > Network profiles.

 ![Network profiles table]

2. Select Add New Profile.

 ![Add/Edit network profile]

 - Under Settings, set Name to Net2.
 - Select VLAN.
 - Under VLAN, set ID to 31-50.

3. Select Save.

VLANs

1. Select Controller >> Network > Ports. Initially, the VLAN configuration list will be empty.

 ![VLAN configuration table]
2. Select **Add New VLAN**.

![Add/Edit VLAN](image)

- Under **General**, set **Port** to **LAN port**.
- Under **VLAN**, set **VLAN ID** to **31-50 (Net2)**.

3. Select **Save**.

AP configuration

Split the APs into two groups as explained in *Working with groups on page 5-24*. Call them Group 1 and Group 2.

VSC binding for Group 1

1. Select **Controller > Controlled APs > Group 1 >> VSC bindings** and then select **HP ProCurve**. The VSC binding page appears.

![VSC binding](image)

- Set **VSC profile**, to **HP ProCurve**.
- Select **Egress network**, then for **Network profile**, select **Net1 (10-30)**.

2. Select **Save**.
VSC binding for Group 2

1. Select Controller > Controlled APs > Group 2 >> VSC bindings and then select HP ProCurve. The VSC binding page appears.

 - Set VSC profile, to HP ProCurve.
 - Select Egress network, then for Network profile, select Net2 (31-50).

2. Select Save.
Subnet-based mobility

This feature has been deprecated.

If you are creating a new installation, use Mobility Traffic Manager. If you are upgrading from a previous release, your subnet-based configuration will still work. However, for added benefits and greater flexibility you should migrate your setup to Mobility Traffic Manager.

For reference, subnet-based mobility configuration options appear on the following pages:

- Controller > Controlled APs >> Configuration > Local networks
- Controller > Controlled APs > [group] >> Configuration > Local networks
- Controller > Controlled APs > [AP_name] >> Configuration > Local networks

- Controller > VSCs >> [VSC-name]
User authentication

Contents

Introduction ..9-2
Authentication support..9-2

802.1X authentication ..9-4
Supported 802.1X protocols ..9-5
Configuring 802.1X support on a VSC ..9-6
Configuring global 802.1X settings for wired users ..9-8
Configuring global 802.1X settings for wireless users ...9-9
Configuring 802.1X support on an MSM317 switch port ...9-10

MAC-based authentication ..9-10
Configuring global MAC-based authentication ..9-12
Configuring MAC-based authentication on a VSC ..9-13
Configuring MAC-based authentication on an MSM317 switch port9-14
Configuring MAC-based filters on a VSC ..9-14
Configuring MAC-based filters on an MSM317 switch port ..9-15

HTML-based authentication ..9-17
Configuring HTML-based authentication on a VSC ..9-17

VPN-based authentication ..9-19
Configuring VPN-based authentication on a VSC ..9-19

No authentication ..9-21

Locally-defined user accounts ..9-21
Features ...9-21
Defining a user account ..9-25
Defining account profiles ...9-27
Defining subscription plans ...9-29
Accounting persistence ..9-30
Introduction

Note
This chapter discusses user authentication as it applies to the controller and controlled APs only. For information on working with autonomous APs, see Chapter 18: Working with autonomous APs.

User authentication tasks can be handled either by the AP or by the controller. This is controlled by the settings of the access control and authentication options on the VSC to which a user is connected. See About access control and authentication on page 4-6.

Authentication support

The following table lists all authentication types that are supported for user authentication and indicates how they apply to wired and wireless users.

<table>
<thead>
<tr>
<th>Auth type</th>
<th>Use controller for:</th>
<th>For more information, see ...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Authentication</td>
<td>Authentication and Access control</td>
</tr>
<tr>
<td>802.1X (VSC)</td>
<td>Wireless + wired*</td>
<td>Wireless + wired*</td>
</tr>
<tr>
<td></td>
<td>users authenticated</td>
<td>users authenticated</td>
</tr>
<tr>
<td></td>
<td>via:</td>
<td>via:</td>
</tr>
<tr>
<td></td>
<td>Local user</td>
<td>Local user</td>
</tr>
<tr>
<td></td>
<td>accounts</td>
<td>accounts</td>
</tr>
<tr>
<td></td>
<td>External RADIUS</td>
<td>External RADIUS</td>
</tr>
<tr>
<td></td>
<td>server</td>
<td>server</td>
</tr>
<tr>
<td></td>
<td>Active Directory</td>
<td>Active Directory</td>
</tr>
<tr>
<td>802.1X (Switch port)</td>
<td>Only supported when the switch port is not bound to a VSC. Supports wired users only.</td>
<td></td>
</tr>
<tr>
<td>MAC-based (Global)</td>
<td>Not supported</td>
<td>Wireless + wired*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>users authenticated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>via:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local user</td>
</tr>
<tr>
<td></td>
<td></td>
<td>accounts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External RADIUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active Directory</td>
</tr>
</tbody>
</table>

*Configuring 802.1X support on a VSC on page 9-6.

*Configuring 802.1X support on an MSM317 switch port on page 9-10.

*Configuring global MAC-based authentication on page 9-12.
<table>
<thead>
<tr>
<th>Auth type</th>
<th>Use controller for:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Authentication</td>
</tr>
<tr>
<td></td>
<td>- Local user accounts</td>
</tr>
<tr>
<td></td>
<td>- External RADIUS server</td>
</tr>
<tr>
<td></td>
<td>- Active Directory</td>
</tr>
<tr>
<td>MAC-based (Switch port)</td>
<td>Only supported when the switch port is not bound to a VSC. Supports wired users only.</td>
</tr>
<tr>
<td>HTML-based</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VPN-based</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>No authentication</td>
<td>Wireless + wired users*</td>
</tr>
</tbody>
</table>

* Wired users are only supported on the default VSC, unless their traffic is on a VLAN that matches the VSC ingress defined on another VSC. (On a controller team, wired users are only supported via the MSM317 switch ports.)
802.1X authentication

802.1X is a popular protocol for user authentication that is natively supported on most client stations. 802.1X authentication can be configured at different levels as described in the following table.

<table>
<thead>
<tr>
<th>VSC</th>
<th>Switch port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication tasks are managed by either the controller or the AP. (Depends on how the VSC is configured.)</td>
<td>Authentication tasks are managed by the MSM317.</td>
</tr>
<tr>
<td>Applies to wireless and users.</td>
<td>Applies to wired users only.</td>
</tr>
<tr>
<td>Settings are defined on a per-VSC basis.</td>
<td>Settings are defined on a per-port basis.</td>
</tr>
<tr>
<td>Can be used on access-controlled and non-access-controlled VSCs.</td>
<td>Can only be used when a switch port is not bound to a VSC.</td>
</tr>
<tr>
<td>Configured using the Add/Edit Virtual Service Community configuration page in the management tool.</td>
<td>Configured by selecting Controlled APs > [MSM317-AP] >> Configuration > Switch ports > [switch-port] in the management tool.</td>
</tr>
</tbody>
</table>
| User credentials can be validated using:
- Local user accounts on the controller
- External RADIUS server
- Active Directory
(Depends on how the VSC is configured.) | User credentials can be validated using:
- External RADIUS server |

See:
- **Configuring 802.1X support on a VSC on page 9-6.**
- **Configuring global 802.1X settings for wired users on page 9-8.**
- **Configuring global 802.1X settings for wireless users on page 9-9.**
See **Configuring 802.1X support on an MSM317 switch port on page 9-10.**
Supported 802.1X protocols

The following table lists the 802.1X protocols supported by the internal RADIUS server on the controller, and when using an third-party RADIUS server.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Local user accounts (via Internal RADIUS server)</th>
<th>Third-party RADIUS server</th>
<th>Certificates required</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAP-MD5</td>
<td>-</td>
<td>X</td>
<td>Server Client (optional)</td>
</tr>
<tr>
<td>EAP-TLS</td>
<td>X</td>
<td>X</td>
<td>Client and Server</td>
</tr>
<tr>
<td>EAP-TTLS</td>
<td>X</td>
<td>X</td>
<td>Server</td>
</tr>
<tr>
<td>PEAPv0</td>
<td>X</td>
<td>X</td>
<td>Server</td>
</tr>
<tr>
<td>PEAPv1</td>
<td>-</td>
<td>X</td>
<td>Server</td>
</tr>
<tr>
<td>EAP-SIM</td>
<td>-</td>
<td>X</td>
<td>Server</td>
</tr>
<tr>
<td>EAP-AKA</td>
<td>-</td>
<td>X</td>
<td>Server</td>
</tr>
<tr>
<td>EAP-FAST</td>
<td>-</td>
<td>X</td>
<td>Optional</td>
</tr>
</tbody>
</table>

The EAP protocols in this table are known to work with the controller. Other EAP protocols may also work but have not been tested.

Protocol definitions

The following are brief definitions for the supported protocols. For more detailed information, see the appropriate RFC for each protocol.

- **EAP-TTLS**: Extensible Authentication Protocol Tunnelled Transport Layer Security. Provides excellent security with less overhead than TLS as client-side certificates can be used, but are not required.

- **PEAPv0**: Protected Extensible Authentication Protocol. One of the most supported implementations across all client platforms. Uses MSCHAPv2 as the inner protocol.

- **PEAPv1**: Protected Extensible Authentication Protocol. Alternative to EAPv0 that permits other inner protocols to be used.

Configuring 802.1X support on a VSC

Each VSC can have unique settings for 802.1X authentication. These settings are defined on the VSC profile page. (To open this page, see Viewing and editing VSC profiles on page 4-4).

- When the **Use controller for Authentication** option is enabled under **General**, 802.1X authentication tasks are handled by the controller. APs forward all authentication requests to the controller which validates user login credentials using the local user accounts or a third-party authentication server (RADIUS or Active Directory).

- When the **Use controller for Authentication** option is disabled under **General**, 802.1X authentication tasks are handled directly by the AP. The AP uses the services of a third-party RADIUS server (configured by defining a RADIUS profile on the **Controller >> Authentication >> RADIUS profiles** page) to validate user login credentials.
Note

When the **Wireless protection** option in a VSC is set to **WPA** with a **Key source** of **Dynamic**, 802.1X is automatically enabled.

Authentication

Local

User logins are authenticated with the list defined on the **Controller >> Users > User accounts** page.

Remote

- **Active Directory**: User logins are authenticated via Active Directory. To setup Active Directory support go to the **Controller >> Security > Active Directory** page.

- **RADIUS**: User logins are authenticated via an external RADIUS server. To setup the connection to an external RADIUS server, go to the **Controller >> Authentication > RADIUS profiles** page.

 - **Request RADIUS CUI**: Enable this option to support the Chargeable User Identity (CUI) attribute as defined in RFC-4372. The CUI is used to associate a unique identifier with a user so that the user can be identified (for billing, authentication or other purposes) when roaming outside of their home network.

General

RADIUS accounting

Enable this option to have the controller generate a RADIUS START/STOP and interim request for each user. The controller respects the RADIUS interim-update-interval attribute if present inside the RADIUS access accept of the authentication.
Called-Station-ID content
(Only available when Access control is disabled under Global)

Select the value that the AP (with which the user has established a wireless connection) will return as the called station ID.

- **Port 1**: MAC address of the first Ethernet port on the AP.
- **Port 2**: MAC address of the second Ethernet port on the AP. (Not supported on all APs.)
- **Wireless Radio**: MAC address of the wireless radio on the AP on which this VSC is operating.
- **BSSID**: Basic service set ID of the wireless network defined for this VSC.
- **macaddress:ssid**: The MAC address of the AP radio, followed by a colon, followed by the SSID configured on this VSC.

Configuring global 802.1X settings for wired users

Global 802.1X settings selecting **Controller >> Authentication > 802.1X**.

These settings only apply to:

- Wired clients connected to the service controller via the LAN port.
- Wireless clients using an access-controlled VSC with **Wireless protection** set to **WPA** and the **Terminate WPA at the controller** option enabled. See *Terminate WPA at the controller on page 4-22*.

These settings do not apply to clients connected to the switch port on an MSM317.

Supplicant timeout

Specify the maximum length of time that the service controller will wait for a client station to respond to an EAPOL packet before resending it.

If client stations are configured to manually enter the 802.1X username and/or the password, you must increase the value of the timeout to between 15 and 20 seconds.
Reauthentication

Enable this option to force 802.1X clients to re-authenticate after the specified **Period**.

- **Period**: Client stations must reauthenticate after this amount of time has passed since their last reauthentication.

- **Terminate**
 - **Disabled**: Client stations remain connected during re-authentication and client traffic is blocked only when re-authentication fails.
 - **Enabled**: Client traffic is blocked during re-authentication and is only activated again if authentication succeeds.

Configuring global 802.1X settings for wireless users

Global 802.1X settings for wireless users connected to controlled APs are defined by selecting **Controlled APs >> Configuration > 802.1X**.

Supplicant timeout

Specify the maximum length of time for the to wait for a client station to respond to an EAPOL packet before resending it.

EAPOL (Extensible Authentication Protocol over LAN) is used for 802.1X port access control. 802.1X can be used to authenticate at "network connect time" when using either wired or wireless LAN adapters.

If client stations are configured to manually enter the 802.1X username or password or both, increase the value of the timeout to 15 to 20 seconds.

Group key update

Enable this option to force updating of 802.1X group keys at the specified **Key change interval**.
User authentication

MAC-based authentication

Reauthentication
Enable this option to force 802.1X clients to reauthenticate.

Period
Specify the interval at which client stations must reauthenticate.

Terminate
- **Disabled**: Client station remains connected during reauthentication. Client traffic is blocked only when reauthentication fails.
- **Enabled**: Client traffic is blocked during reauthentication and is only reactivated if authentication succeeds.

Configuring 802.1X support on an MSM317 switch port

If a switch on the MSM317 port is not bound to a VSC, then 802.11X can be enabled on it.

802.1X authentication tasks are handled by the MSM317. The MSM317 uses the services of a third-party RADIUS server (configured by defining a RADIUS profile on the Controller >> Authentication > RADIUS profiles page) to validate user login credentials.

MAC-based authentication

MAC-based authentication can be used to automatically authenticate wired or wireless devices as soon as they appear on the network, eliminating the need for manual login. This is useful for authenticating devices that do not have a Web browser and are permanently installed on a network (a printer or point-of-sale terminal, for example), but can also be used for regular users.
MAC authentication can be configured at several different levels as described in the following table.

<table>
<thead>
<tr>
<th>Global</th>
<th>VSC</th>
<th>Switch port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication is handled by the controller.</td>
<td>Authentication is handled by either the controller or the AP. (Depends on how the VSC is configured.)</td>
<td>Authentication is handled by the MSM317.</td>
</tr>
<tr>
<td>Applies to both wireless and wired users.</td>
<td>Applies to wireless users if the VSC is configured for either Authentication and/or Access control. If neither are configured, applies to both wireless and wired users.</td>
<td>Applies to wired users only.</td>
</tr>
<tr>
<td>Settings apply globally to all VSCs, except for the authentication server which is defined on a per-VSC basis.</td>
<td>Settings are defined on a per-VSC basis.</td>
<td>Settings are defined on a per-port basis.</td>
</tr>
<tr>
<td>Can only be used on access-controlled VSCs that have HTML-based user logins enabled.</td>
<td>Can be used on non-access-controlled VSCs, or on access-controlled VSCs that have HTML-based user logins disabled.</td>
<td>Can only be used when the switch port is not bound to a VSC.</td>
</tr>
</tbody>
</table>
| User credentials can be validated using:
 - Local user accounts on the controller
 - External RADIUS server
 - Active Directory | User credentials can be validated using:
 - Local user accounts on the controller
 - External RADIUS server
 (Depends on how the VSC is configured.) | User credentials can be validated using:
 - External RADIUS server |

See Configuring global MAC-based authentication on page 9-12.
See Configuring MAC-based authentication on an MSM317 switch port on page 9-14.
In addition, MAC-based filters can also be used to manage access to the network.

<table>
<thead>
<tr>
<th>VSC</th>
<th>Switch port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtering occurs on the AP wireless interfaces.</td>
<td>Filtering occurs individually on each MSM317 switch port.</td>
</tr>
<tr>
<td>Applies to wireless client stations only.</td>
<td>Applies to wired client stations only.</td>
</tr>
<tr>
<td>Settings are defined on a per-VSC basis.</td>
<td>Settings are defined on a per-port basis.</td>
</tr>
<tr>
<td>Can be used on both access-controlled and non-access-controlled VSCs.</td>
<td>Can only be used when the switch port is not bound to a VSC.</td>
</tr>
<tr>
<td>Configured using the Add/Edit Virtual Service Community configuration page in the management tool.</td>
<td>Configured by selecting Controlled APs > [MSM317-AP] >> Configuration > Switch ports > [switch-port] in the management tool.</td>
</tr>
<tr>
<td>MAC addresses are validated against a custom list for each VSC.</td>
<td>MAC addresses are validated against a global list that is defined on the controller and applies across all devices.</td>
</tr>
<tr>
<td>See Configuring MAC-based authentication on a VSC on page 9-13.</td>
<td>See Configuring MAC-based authentication on an MSM317 switch port on page 9-14.</td>
</tr>
</tbody>
</table>

Note

MAC-based filters are always applied before MAC-based authentication.

Configuring global MAC-based authentication

You define global MAC-based authentication settings using the Colubris-AVPair value string `mac-address`, which you must add to the RADIUS account for the controller. See *MAC authentication on page 14-57.*

Although the global MAC-based authentication settings apply to all VSCs that have HTML-based user logins enabled, each VSC can use a different authentication server to validate user credentials. To define an authentication server for a VSC, open the **Add/Edit Virtual Service Community** page and use the **HTML-based user logins** box to select the authentication method. See *HTML-based user logins on page 4-25.*

MAC authentication is performed before HTML authentication. If MAC authentication fails, the user's connection is terminated. If it succeeds, and HTML authentication is enabled, HTML authentication is performed next.
Configuring MAC-based authentication on a VSC

Each VSC can have unique settings for MAC authentication of wireless client stations. These settings are defined on the VSC profile page. (To open this page, see Viewing and editing VSC profiles on page 4-4).

- When the Use controller for Authentication option is enabled under Global, MAC-based authentication tasks are managed by the controller. APs forward all authentication requests to the controller which validates user login credentials using the local user accounts or a third-party RADIUS server.

- When the Use controller for Authentication option is disabled under Global, MAC-based authentication tasks are managed by the AP. The AP uses the services of a third-party RADIUS server (configured by defining a RADIUS profile on the Controller >> Authentication > RADIUS profiles page) to validate user login credentials.
Configuring MAC-based authentication on an MSM317 switch port

If a switch port on the MSM317 is not bound to a VSC, then MAC-based authentication can be enabled on it. Select Controlled APs >> [MSM317-AP] >> Configuration > Switch ports > [switch-port] in the management tool.

MAC authentication tasks are handled by the MSM317. The MSM317 uses the services of a third-party RADIUS server (configured by defining a RADIUS profile on the Controller >> Authentication > RADIUS profiles page) to validate user login credentials.

Configuring MAC-based filters on a VSC

The Wireless MAC filter option enables you to control access to the wireless network based on the MAC address of a wireless device. You can either block access or allow access, depending on your requirements.

This feature is configured on the VSC profile page. (To open this page, see Viewing and editing VSC profiles on page 4-4).

Note: When both this option and the MAC-based authentication option are enabled, MAC filtering occurs first.

Address list
Contains the list of MAC addresses that are checked when filtering is enabled.

MAC address
Specify the MAC address as six pairs of hexadecimal digits separated by colons. For example: 00:00:00:0a:0f:01.
Filter behavior

- **Allow**: Only devices whose MAC addresses appear in the Address list can connect to the wireless network.

- **Block**: Devices whose MAC addresses appear in the Address list are blocked from accessing the wireless network.

Configuring MAC-based filters on an MSM317 switch port

This option lets you control port access based on client station MAC addresses. Addresses are checked against one or more lists stored on the controller. If the MAC address of a connected device appears in any configured list, then the device is permitted to send and receive traffic on the port.

To configure MAC-based filters on an MSM317 switch port, do the following:

1. Open the management tool on the MSM7xx Controller.

2. Select **Controller >> Authentication > MAC lists**.

 Each entry in the MAC list contains a MAC address and its associated mask. By varying the mask, an entry can be defined to match a single address or a range of addresses.

4. Under **Global**, specify a name to identify the MAC address list.
5. Under **MAC list**, specify the MAC address and mask that you want to match, then select **Add**. For example:

- The following definition matches a single MAC address:

 - MAC address = 00:03:52:07:2B:43
 - Mask = FF:FF:FF:FF:FF:FF

- By changing the last digit of the mask, the definition now matches a range of MAC addresses from **00:03:52:07:2B:40** to **00:03:52:07:2B:4F**:

 - MAC address = 00:03:52:07:2B:43
 - Mask = FF:FF:FF:FF:FF:F0

- The following definition matches all the devices with the MAC prefix (OUI) of **00:03:52**:

 - MAC address = 00:03:52:00:00:00
 - Mask = FF:FF:FF:00:00:00

6. Repeat step 5 until you have defined all needed entries.

7. Select **Save**.

8. Select **Controlled APs > [MSM317-AP] >> Configuration > Switch ports > [switch-port]** in the management tool.

9. Select the **MAC filter** checkbox.

10. Select the MAC filter checkbox.

11. Under Available MAC lists, select each MAC list you want to use and select the right arrow icon.

12. Select **Save**.
HTML-based authentication

HTML-based authentication is used with the public/guest access feature described in Chapter 13: Public/guest network access. It enables users to login to the public access interface using a standard Web browser.

HTML-based authentication has the following properties:

- Authentication is handled by the controller.
- Settings are defined on a per-VSC basis.
- Can only be used on access-controlled VSCs.
- Configured using the Add/Edit Virtual Service Community configuration page in the management tool.
- User credentials can be validated using:
 - Local user accounts on the controller
 - External RADIUS server
 - Active Directory

See Global access control settings on page 13-29 for more configuration settings that affect HTML-based users.

Configuring HTML-based authentication on a VSC

Each VSC can have unique settings for HTML-based user logins. These settings are defined on the VSC profile page. (To open this page, see Viewing and editing VSC profiles on page 4-4).

When the Use controller for Authentication option is enabled under General, HTML-based user login options can be defined.
Authentication

If both the Local and Remote options are active, the controller first checks the local user accounts (defined on the Controller >> Users > User accounts page). If the user does not appear in the list, then the controller queries the remote server (Active Directory or RADIUS).

Local

User logins are authenticated with the list defined on the Controller >> Users > User accounts page.

Remote

- **Active Directory**: User logins are authenticated via Active Directory. To setup Active Directory support go to the Controller >> Security > Active Directory page.

- **RADIUS**: User logins are authenticated via an external RADIUS server. To setup the connection to an external RADIUS server, go to the Controller >> Authentication > RADIUS profiles page.

 - **Request RADIUS CUI**: Enable this option to support the Chargeable User Identity (CUI) attribute as defined in RFC-4372. The CUI is used to associate a unique identifier with a user so that the user can be identified (for billing, authentication or other purposes) when roaming outside of their home network.

 - **Authentication timeout**: Specify length of time (in seconds) that the controller will wait for the RADIUS server to respond to authentication requests. If the RADIUS server does not respond within this time period logins are refused.

General

- **RADIUS accounting**: Enable this option to have the controller generate a RADIUS START/STOP and interim request for each user. The controller respects the RADIUS interim-update-interval attribute if present inside the RADIUS access accept of the authentication.
VPN-based authentication

VPN-based authentication can be used to provide secure access for client stations on VSCs that do not have encryption enabled.

VPN-based authentication has the following properties:

- Authentication is managed by the controller.
- Applies to wireless and wired users.
- Settings are defined on a per-VSC basis.
- Can only be used on access-controlled VSCs.
- Configured using the Add/Edit Virtual Service Community configuration page in the management tool.

- User credentials can be validated using:
 - Local user accounts on the controller
 - External RADIUS server
 - Active Directory

- If you enable this option for a VSC, all wireless users on the VSC must establish a VPN connection. No other authentication methods (HTML, MAC, 802.1X) can be used on the VSC.

- When users configure their VPN software, they must specify the controller’s LAN port address as the address of the VPN server.

- To use this option, one or more of the following VPN features must be enabled and configured on the Controller >> VPN menu: L2TP server, PPTP server, or IPSec. Once this is done, VPN support can be enabled on a per-VSC basis and users can connect to any active VPN server.

- On the MSM760 and MSM765 a maximum of 50 user sessions are supported across all VSCs. On the MSM710 the limit is 10 sessions.

Configuring VPN-based authentication on a VSC

Each VSC can have unique settings for VPN-based user logins. These settings are defined on the VSC profile page. (To open this page, see Viewing and editing VSC profiles on page 4-4).
When the **Use controller for Authentication** and **Access control** options are enabled under **General**, VPN-based user login options can be defined.

Authentication

Local

User logins are authenticated with the list defined on the **Controller >> Users > User accounts** page.

Remote

- **Active Directory**: User logins are authenticated via Active Directory. To setup Active Directory support go to the **Controller >> Security > Active Directory** page.

- **RADIUS**: User logins are authenticated via an external RADIUS server. To setup the connection to an external RADIUS server, go to the **Controller >> Authentication > RADIUS profiles** page.

- **Request RADIUS CUI**: Enable this option to support the Chargeable User Identity (CUI) attribute as defined in RFC-4372. The CUI is used to associate a unique identifier with a user so that the user can be identified (for billing, authentication or other purposes) when roaming outside of their home network.

General

- **RADIUS accounting**: Enable this option to have the controller generate a RADIUS START/STOP and interim request for each user. The controller respects the RADIUS interim-update-interval attribute if present inside the RADIUS access accept of the authentication.
No authentication

For applications where a remote device performs all authentication functions, it can be useful to disable authentication on the controller and instead, forward all traffic on a VSC into an egress GRE tunnel or egress VLAN for authentication by the remote device.

Note

Because the controller routes traffic to the VSC egress, L2 information from the user is lost and only L3 information is available to the remote authentication device.

Locally-defined user accounts

The controller provides support for locally-defined user accounts with a wide range of customizable options. Locally-defined user accounts use the integrated RADIUS server. Configuration of these accounts is done using the options on the Controller >> Users menu, which includes the following configuration pages: User accounts, Account profiles, Subscription plans, and Session persistence.

Each user account:

- Obtains account properties from one or more **account profiles**.
- Obtains account durations from one or more **subscription plans**.
- Is restricted for use with one or more **VSCs**.

Features

Access control

Two types of local user accounts are available: access-controlled and not access-controlled.

- Access-controlled accounts must be used with a VSC that is configured to provide access control.

- Non-access-controlled accounts must be used with a VSC that is *not* configured to provide access control. These accounts are used to handle authentication directly at the AP and cannot make use of the access control capabilities of the controller (the controller must not be in the traffic data path).

Validity and subscription plans

Each user account can be associated with a subscription plan that defines:

- The time period during which the account is available.
- The total amount of time a user can be online when logged in with the account.
User authentication
Locally-defined user accounts

VSC usage
User accounts can be restricted to specific VSCs. If a the specified VSC is not available, then
the user will not be able to connect with the account.

Account profiles
An account profile is used to define a specific set of features for a user account. Multiple
account profiles can be applied to a user account allowing the feature sets of each profile to
be added to the account.

Note
Each profile that is applied to a user account must have a unique feature set. The same
feature cannot be present in two different profiles.

About the Default AC profile
The Default AC profile is defined by default, and is always applied to all access-controlled
user accounts. You can view the settings for the Default AC profile by clicking it in the
profile list. However, you cannot edit any of its settings directly. All settings for this profile
are defined by setting attributes on the Controller >> Public access > Attributes page.

Supported attributes
The Public access > Attributes page allows a wide variety of attributes to be defined.
However, only attributes that pertain to user configuration are applied to the Default AC
profile. This includes the following attributes:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>For more info see</th>
</tr>
</thead>
<tbody>
<tr>
<td>default-user-use-access-list</td>
<td>Access list on page 14-34.</td>
</tr>
<tr>
<td>default-user-welcome-url</td>
<td>Default user URLs on page 14-56.</td>
</tr>
<tr>
<td>default-user-goodbye-url</td>
<td>Default user URLs on page 14-56.</td>
</tr>
<tr>
<td>default-user-one-to-one-nat</td>
<td>Default user one-to-one NAT on page 14-54.</td>
</tr>
<tr>
<td>default-user-idle-timeout</td>
<td>Default user idle timeout on page 14-53.</td>
</tr>
<tr>
<td>default-user-session-timeout</td>
<td>Default user session timeout on page 14-55.</td>
</tr>
<tr>
<td>default-user-max-output-packets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
<tr>
<td>default-user-max-input-packets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
<tr>
<td>default-user-max-total-packets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
<tr>
<td>default-user-max-output-octets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
<tr>
<td>default-user-max-input-octets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
<tr>
<td>default-user-max-total-octets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
<tr>
<td>default-user-max-input-rate</td>
<td>Default user data rates on page 14-54.</td>
</tr>
</tbody>
</table>
Example
This example illustrates how to indirectly customize the Default AC profile by defining several attributes, and shows how these settings are then reflected in a the Default AC profile and the user account.

The following sample page shows several attributes defined on the Public access > Attributes page under Configured attributes. The two of interest for this example are highlighted below.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>For more info see</th>
</tr>
</thead>
<tbody>
<tr>
<td>default-user-max-output-rate</td>
<td>Default user data rates on page 14-54.</td>
</tr>
<tr>
<td>default-user-bandwidth-level</td>
<td>Default user bandwidth level on page 14-52.</td>
</tr>
<tr>
<td>default-user-use-public-ip-subnet</td>
<td>Default user bandwidth level on page 14-52</td>
</tr>
</tbody>
</table>
These two attributes appear in the **Default AC** profile under **Session time attributes**:
And the attributes appear in access-controlled user accounts under **Effective attributes**:

Defining a user account

1. Select **Controller >> Users > User accounts**. The User accounts page opens. It presents a list of all defined user accounts. Initially this list is empty.
2. Select **Add New Account**. The **Add/Edit user account** page opens.

![Add/Edit user account screen](image)

If you disable the Access-controlled account option, the page will look like this:

![Add/Edit user account screen](image)

3. Configure account options as described in the online help.
Defining account profiles

1. Select Controller >> Users > Account profiles. The Account profiles page opens. It presents a list of all defined profiles. Initially this list will contain the profile Default AC.

<table>
<thead>
<tr>
<th>Account profiles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Type</td>
</tr>
<tr>
<td>Default AC</td>
<td>Access Controlled</td>
</tr>
</tbody>
</table>

2. Select Add New Profile. The Add/Edit account profile page opens.
If you disable the Access-controlled account option, the page will look like this:

![Add/Edit account profile](image)

3. Configure profile options as described in the online help.
Defining subscription plans

1. Select Controller >> Users > Subscription plans. The Subscription plans page opens. It presents a list of all defined subscription plans.

<table>
<thead>
<tr>
<th>Subscription plans</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Online time</td>
</tr>
<tr>
<td>Plan_1</td>
<td>60 Minutes</td>
</tr>
</tbody>
</table>

3. Configure plan options as described in the online help. For an example, see Defining a subscription plan for access purchase on page 13-8.
Public IP address

This feature enables a public IP address to be assigned to any client station. This makes the client station address visible to devices on the external network, allowing external devices to create connections with the client station.

The public IP address feature only works when the Internet port is set to static IP addressing. To configure the available public IP addresses, open the **Controller >> Network > Ports > Internet port > Static addressing** page.

Accounting persistence

Enable this option to have the controller save accounting information to its internal flash memory so that it can be recovered in case of abnormal system shutdown. Restarting the controller via its management tool (**Controller >> Maintenance > System**) saves before restarting.

The minimum save time is 30 minutes.
Authentication services

Contents

Overview ... 10-2

Using the integrated RADIUS server ... 10-2
 Server configuration ... 10-3
 User account configuration .. 10-4

Using a third-party RADIUS server .. 10-5
 Configuring a RADIUS server profile on the controller 10-5

Using an Active Directory server .. 10-9
 Active Directory configuration .. 10-9
 Configuring an Active Directory group .. 10-12
 Configuring a VSC to use Active Directory .. 10-14
Overview

Before you can perform key authentication tasks such as setting up user authentication, you need to first configure the desired authentication services related to the internal RADIUS server or external RADIUS servers or Active Directories.

Once these services are configured, see Chapter 9: User authentication.

Using the integrated RADIUS server

The internal RADIUS server is not intended as a replacement for the high-end/high-performance RADIUS server required for large scale deployments. Rather, it is offered as a cost-effective solution for managing small hotspots or enterprise networks.

Primary features

- Provides termination of 802.1X sessions at the controller for clients using WPA/WPA2 with EAP-PEAP, EAP-TLS and EAP-TTLS. Support for other EAP protocols is available using proxy mode.

- Provides MAC-based authentication of wireless users connected to both controlled and autonomous APs.

- Can be used to validate login credentials for HTML-based users.

- All locally defined user account options (user accounts, account profiles, and subscription plans) presented on the Controller >> Users menu are handled by the internal RADIUS server.

- Allows RADIUS accounting data to be sent to an external RADIUS server. (The internal RADIUS server does not provide support for accounting.)

- Local user accounts and account profiles have been designed to match the same functionality and support as can be provided by an external RADIUS server. Most of the AVPairs supported on an external RADIUS server are also supported by the integrated RADIUS server.
Server configuration

Configuration of the integrated RADIUS server is done using the Controller >> Authentication > RADIUS server page. In most cases, the default settings on this page will not need to be changed.

![RADIUS server configuration page]

Configuration parameters

RADIUS server

Detect SSID from NAS-Id
Enable this option when working with third-party APs to permit the controller to retrieve the SSID assigned to the AP, and therefore assign user traffic to the appropriate VSC. For this to work, the AP must be configured to send its SSID as the NAS ID in all authentication and accounting requests. See *Working with third-party autonomous APs on page 18-6*.

Number of accounting sessions
Specify the maximum number of sessions for which the controller will track accounting information.

Maximum accounting sessions
Specify the maximum number of accounting sessions that the controller supports.

Authentication UDP port
Indicates the port the controller uses for authentication. This port is always set to the standard value of 1812.

Accounting UDP port
Indicates the port the controller uses for accounting. This port is always set to the standard value of 1813.
Server authentication support
Select the authentication protocols that the internal RADIUS server will support:

- PAP: This protocol must be enabled if any VSCs are configured to use MAC-based authentication or HTML authentication.
- EAP-TTLS
- EAP-PEAP
- EAP-TLS

RADIUS authorization

Note
Applies to autonomous and third-party APs. Requests from controlled APs are always accepted because they use the management tunnel.

Enable this option to restrict access to the RADIUS server. The RADIUS server will only respond to requests from RADIUS clients that appear in the list, or that match the default shared secret, as described below.

IP address
Specify the IP address of the RADIUS client.

Mask
Specify the network mask.

Shared secret
Specify the secret (password) that RADIUS client must use to communicate with the RADIUS server.

Default shared secret

Note
Applies to autonomous APs only. Requests from controlled APs are always accepted because they use the management tunnel.

Enable this option to set a shared secret to safeguard communications between the internal RADIUS server and clients not in the RADIUS authorization list.

Specify the secret (password) that controller will use when communicating with RADIUS clients that do not appear in the RADIUS authorization list. The shared secret must match on both the clients and the controller.

User account configuration
User accounts for the internal RADIUS server are defined using the Controller >> Users menu. See Chapter 9: User authentication.
Using a third-party RADIUS server

A third-party RADIUS server can be used to perform a number of authentication and configuration tasks, as tasks shown in the table below.

<table>
<thead>
<tr>
<th>Task</th>
<th>For more information, see ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validating administrative user credentials</td>
<td>Administrative user authentication on page 2-4.</td>
</tr>
</tbody>
</table>
| Validating user credentials for 802.1X, MAC, and HTML authentication types | Wireless protection on page 4-20.
HTML-based user logins on page 4-25.
MAC-based authentication on page 4-26. |
| Storing custom configuration settings for the public access interface | Chapter 14: Working with RADIUS attributes. |
| Storing custom configuration settings for each user | |
| Storing accounting information for each user | |

Configuring a RADIUS server profile on the controller

The controller enables you to define a maximum of 16 RADIUS profiles. Each profile defines the settings for a RADIUS client connection. To support a client connection, you must create a client account on the RADIUS server. The settings for this account must match the profile settings you define on the controller.

For backup redundancy, each profile supports a primary and secondary server.

The controller can function with any RADIUS server that supports RFC 2865 and RFC 2866. Authentication occurs via authentication types such as: EAP-MD5, CHAP, MSCHAP v1/v2, PAP, EAP-TLS, EAP-TTLS, EAP-PEAP, EAP-SIM, EAP-AKA, EAP-FAST, and EAP-GTC.

Caution

To safeguard the integrity of RADIUS traffic it is important that you protect communications between the controller and the RADIUS server. The controller lets you use PPTP or IPSec to create a secure tunnel to the RADIUS server. For complete instructions on how to accomplish this, see Securing wireless client sessions with VPNs on page 15-3.

Note

If you change a RADIUS profile to connect to a different server while users are active, all RADIUS traffic for active user sessions is immediately sent to the new server.
Configuration procedure

1. Select **Controller >> Authentication > RADIUS profiles**. The RADIUS profiles page opens.

2. Select **Add New Profile**. The Add/Edit RADIUS Profile page opens.

3. Configure the profile settings as described in the following section.

4. Select **Save**.

Configuration parameters

Profile name

Specify a name to identify the profile.
Settings

- **Authentication port**: Specify a port on the RADIUS server to use for authentication. By default RADIUS servers use port 1812.

- **Accounting port**: Specify a port on the RADIUS server to use for accounting. By default RADIUS servers use port 1813.

- **Retry interval**: Specify the number of seconds that the RADIUS server waits before access and accounting requests time out. If the server does not receive a reply within this interval, the controller switches between the primary and secondary RADIUS servers, if a secondary server is defined. A reply that is received after the retry interval expires is ignored.

Retry interval applies to access and accounting requests that are generated by the following:

- Manager or operator access to the management tool
- User authentication by way of HTML
- MAC-based authentication of devices
- Authentication of the controller
- Authentication of the controlled AP.

You can determine the maximum number of retries as follows:

- HTML-based logins: Calculate the number of retries by taking the setting for the HTML-based logins **Authentication Timeout** parameter and dividing it by the value of this parameter. Default settings result in 4 retries (40 / 10).

- MAC-based and controller authentication: Number of retries is infinite.

- 802.1X authentication: Retries are controlled by the 802.1X client software.

- **Authentication method**: Select the default authentication method that the controller uses when exchanging authentication packets with the RADIUS server defined for this profile. For 802.1X users, the authentication method is always determined by the 802.1X client software and is not controlled by this setting. If traffic between the controller and the RADIUS server is not protected by a VPN, it is recommended that you use either EAP-MD5 or MSCHAP V2 (if supported by your RADIUS Server). PAP and MSCHAP V1 are less secure protocols.

- **NAS ID**: Specify the identifier for the network access server that you want to use for the controller. By default the serial number of the controller is used. The controller includes the NAS-ID attribute in all packets that it sends to the RADIUS server.

- **Always try primary server first**: Enable this option if you want to force the controller to contact the primary server first.

Otherwise, the controller sends the first RADIUS access request to the last known RADIUS server that replied to any previous RADIUS access request. If the request times out, the next request is sent to the other RADIUS server if defined.
For example, assume that the primary RADIUS server was not reachable and that the secondary server responded to the last RADIUS access request. When a new authentication request is received, the controller sends the first RADIUS access request to the secondary RADIUS server.

If the secondary RADIUS server does not reply, the controller retransmits the RADIUS access request to the primary RADIUS server. When two servers are configured, the controller always alternates between the two.

Primary/Secondary RADIUS server

- **Server address**: Specify the IP address of the RADIUS server.
- **Secret/Confirm secret**: Specify the password for the controller to use to communicate with the RADIUS server. The shared secret is used to authenticate all packets exchanged with the server, proving that the packets originate from a valid/trusted source.

Authentication realms

When authentication realms are enabled for a profile, selection of the RADIUS server to use for authentication is based on the realm name, rather than the RADIUS profile name configured. This applies to any VSC authentication setting that uses the profile.

- Realm names are extracted from user names as follows: if the username is `person1@mydomain.com` then `mydomain.com` is the realm. The authentication request is sent to the RADIUS profile with the realm name `mydomain.com`. The username sent for authentication is still the complete `person1@mydomain.com`.

- For added flexibility, regular expressions can be used in realm names, enabling a single realm name to match many users. For example, if a realm name is defined with the regular expression `^per.*` then all usernames beginning with `per` followed by any number of characters will match. The following usernames would all match:

 - per123.biz
 - per321.lan
 - per1

Important

- Realms names are not case-sensitive and can be a maximum of 64 characters long.

- You can define a maximum of 200 realms across all RADIUS profiles. There is no limit to the number of realms that you can define for each RADIUS profile.

- Each RADIUS profile can be associated with one or more realms. However, a realm cannot be associated with more than one profile.

- A realm overrides the authentication RADIUS server only. The server used for accounting is not affected.

Note

When realm configuration is changed in any way, all active user sessions are terminated.
Using an Active Directory server

Active Directory is the Windows service that is used by many organizations for user authentication. The controller can communicate with an Active Directory server to authenticate user login credentials and retrieve configurations settings (attributes) that are applied to a user's session.

The controller can be configured to validate user login credentials using an external Active Directory server for the following VSC features:

- Wireless Protection (only WPA and WPA2 both with EAP-PEAP)
- HTML-based logins.

Active Directory configuration

To configure active directory support, select Controller >> Authentication > Active Directory.

Active directory settings

General

Device name

Specify a name that identifies the controller to Active Directory. The controller uses this name to connect to the active directory server, just like any standard active directory client does.
Windows domain
Specify the Windows domain to which the controller belongs. The controller must be part of a Windows domain (mydomain.com, for example) to authenticate users that belong to that domain.

Check Active Directory access with attribute
Enable this option to have the controller only accept users with a specific setting in their account.

- **Use Active Directory remote access permission**: Use the standard attribute defined in Active Directory for remote access (MsNPAllowDlalin). If this attribute is set, then the user can be authenticated via Active Directory.

- **Use LDAP attribute**: For non-standard implementation of Active Directory, set this according to the equivalent setting on the Active Directory server.

Join
Before the controller can process user authentication using Active Directory, you must join the controller with the Active Directory server. Fill in the required parameters and click **Join Realm Now**. This is usually a one-time event.

Username
Username the controller will use to join Active Directory.

Password
Password the controller will use to join Active Directory.

Note
For security reasons, **Username** and **Password** are not stored on the controller.

Join Realm Now
Select to join the realm immediately.

Status
Shows the status of the join operation as follows:

- **Unknown**: System is processing, no status to report. Refresh the page to update the status.

- **DNS unavailable**: DNS not working, cannot access Active Directory.

- **Missing Config**: No configuration, so join cannot proceed.

- **Never Joined**: Administrator never selected **Join Realm Now**.

- **Not joined**: Not joined: May be joined with the domain, but the join is not confirmed yet. Status will change to **Joined** once confirmed. If the **Not Joined** status persists, check connectivity between the controller and Active Directory or re-join.

- **Joined**: Active Directory reports that controller successfully joined.
Active Directory groups attributes

Displays all Active Directory groups that are defined on the controller. These groups are used to assign attributes to a user once they have been authenticated by Active Directory.

Group names on the controller must be identical to existing Active Directory Organizational Units configured on the Active Directory Server.

Once a user is authenticated by Active Directory, the controller retrieves the names of all the active directory groups of which the user is a member.

- If the user is a member of only one Active Directory group, and that group name appears in the list, the controller applies the attributes from that group.

- If the user is a member of more than one Active Directory group, the controller applies the attributes from the matching group name with the highest priority (highest in the list).

- If no match is found, the attributes defined for one of the default groups are applied as follows:
 - If the VSC the user logged in on is access-controlled then the Default AC Active Directory group is used.
 - If the VSC the user logged in on is not access-controlled then the Default non AC Active Directory group is used.

The default groups are disabled by default. You need to enable them before they can be used.

Add New Group
Select to add a new group. See Configuring an Active Directory group on page 10-12.

Save Priority Settings
After using the up/down arrows to change the priority of groups, save your changes by selecting this button.
Configuring an Active Directory group

An active directory group defines the characteristics of a user session. To make group configuration easy, account profiles (Account profiles on page 9-22) can be applied to set group attributes.

Configuration parameters

General

Group name
Specify a name to identify the group. This name must match an existing Active Directory Organizational Unit configured on the Active Directory Server.

Active
Enable this option to activate the group. The group cannot be used until it is active.

Access-controlled group
Determines whether the group is access-controlled or not.

- Access-controlled groups can only be used to log in on VSCs that are access-controlled.
- Non access-controlled groups can only be used to log in on VSCs that are not access-controlled.

VSC usage
Enable this option to restrict this group to one or more VSCs. If the selected VSCs are not defined on an AP, users will not be able to log in on this account.

The Available VSCs list shows all defined VSCs that you can select from.
To move VSCs between the two lists:

- Double-click the profile you want to move.
- Or, select the profile you want to move and then click the left or right arrow.

Account profiles

Enable this option to set the attributes of this group using one or more account profiles.

The *Available profiles* list shows all defined profiles that you can select from. To add a new profile, open the Controller >> Users > Account profiles page.

To move profiles between the two lists, double-click the profile you want to move, or select the profile you want to move and then select the left or right arrow.

Effective attributes

This list shows all attributes that are active for this Active Directory group. Each time you add an account profile for use by this group, all attributes configured in the profile are added to the *Effective attributes* list.

Note

Each profile that is applied to a group must have a unique set of attributes. The same attribute cannot be present in two different account profiles.

About the Default AC profile

The *Default AC profile* is always present and is always applied to all Active Directory groups. You can use this profile to add additional attributes that are not configurable in an account profile. Instead, these attributes are configured on the Controller >> Public access > Attributes page. Once added there, they will automatically appear in the *Effective attributes* list.

The following attributes can be added using this method:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>For information, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>default-user-use-access-list</td>
<td>Access list on page 14-34</td>
</tr>
<tr>
<td>default-user-welcome-url</td>
<td>Default user URLs on page 14-56.</td>
</tr>
<tr>
<td>default-user-goodbye-url</td>
<td>Default user URLs on page 14-56.</td>
</tr>
<tr>
<td>default-user-one-to-one-nat</td>
<td>Default user one-to-one NAT on page 14-54.</td>
</tr>
<tr>
<td>default-user-idle-timeout</td>
<td>Default user idle timeout on page 14-53.</td>
</tr>
<tr>
<td>default-user-session-timeout</td>
<td>Default user session timeout on page 14-55.</td>
</tr>
<tr>
<td>default-user-max-output-packets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
<tr>
<td>default-user-max-input-packets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
<tr>
<td>default-user-max-total-packets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
</tbody>
</table>
Configuring a VSC to use Active Directory

Any VSC feature that can be configured to support remote authentication can be configured to use Active Directory. For example, with HTML logins.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>For information, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>default-user-max-output-octets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
<tr>
<td>default-user-max-input-octets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
<tr>
<td>default-user-max-total-octets</td>
<td>Default user quotas on page 14-53.</td>
</tr>
<tr>
<td>default-user-max-input-rate</td>
<td>Default user data rates on page 14-54.</td>
</tr>
<tr>
<td>default-user-max-output-rate</td>
<td>Default user data rates on page 14-54.</td>
</tr>
<tr>
<td>default-user-bandwidth-level</td>
<td>Default user bandwidth level on page 14-52.</td>
</tr>
<tr>
<td>default-user-use-public-ip-subnet</td>
<td>Default user public IP address on page 14-55.</td>
</tr>
</tbody>
</table>
Chapter 11: Security

Contents

Firewall..11-2
 Firewall presets ...11-2
 Firewall configuration ..11-4
 Customizing the firewall...11-4

Managing certificates..11-5
 Trusted CA certificate store ...11-6
 Certificate and private key store ...11-8
 Certificate usage ..11-10
 About certificate warnings ...11-11
 IPSec certificates...11-11

MAC lockout..11-13
Firewall

To safeguard your network from intruders, the controller features a customizable stateful firewall. The firewall operates on the traffic streaming through the Internet port. It can be used to control both incoming and outgoing data.

A number of predefined firewall rules let you achieve the security level you need without going to the trouble of designing your own rules. However, you can create a completely custom set of firewall rules to suit your particular networking requirements, if necessary.

If the controller is connected to a wired LAN, the firewall protects the wired LAN as well.

Firewall presets

The easiest way to use the firewall is to use one of the preset settings. Two levels of security are provided:

- **High**: Permits all outgoing traffic, except NetBIOS (TCP and UDP). Blocks all externally initiated connections.
- **Low**: Permits all incoming and outgoing traffic, except for NetBIOS traffic. Use this option if you require active FTP sessions.
The following tables indicate how some common applications are affected by the preset firewall settings.

Outgoing traffic

<table>
<thead>
<tr>
<th>Application</th>
<th>Firewall setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP (passive mode)</td>
<td>Passed</td>
</tr>
<tr>
<td>FTP (active mode)</td>
<td>Passed</td>
</tr>
<tr>
<td>Web (HTTP, HTTPS)</td>
<td>Passed</td>
</tr>
<tr>
<td>SNMP</td>
<td>Passed</td>
</tr>
<tr>
<td>Telnet</td>
<td>Passed</td>
</tr>
<tr>
<td>Windows networking</td>
<td>Passed</td>
</tr>
<tr>
<td>ping</td>
<td>Blocked</td>
</tr>
<tr>
<td>PPTP from client station to remote server</td>
<td>Passed</td>
</tr>
<tr>
<td>NetMeeting (make call)</td>
<td>Passed</td>
</tr>
<tr>
<td>IPSec pass-through</td>
<td>Passed</td>
</tr>
<tr>
<td>NetBIOS</td>
<td>Blocked</td>
</tr>
</tbody>
</table>

Incoming traffic

<table>
<thead>
<tr>
<th>Application</th>
<th>Firewall setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP (passive mode)</td>
<td>Passed</td>
</tr>
<tr>
<td>FTP (active mode)</td>
<td>Passed</td>
</tr>
<tr>
<td>Web (HTTPS)</td>
<td>Passed</td>
</tr>
<tr>
<td>Web (HTTP)</td>
<td>Passed</td>
</tr>
<tr>
<td>Telnet</td>
<td>Passed</td>
</tr>
<tr>
<td>Windows networking</td>
<td>Passed</td>
</tr>
<tr>
<td>PPTP from remote client to a server on the local network</td>
<td>Passed</td>
</tr>
<tr>
<td>ping client on local network</td>
<td>Passed</td>
</tr>
<tr>
<td>IPSec pass-through</td>
<td>Passed</td>
</tr>
<tr>
<td>NetBIOS</td>
<td>Passed</td>
</tr>
<tr>
<td>NetMeeting (receive call)</td>
<td>Passed</td>
</tr>
</tbody>
</table>
Firewall configuration

To configure a firewall, select Controller >> Security > Firewall. The Firewall configuration page opens.

- Select Preset firewall to use a preconfigured firewall setting of High or Low. Select View to see the firewall rules for the selected setting.
- Select Custom firewall if you have specific security requirements. This setting enables you to target specific protocols or ports.

Customizing the firewall

To customize the firewall, you define one or more rules. A rule lets you target a specific type of data traffic. If the controller finds data traffic that matches the rule, the rule is triggered, and the traffic is rejected or accepted by the firewall.

To add a rule, select Custom Firewall on page Security > Firewall, select Edit, and then select Add New Rule.
Rules operate on IP datagrams (sometimes called packets). Datagrams are the individual packages of data that travel on an IP network. Each datagram contains addressing and control information along with the data it is transporting. The firewall analyses the addressing and control information to apply the rules you define.

The controller applies the firewall rules in the order that they appear in the list. An intelligent mechanism automatically adds the new rules to the list based on their scope. Rules that target a large amount of data are added at the bottom. Rules that target specific datagram attributes are added at the top.

Managing certificates

Digital certificates are electronic documents that are used to validate the end parties or entities involved in data transfer. These certificates are normally associated with X.509 public key certificates and are used to bind a public key to a recognized party for a specific time period.

The controller uses certificates for the authentication and/or encryption of data exchanged with peers. The following services make use of certificates:

- Managers or operators accessing the controller management tool
- HTML users accessing the public access interface
- SOAP clients communicating with the controller SOAP server
- RADIUS EAP-TLS
- RADIUS EAP-PEAP (server certificate only)
- IPSec connections
- NOC authentication (see *NOC authentication on page 14-63.*)
The certificate stores provide a repository for managing all certificates (except for those used by IPSec and NOC authentication). To view the certificate stores, select Controller >> Security > Certificate stores.

Trusted CA certificate store

This list displays all root CA certificates installed on the controller. The controller uses the CA certificates to validate the certificates supplied by peers during authentication. Multiple CA certificates can be installed to support validation of peers with certificates issued by different CAs.

The controller uses these certificates to validate certificates supplied by:

- Managers or operators accessing the controller management tool
- HTML users accessing the public access interface
- SOAP clients communicating with the controller SOAP server
- RADIUS EAP

Items provided in this list are as follows:

ID
A sequentially assigned number to help identify certificates with the same common name.

Issued to
Name of the certificate holder. Select the name to view the contents of the certificate.

Current usage
Lists the services that are currently using this certificate.

<table>
<thead>
<tr>
<th>ID</th>
<th>Issued to</th>
<th>Issued by</th>
<th>Current usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOAP API Certificate Authority</td>
<td>wireless.cubris.com</td>
<td>Web Management Tool, SOAP Server, HTML authentication. Billing records logging system</td>
</tr>
<tr>
<td>2</td>
<td>Dummy Authority</td>
<td>Dummy Server Certificate</td>
<td>RADIUS EAP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PKCS #7 file or X.509 certificate:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browse... Install</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PKCS #12 file:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browse... PKCS #12 password: Install</td>
</tr>
</tbody>
</table>
CRL
Indicates if a certificate revocation list is bound to the certificate. An X.509 certificate revocation list is a document produced by a certificate authority (CA) that provides a list of serial numbers of certificate that have been signed by the CA but that should be rejected.

Delete
Select to remove the certificate from the certificate store.

Installing a new CA certificate
1. Specify the name of the certificate file or select Browse to choose from a list. CA certificates must be in X.509 or PKCS #7 format.
2. Select Install to install a new CA certificate.

CA certificate import formats
The import mechanism supports importing the ASN.1 DER encoded X.509 certificate directly or as part of two other formats:
- PKCS #7 (widely used by Microsoft products)
- PEM, defined by OpenSSL (popular in the Unix world)
- The CRL can be imported as an ASN.1 DER encoded X.509 certificate revocation list directly or as part of a PEM file.

<table>
<thead>
<tr>
<th>Content and file format</th>
<th>Items carried in the file</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASN.1 DER encoded X.509 certificate</td>
<td>One X.509 certificate</td>
<td>This is the most basic format supported, the certificate without any envelope.</td>
</tr>
<tr>
<td>X.509 certificate in PKCS #7 file</td>
<td>One X.509 certificate</td>
<td>Popular format with Microsoft products.</td>
</tr>
<tr>
<td>X.509 certificate in PEM file</td>
<td>One or more X.509 certificates</td>
<td>Popular format in the Unix world. X.509 DER certificate is base64 encoded and placed between "-----BEGIN CERTIFICATE-----" and "-----END CERTIFICATE-----" lines. Multiple certificates can be repeated in the same file.</td>
</tr>
<tr>
<td>ASN.1 DER encoded X.509 CRL</td>
<td>One X.509 CRL</td>
<td>Most basic format supported for CRL.</td>
</tr>
</tbody>
</table>
Managing certificates

Default CA certificates
The following certificates are installed by default:

- **SOAP API Certificate Authority**: Before allowing a SOAP client to connect, the controller checks the certificate supplied by a SOAP client to ensure that it is issued by a trusted certificate authority (CA).

- **Dummy Authority**: Used by the internal RADIUS server. You should replace this with your own CA certificate.

Note
For security reasons, you should replace the default certificates with your own.

Certificate and private key store
This list displays all certificates installed on the controller. The controller uses these certificates and private keys to authenticate itself to peers.

Items provided in this list are as follows:

- **ID**: A sequentially assigned number to help identify certificates with the same common name.

- **Issued to**: Name of the certificate holder. Select the name to view the contents of the certificate.

- **Issued by**: Name of the CA that issued the certificate.

- **Current usage**: Lists the services that are currently using this certificate.

- **Delete**: Select to remove the certificate from the certificate store.

Installing a new private key/public key certificate chain pair

Note
RADIUS EAP certificates must have the X.509 extensions. Information about this is available in the Microsoft knowledgebase at:

http://support.microsoft.com/kb/814394/en-us
The certificate you install must:

- Be in PKCS #12 format.
- Contain a private key (a password controls access to the private key).
- Not have a name that is an IP address. The name should be a domain name containing at least one dot. If you try to add a certificate with an invalid name, the default certificate is restored.

The common name in the certificate is automatically assigned as the domain name of the controller.

1. Specify the name of the certificate file or select **Browse** to choose one from a list. Certificates must be in PKCS #7 format.

2. Specify the **PKCS #12 password**.

3. Select **Install** to install the certificate.

Default installed private key/public key certificate chains

The following private key/public key certificate chains are installed by default:

- **wireless.colubris.com**: Default certificate used by the management tool, SOAP server, and HTML-based authentication.

- **Dummy Server Certificate**: Used by the internal RADIUS server. This certificate is present only to allow EAP-PEAP to work if the client chooses not to verify the server's certificate. You should replace this with your own certificate for maximum security.

Note

When a Web browser connects to the controller using SSL, the controller sends only its own SSL certificate to the browser. This means that if the certificate has been signed by an intermediate certificate authority, and if the Web browser only knows about the root certificate authority that signed the public key certificate of the intermediate certificate authority, the Web browser does not get the whole certificate chain it needs to validate the identity of the controller. Consequently, the Web browser issues security warnings. To avoid this problem, make sure that you install the entire certificate chain when you install a new certificate on the controller.

Note

An SNMP notification is sent to let you know when the controller SSL certificate is about to expire if you enable the **Notifications** option on the **Controller >> Management > SNMP** page and then click **Configure Notifications** and enable the **Certificate about to expire** notification under **Maintenance**.
Certificate usage

To see the services that are associated with each certificate, select Security > Certificate usage. With the factory default certificates installed, the page will look like this:

<table>
<thead>
<tr>
<th>Service</th>
<th>Authenticate to peer using</th>
<th>Number of associated CAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Management Tool</td>
<td>1 - wireless.colubris.com</td>
<td>0</td>
</tr>
<tr>
<td>SOAP Server</td>
<td>1 - wireless.colubris.com</td>
<td>1</td>
</tr>
<tr>
<td>HTML authentication</td>
<td>1 - wireless.colubris.com</td>
<td>0</td>
</tr>
<tr>
<td>RADIUS PAD</td>
<td>2 - Dummy Server Certificate</td>
<td>1</td>
</tr>
<tr>
<td>Authorize.Net</td>
<td><none></td>
<td>1</td>
</tr>
<tr>
<td>Filtering records logging system</td>
<td>1 - wireless.colubris.com</td>
<td>0</td>
</tr>
</tbody>
</table>

Service

Name of the service that is using the certificate. To view detailed information on the certificate select the service name.

Authenticate to peer using

Name of the certificate and private key. The controller is able to prove that it has the private key corresponding to the public key in the certificate. This is what establishes the controller as a legitimate user of the certificate.

Number of associated CAs

Number of CA certificates used by the service.

Changing the certificate assigned to a service.

Select the service name to open the Certificate details page. For example, if you select Web management tool, you will see:

Under **Authentication to the peer**, select a new **Local certificate** and then select **Save**.
About certificate warnings

Access to the management tool and the public access interface Login page must occur through a secure connection (SSL). Until a valid, trusted certificate is installed on the controller, certificate warnings will appear at login.

To eliminate these warnings you can purchase a valid SSL certificate (from a source such as Verisign) that will work with the default configuration of your Web browser, and install it on the controller. See Installing a new CA certificate on page 11-7.

To continue to work with the management tool without installing a certificate, select the option that allows you to continue to the Website.

IPSec certificates

IPSec certificates are managed on the lower portion of the Controller >> VPN > IPSec page.

IPSec — Trusted CA certificates

The controller uses the CA certificates to validate the certificates supplied by peers during the authentication process. Multiple CA certificates can be installed to support validation of peers with certificates issued by different CAs.

- **Certificate file**: Specify the name of the certificate file or select **Browse** to choose from a list. CA certificates must be in X.509 or PKCS #7 format.
Managing certificates

- **Install**: Select to install the specified certificate.

IPSec — Manage CA certificates

Use this box to manage the root CA certificate.

- **Certificate**: Select from a list of installed certificates.
- **Remove**: Delete the item shown under **Certificate**.
- **View**: Open the item shown under **Certificate** for viewing.

IPSec — Local certificate store

This is the certificate that the controller uses to identify itself to IPSec peers.

Note

If the local certificate includes a CA certificate, both certificates are installed.

- **Certificate Request Wizard**: Helps you to generate a certificate request that can be used to obtain a signed certificate from a certificate authority. Once you obtain the certificate, you can use the **Certificate Request Wizard** to install it on the controller.
- **Certificate file**: Specify the name of the certificate file or select **Browse** to choose from a list.
- **Password**: Specify the certificate password.
- **Install**: Select to install the certificate.

IPSec — Manage local certificate

Use this box to manage the local certificate.

- **Certificate**: Shows the common name of the installed certificate.
- **Remove**: Delete the item shown under **Certificate**.
- **View**: Open the item shown under **Certificate** for viewing.

IPSec — X.509 certificate revocation list

Use this box to update the certificate revocation list (CRL) that is issued by the certificate authority.

The controller uses the CRL to determine if the certificates provided by clients during the authentication process have been revoked. The controller will not establish a security association with a client that submits a revoked certificate.

The controller can obtain a CRL in two ways:

- You can manually install it.
- The controller can automatically install a CRL based on information contained in a client certificate. This occurs only if a CRL is not installed, or if the installed CRL is expired.

- **CRL file**: Specify the name of the CRL file or select **Browse** to choose from a list.
- **Install**: Select to install the specified CRL.
LDAP server: A client certificate may contain a list of locations where the CRL can automatically be retrieved. This location may be specified as an HTTP URL, FTP URL, LDAP URL, or LDAP directory. If the LDAP URL or directory is incomplete, the controller uses the location you specify to resolve the request. Incomplete HTTP or FTP URLs fail.

Port: Port on the LDAP server. Default is 389.

IPSec — Manage certificate revocation list

Use this box to manage the CRL.

- **CRLs**: Shows a list of installed certificate revocation lists.
- **Remove**: Deletes the item shown under **CRLs**.
- **View**: Opens the item shown under **CRLs** for viewing.

MAC lockout

This feature lets you to block traffic from client stations based on their MAC address. MAC lockout applies to client stations connected to:

- Wireless ports on controlled APs
- Wired ports (including switch ports) on controller APs
- Local mesh ports on controller APs
- The LAN port on the controller

Note

MAC lockout does not apply to the Internet port on the controller.

Adding a MAC lockout address

1. Select **Controller >> Security > MAC lockout**.

2. Select **Add New MAC Address**.
3. Specify the MAC address as six pairs of hexadecimal digits separated by colons. For example: 00:00:00:0a:0f:01.

4. Select **Save**.
Local mesh

Contents

Key concepts ... 12-2
- Simultaneous AP and local mesh support ... 12-2
- Using 802.11a/n for local mesh ... 12-3
- Quality of service .. 12-3
- Maximum range (ack timeout) .. 12-4

Local mesh terminology ... 12-5

Local mesh operational modes .. 12-6
- Node discovery .. 12-6

- Operating channel .. 12-6

Local mesh profiles... 12-7
- Configuration guidelines .. 12-8
- Configuring a local mesh profile .. 12-8

Provisioning local mesh links .. 12-11

Sample local mesh deployments .. 12-14
- RF extension ... 12-14
- Building-to-building connection ... 12-14
- Dynamic network .. 12-15
Key concepts

The local mesh feature enables you to create wireless links between one or more APs. These links create a wireless bridge that interconnects the networks connected to the Ethernet port on each AP.

The local mesh feature replaces the need for Ethernet cabling between APs, enabling expanded Wi-Fi coverage through the use of wireless bridges to transport network traffic in hard-to-wire or outdoor areas.

Key local mesh features include:

- **Automatic link establishment**: Nodes automatically establish wireless links to create a full-connected network. A dynamic network identifier (local mesh group ID) restricts connectivity to groups of nodes, enabling distinct groups to be created with nodes in the same physical area.

- ** Provides fall-back operation to recover from node failure.** In a properly designed implementation, redundant paths can be provided. If a node fails, the mesh will automatically reconfigure itself to maintain connectivity.

- **Maintains network integrity when using DFS channels.** In accordance with the 802.11h standard, dynamic frequency selection (DFS) detects the presence of certain radar devices on a channel and automatically switches the network node to another channel if such signals are detected. 802.11h is intended to resolve interference issues with military radar systems and medical devices.

Note

Depending on the radio regulations of some countries, DFS channels are only available on the 802.11a/ band, which is the preferred band for local mesh backhaul. If more than one node detects radar simultaneously and must switch channels, each node does not necessarily switch to the same channel, and the network might never reconverge. To avoid this problem, local mesh detects a change in channel and provides a means to reconnect on other channels by scanning on multiple channels. See *Operating channel on page 12-6*.

Simultaneous AP and local mesh support

APs can be configured to support both access point and local mesh functionality whether they have a single radio, or multiple radios.

Single radio APs

A single radio can be configured to simultaneously support wireless users and one or more local mesh links. Although this offers flexibility it does have the following limitations:

- The total available bandwidth on the radio is shared between all local mesh links and wireless users. This can result in reduced throughput if lots of traffic is being sent by both wireless users and the local mesh links. You can use the QoS feature to prioritize traffic.

- It limits you to using the same radio options for both wireless clients and local meshes.
Multiple radio APs
On APs with more than one radio, one radio can be dedicated to support wireless users and another to provide local mesh links. Each radio can be configured optimally according to its application.

Using 802.11a/n for local mesh
It is recommended that 802.11a/n in the 5 GHz band be used for local mesh links whenever possible. This optimizes throughput and reduces the potential for interference because:

- Most Wi-Fi clients support 802.11b or b/g, therefore most APs are set to operate in the 2.4 GHz band. This frees the 5 GHz (802.11a) band for other applications such as local mesh.
- 802.11a/n channels in the 5 GHz band are non-overlapping.
- Assuming an optimal implementation, 802.11a/n supports up to 54 Mbps for data throughput, providing a *fat pipe* for traffic exchange.

The main limitations in using the 5 GHz band are:

- Since the same radio options must be used for both wireless clients and local mesh links, support for 802.11b/g clients is not possible on APs with a single radio.
- The 5 GHZ band has a shorter reach when compared to the 2.4 GHz band. This could be a factor depending on the distance your links must span.

Quality of service
The local mesh feature enables you to define a quality of service (QoS) setting that will govern how traffic is sent on all wireless links.

![Quality of Service](image)

Note
When traffic is forwarded onto a local mesh link from a VSC, the QoS settings on the VSC take priority. For example, if you define a VSC with a QoS setting of **VSC-based High**, then traffic from this VSC will traverse the local mesh on queue 2 even if the QoS setting on the local mesh is **VSC-based Low** (queue 4).
Maximum range (ack timeout)

This is a global setting that is configurable on the Radio page when the Operating mode is set to support Local mesh. It fine tunes internal timeout settings to account for the distance that a link spans. For normal operation, it is set to less than 1 km.

This is a global setting that applies to all wireless connections made with a radio, not just for local mesh links. Therefore, if you are also using a radio to access an AP, adjusting this setting may lower the performance for users with marginal signal strength or when interference is present. (Essentially, it means that if a frame needs to be retransmitted it will take longer before the actual retransmit takes place.)
Local mesh terminology

The following table defines terms that are used in this guide when discussing the local mesh feature.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>An AP that is configured to support local mesh connections.</td>
</tr>
<tr>
<td>Root node</td>
<td>The root node is configured in Master mode and provides access to the root network.</td>
</tr>
<tr>
<td>Alternate master node</td>
<td>A node that is configured in Alternate master mode which enables it to make upstream and downstream connections.</td>
</tr>
<tr>
<td>Slave node</td>
<td>A node that is configured in Slave mode which enables it to make upstream connections only.</td>
</tr>
<tr>
<td>Root network</td>
<td>Wired network to which the root node is connected. This is the network to which the local mesh provides access for all connected alternate master and slave nodes.</td>
</tr>
<tr>
<td>Mesh</td>
<td>A series of nodes that connect to form a network. Each mesh is identified by a unique mesh ID.</td>
</tr>
<tr>
<td>Link</td>
<td>The wireless connection between two nodes.</td>
</tr>
<tr>
<td>Downstream link</td>
<td>A link that transports data away from the root network.</td>
</tr>
<tr>
<td>Upstream link</td>
<td>A link that transports data towards the root network.</td>
</tr>
<tr>
<td>Peer</td>
<td>Any two connected nodes are peers. In the diagram, AP 1 is the peer of both AP 2 and AP 3.</td>
</tr>
</tbody>
</table>
Local mesh operational modes

Three different roles can be assigned to a local mesh node: **Master**, **Alternate Master**, or **Slave**. Each role governs how upstream and downstream links are established by the node.

- **Master**: Root node that provides the upstream link to the ground network that the other nodes want to reach. The master never tries to connect to any other node. It waits for links from downstream alternate master or slave nodes.

 Note: It is possible to have several masters for the same mesh ID connected to the ground network. This can be used to provide redundant paths to the ground network for downstream nodes.

- **Alternate Master**: First establishes an upstream link with a master or alternate master node. Next, operates as a master node waiting for links from downstream alternate master or slave nodes.

- **Slave**: Can only establish an upstream link with master or alternate master node. Slave nodes cannot establish downstream links with other nodes.

Node discovery

Discovery of another node to link with is limited to nodes with the same mesh ID. The link is established with the node that has the best score based on the following calculation:

\[
\text{Score} = \text{SNR} - (\text{Number of hops} \times \text{SNR cost of each hop})
\]

If a node loses its upstream link, it automatically discovers and connects to another available node.

Note: A master or alternate master must be seen with an SNR of 20 or higher before a slave will attempt to connect to it.

Operating channel

If a mesh operates on a dynamic frequency selection (DFS) channel, the master node selects the operating channel. If another node detects radar and switches channels, that node reports the channel switch to the master node, which initiates a channel switch for the nodes connected to it. This allows the local mesh to converge on a specific channel.

A node that uses a DFS channel and that loses connection with its master, scans channels to find a master on another channel, which can be a new master or the same master.

If the local mesh does not operate on a DFS channel, configure the radios in one of the following ways:
Configure the radios on all nodes to use the same fixed channel.

Configure the radios for automatic channel selection. In this case the master selects the least noisy channel. Slaves and alternate masters scan channels until they find the master, then tune to the master channel and link with the master.

Local mesh profiles

A local mesh profile defines the characteristics for the type of links that can be established with other nodes as follows:

<table>
<thead>
<tr>
<th>Role</th>
<th>Upstream link</th>
<th>Downstream link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td>None.</td>
<td>Up to nine links with alternate master or slave nodes.</td>
</tr>
<tr>
<td>Alternate master</td>
<td>A single link to a master node or alternate master node.</td>
<td>Up to eight links with alternate master or slave nodes.</td>
</tr>
<tr>
<td>Slave</td>
<td>A single link to a master node or alternate master node.</td>
<td>None.</td>
</tr>
</tbody>
</table>

Each node supports up to six profiles plus one provisioning profile. When a profile is active, a node constantly scans and tries to establish links as defined by the profile.

The **local mesh provisioning profile** is used by the wireless link created on a provisioned AP to support discovery of the controller. Initially, this link operates in slave mode. If you configure this profile as an alternate master, then it can also be used to establish up to nine downstream links with alternate master or slave nodes. See *Provisioning local mesh links on page 12-11* for more information.

Local mesh profiles are configurable at the controlled APs, group, or AP level. To view all profiles select **Controller > Controlled APs >> Configuration > Local mesh**. Or you can expand **Controlled APs** and select a group or specific AP. The following is an example of the profile list displayed when selecting **Controlled APs >> Configuration > Local mesh**.
Configuration guidelines

- In addition to the provisioning profile, you can configure a total of six local mesh profiles on each node.
- Each local mesh profile (on a master or alternate master) can be used to establish up to nine links with other nodes.
- The same security settings must be used on all nodes in the same mesh.
- Any node that reaches the controller through the local mesh and uses local mesh itself, must be provisioned prior to discovery.
- Daisy-chaining of nodes using local mesh links dramatically reduces throughput (which is typically divided by two for each hop) especially when one or more of the following are true:
 - Nodes provide both upstream and downstream links on the same radio.
 - Nodes share a radio with AP functionality.
 - IP traffic originating from a node can be sent on the link on which the controller was discovered.

Configuring a local mesh profile

To configure profiles #1 to #6, select a name in the list. The Local mesh profile page opens.
For **Slave** and **Alternate Master**, the **Settings** box shows the additional options, for example Alternate Master:

![Settings](image)

General

Enabled/Disabled
Specify if the profile is enabled or disabled. The profile is only active when enabled.

Name
Name of the profile.

On dual-radio products use
Select the radio to use for this link.

Settings

Mode
Three different roles can be assigned to a node: master, alternate master, or slave. Each role governs how links are established. Links are defined as either upstream or downstream.

- **Master**: The master is the root node that provides the upstream connection to the *ground network* that the other nodes want to reach. The master will only create downstream local mesh links to alternate master or slave nodes.

- **Slave**: Slave nodes can only establish upstream links with master or alternate master nodes. Slave nodes cannot establish downstream links with other nodes.

- **Alternate Master**: An alternate master node must first establish an upstream link with a master or alternate master node before it can establish downstream connections with an alternate master or slave node.

Mesh ID
Unique number that identifies a series of nodes that can connect together to form a local mesh network.
Allowed downtime
The maximum time (in seconds) that a link can remain idle before the link actually gets deleted. When a slave (or alternate master) loses its link to its master, the discovery phase is re-initiated.

Minimum SNR
(Alternate master or slave nodes)
This node will only connect with other nodes whose SNR is above this setting (in dB).

SNR cost per hop
(Alternate master or slave nodes)
This value is an estimate of the cost of a hop in terms of SNR. It indicates how much SNR a node is willing to sacrifice to connect to a node one hop closer to the root node, because each hop has an impact on performance, especially when using a single radio.

Initial discovery time
(Alternate master or slave nodes)
Amount of time that will be taken to discover the best available master node. The goal of this setting is to delay discovery until all the nodes in the surrounding area have had time to startup, making the identification of the best master more accurate. If this period is too short, a slave may connect to the first master it finds, not necessarily the best.

Security
Enable this option to secure data transmitted on the wireless link. The APs on both sides of the wireless link must be configured with the same security options.

WEP
This feature has been deprecated. If you are creating a new installation, use AES/CCMP.
If you are upgrading from a previous release, your existing configuration will still work.

Enables WEP to secure traffic on the wireless link.
Specify the encryption key the node will use to encrypt/decrypt all data it sends and receives. The key is 128 bits long and must be specified as 26 hexadecimal digits.

TKIP
This feature has been deprecated. If you are creating a new installation, use AES/CCMP instead. If you are upgrading from a previous release, your existing configuration will still work.

Enables TKIP encryption to secure traffic on the wireless link.
The node uses the key you specify in the PSK field to generate the TKIP keys that encrypt the wireless data stream.
Specify a key that is between 8 and 63 ASCII characters in length. It is recommended that the key be at least 20 characters long, and be a mix of letters and numbers.
AES/CCMP

Enables AES with CCMP encryption to secure traffic on the wireless link. This is the most secure method.

The node uses the key you specify in the PSK field to generate the keys that encrypt the wireless data stream.

Specify a key that is between 8 and 63 ASCII characters in length. It is recommended that the key be at least 20 characters long and be a mix of letters and numbers.

Provisioning local mesh links

APs operating in controlled mode must be able to discover and connect with a controller. When operating as part of a local mesh, any AP that can only discover the controller via a wireless link must be provisioned before being deployed. In this example, AP 1, AP 2, AP 4, and AP 5 must be provisioned prior to deployment for discovery to be successful. (Since AP 3 is using a wired link, it does not need to be provisioned for this scenario.)

Provisioning is done before APs are deployed using either of the following methods:

- Directly connect to each AP and use its management tool to define provisioning settings.
- Connect the APs to the controller (either directly via the LAN port or through a local area network). After the APs are discovered, use the controller management tool to define provisioning settings by opening the **Provisioning > Connectivity** page at either the group or AP level.
In this example, AP 1, AP 2, and AP 4 are all provisioned with the same settings as follows:

- **Product**: Indicates the product type.
- **Radio**: Select the radio that will be used for the local mesh.
- **Wireless mode**: Select the wireless mode that will be used for the local mesh.
- **Antenna selection**: Select the antenna(s) on which the radio transmits and receives.
 - **Internal**: The internal antenna is used to transmit and receive.
 - **External**: The external antenna is used to transmit and receive.

Use the Local mesh radio configuration table to define local mesh settings for each product type.
The controller and all APs must all be configured for the same country, so that the local mesh established respects your local RF regulations. The controller country setting is defined by selecting Controller >> Management > Country. APs with the wrong country setting will be displayed with a diagnostic of Invalid Country on the Controlled APs >> Overview page.

The local mesh provisioning profile for AP 2 needs to be set to alternate master mode so that it can support a connection from AP 1. Select AP 2 in the Network Tree and then open the Configuration > Local mesh page and select Local mesh provisioning profile.

To enable the controller to send provisioned settings to controlled APs, activate the Enable provisioning of controlled APs option on the Controller >> Controlled APs > Provisioning page.

Until this option is enabled, provisioned settings defined on the controller are not sent to any controlled APs.

Once provisioning settings have been defined you need to update all controlled APs with the new settings by synchronizing them as described in Synchronizing APs on page 5-23.

After an AP has been updated with provisioned settings, the provisioned settings do not become active until the AP is restarted, or a Remove and rediscover action is executed on the Controlled APs >> Configured APs page.
Sample local mesh deployments

RF extension

Local mesh provides an effective solution for extending wireless coverage in situations where it is impractical or expensive to run cabling to an AP.

In this scenario, a wireless bridge is used to extend coverage of the wireless network. Both APs are equipped with omni-directional antennas, enabling them to deliver both AP capabilities and wireless bridging using local mesh capabilities.

Building-to-building connection

You can also use local mesh to create point-to-point links over longer distances. In this scenario, two dual-radio APs create a wireless link between networks in two adjacent buildings. Each AP is equipped with a directional external antenna attached to radio 1 to provide the wireless link. Omnidirectional antennas are installed on radio 2 to provide AP capabilities. The two APs are placed within line of sight.

Note

In the above example, all APs must connect to the backbone network via port 1.
Dynamic network

In this scenario, a controller is deployed with several APs to provide wireless coverage of a large area. Instead of using a backbone LAN, wireless links are used to interconnect all APs.

AP 1 is the *master*. It provides the connection to the wired network and a wireless link to the other APs. The other APs automatically established their links to the master based on a balance between SNR (signal to noise ratio) and hops, to provide the most efficient network topology.

If a node becomes unavailable, the links dynamically adjust to find the optimum path to the master.

Controller
MASTER
AP 1
ALTERNATE
MASTER
AP 2
ALTERNATE
MASTER
AP 3
ALTERNATE
MASTER
AP 4
ALTERNATE
MASTER
AP 5
ALTERNATE
MASTER
AP 6

Initial network configuration is automatically established.

Controller
MASTER
AP 1
ALTERNATE
MASTER
AP 2
ALTERNATE
MASTER
AP 3
ALTERNATE
MASTER
AP 4
ALTERNATE
MASTER
AP 5
ALTERNATE
MASTER
AP 6

When AP 4 is unavailable, the network dynamically reconfigures itself.
Local mesh
Sample local mesh deployments
Public/guest network access

Contents

Key concepts ... 13-3
 About the public and protected networks .. 13-3
 About the public access interface .. 13-4
 Public access examples .. 13-4
 Default configuration .. 13-4

Public access interface tour ... 13-5
 About the “Subscribe to the service” feature .. 13-5
 About the “Use Free Access service” feature .. 13-8
 About the “Existing user” feature ... 13-8
 Displaying advertisements ... 13-10

Public access interface flow ... 13-11

Customizing the public access interface .. 13-12
 Common configuration tasks ... 13-13

Setting site configuration options .. 13-18
 Allow subscription plan purchases ... 13-18
 Display the Free Access option .. 13-19
 Support a local Welcome page ... 13-19
 Use frames when presenting ads .. 13-19
 Allow SSLv2 authentication ... 13-20
 Redirect users to the Login page via ... 13-20

Customizing public access interface Web pages .. 13-21
 Site file archive .. 13-21
 FTP server .. 13-21
 Current site files ... 13-22

Global access control settings .. 13-29
 Access control parameter definitions ... 13-30
Web server configuration ... 13-33
 Options ... 13-33
 Ports ... 13-33
 MIME types .. 13-34
 Security ... 13-35

Payment services ... 13-36
 Payment services configuration .. 13-36
 Service settings ... 13-36

Billing record logging .. 13-38
 Settings ... 13-38
 Persistence .. 13-39
 External billing records server profiles 13-40
 Billing records log .. 13-43

Location-aware authentication ... 13-44
 How it works ... 13-44
 Example ... 13-46
 Security ... 13-47
Key concepts

The Public/Guest Network Access feature enables the controller to provide controlled network access for a variety of deployments. Some common applications of this feature are:

- Providing Internet access to wireless customers in airports, restaurants, train stations, conference halls, etc.
- Providing wireless and wired access to staff and guests in hospitals, corporations, government buildings.
- Providing wireless and wired access to students, staff, and teachers in schools and universities.
- Providing outdoor wireless access for an entire town, enabling city workers, police, fire, public security, and the general public to connect.

This chapter provides details on the public/guest network access feature and how it can be used. See Chapter 14: Working with RADIUS attributes on page 14-1.

About the public and protected networks

In this type of deployment, the controller acts as the gatekeeper between two distinct network segments: the public network and the protected network.

- Typically, access to the public network and its resources is available to all users once they successfully associate with the wireless network.

- Access to the private network is restricted by the controller, and typically requires that users be authenticated by the controller. In most cases, user login occurs with a Web browser via the public access interface Login page. The controller can validate user login credentials using locally defined user accounts or by using the services of a third-party authentication server (RADIUS or Active Directory).

The following diagram shows the public and private networks for a simple public access deployment.
About the public access interface

The public access interface is the sequence of Web pages that users use to log in, log out, and view the status of their wireless connections to the public access network. By default, these Web pages are hosted on the controller integrated Web server. However, pages can also be hosted on external servers for added flexibility.

Standard pages are provided for common tasks such as login, service purchase, and display of session information. The pages are all fully editable and customizable, enabling you to tailor the public access interface Web pages to provide a customized look-and-feel for your site.

Advertisements can be displayed at a specific interval if required.

Note

The public access interface is only active on access-controlled VSCs.

Note

If only MAC-based authentication is defined on the default VSC, wired users gain access to the network without being authenticated. Wireless users however, must log in because MAC-based authentication applies to wireless users only.

Public access examples

Sample public access files are referenced in this chapter. You can download a Public Access Examples zip file from the HP ProCurve manuals page at: www.hp.com/go/procurve/manuals. Look under **MSM7xx Controllers**. Download the zip file and extract its content to a folder on your computer.

Default configuration

By default, the controller creates a VSC named **HP ProCurve** with the following properties:

- **Wireless network name**: HP ProCurve
- **Use Controller for Authentication** is enabled. (If you disable this option, the controller will not provide user authentication services for 802.1X, WPA, or WPA2.)
- **Use Controller for Access control** is enabled. (If you disable this option, you disable the public access interface and all users gain access to the protected network.)
- HTML-based authentication is enabled.

This means that when a user connects to the default VSC:

- Unauthenticated users cannot access the protected network, except for: procurve.com (for product registration) and windowsupdate.com (for IE which tries to get to a windows update on fresh start).

- Authenticated users *can access all* protected network resources.

Note

If authentication is not enabled on a VSC, all connected users can access the protected network.
Public access interface tour

The controller includes a Web server that is used to host the Web pages that make up the public access interface. Standard pages are provided for common tasks such as login, subscription purchase, and display of session information. The pages, error messages, images, and workflow are all customizable. Advertisements can be displayed at a specific interval.

This tour of the public access interface shows the default public access interface pages, and some of the customization options available by selecting **Controller >> Public access >> Web content > Site options**.

When a wireless user attempts to browse to a public Web site, they are temporarily redirected to the public access interface Login page shown below.

About the “Subscribe to the service” feature

When this feature is enabled, it allows first-time users to subscribe to the service by dynamically creating their own accounts, which includes setting the following:

- username and password
- subscription plan
- payment method

Existing users can also select this option in order to change the subscription plan and billing method they are currently using.

To configure this feature, see *Allow subscription plan purchases on page 13-18*.

The following steps illustrate the typical user experience when this feature is active.
1. On the Login page, the user selects **Subscribe to this service** and clicks **Proceed**. On the Subscribe page, the user selects a subscription plan and clicks **Next**.

 ![Login page and Subscribe page](image)

2. On the Account page, the user creates a new **Username** and **Password** and clicks **Next**. On the Payment page, the user enters payment information and clicks **Review**. Finally, the user reviews the purchase information, and clicks **Charge to Credit Card Now**. **Cancel** is available at each stage.

 ![Account page, Payment page, and Review page](image)

3. Purchase success or failure is indicated with an appropriate message.

 ![Purchase Approved page and Purchase Failed page](image)
4. After a successful purchase, the user clicks **Login**. The welcome page appears. The user can then click **Continue browsing** to launch the page that they originally requested, or click other links as desired.

Note that when enabled, and a user with a still-valid subscription re-connects to the network, they are automatically logged in and greeted with the Welcome back page.

5. As soon as the user has a successful login, a small session page also appears. When the subscription plan has only 10 minutes left, a warning appears encouraging the user to purchase another plan before their existing one expires. Detailed subscription plan information is available via the Session page subscription plan link.
About the “Use Free Access service” feature

This feature provides free access to any user. Users simply select this option and click **Proceed**. They can then browse freely without the need for a username or login.

To activate this feature, see *Display the Free Access option on page 13-19*.

About the “Existing user” feature

Users that already have an account, use this option to log in. These could be predefined accounts that were created by an administrator, or user-created accounts created via the **Subscribe to the service** feature.

You can use this option to support a prepaid model in which users purchase a network access voucher before logging in. To do this, you first need to create a suitable subscription plan and then define users (see *Locally-defined user accounts on page 9-21* or *Chapter 10: Authentication services on page 10-1*).

Users can then log in and use the service for as long as the subscription plan permits.

Defining a subscription plan for access purchase

Configure subscription plans by selecting **Controller >> Users > Subscription plans**.
Select **Add New Plan** to add a plan or click a plan name to edit it. Be sure to enter a descriptive plan name, enable Billing, and include the Plan fee, and Validity period. For example, here is a plan definition and how it appears in the public access interface. See *Defining subscription plans on page 9-29.*
Displaying advertisements

When enabled, and the configured interval has elapsed, an administrator-defined advertisement is displayed either in a frame or on a separate page. For example:

- Logo and advertisement displayed in frame at top of page:

![Logo and advertisement displayed in frame at top of page]

- Logo and advertisement displayed on separate page. User clicks **Continue browsing** to continue:

![Logo and advertisement displayed on separate page. User clicks Continue browsing to continue]

To display ads in a frame, enable **Controller > Public access > Access control > Display advertisements**. Optionally also set the display interval.

Note

Once the **Display advertisements** option is enabled, advertisements are displayed for all users. You can selectively disable the display of advertising in user profiles (**Users > Account profiles**), subscription plans (**Users > Subscription plan**), or via attributes set in a user’s RADIUS account.
Public access interface flow

The two following diagrams provide an overview of the default public access interface Web page flow. All site Web pages are identified by their role: **Login**, **Welcome**, **Logout**, etc. This abstraction is used because the name of the actual page used for a particular role is configurable in many cases. (For reference, the page name used by the factory default configuration is provided in parenthesis.)

For a description of the individual pages, see *Current site files on page 13-22.*
Customizing the public access interface

The public access interface can be customized using the methods described below. You might use one or more of these methods, depending on the type of customization that you want to perform.

- **Setting site configuration options**: The site configuration options on the Controller >> Public access > Web content page can be used to quickly enable/disable certain public access features.

 See Setting site configuration options on page 13-18.

- **Customizing the public access interface Web pages**: The Web pages hosted on the controller internal Web server can be modified, allowing the entire public access interface to be customized. Simple modifications can be made with basic knowledge of

*1 Not a user choice. (WorldPay or Authorize.net is pre-configured.)
HTML. Users with advanced HTML skills and knowledge of ASP and Javascript will be able to fully-customize all site operations.

See *Customizing public access interface Web pages on page 13-21*.

- **Setting public access attributes:** Configuration of a number of public access features can be accomplished by setting various RADIUS attributes. There categories of attributes are available:
 - **Site attributes:** These attributes are used to configure site-related options and global settings that apply to all user sessions. They can be defined in the RADIUS account for the controller or reside locally on the controller.

 See *Controller attributes overview on page 14-4*.
 - **User attributes:** These attributes are used to customize settings on a per-user basis. These attributes can reside locally on the controller or be retrieved from a third-party RADIUS server.

 See *Defining and retrieving user attributes on page 14-14*.

Common configuration tasks

Customizing the login page

1. Select Controller >> Public access > Web content.
2. Under Current site files, click index.asp.
3. Edit index.asp to meet the requirements of your site.
4. Click Save.

Customizing the logo

1. Create a file called logo.gif that contains your logo (recommended size less than 20K).
2. Select Controller >> Public access > Web content.
3. Under Current site files, click the garbage can icon to the right of logo.gif to delete it.
4. Click Add New File.
5. For Filename, specify logo.gif.
6. Next to Load content from file, click Browse.
7. Select the logo.gif file that you created in Step 1.
8. Click Load.
Displaying custom welcome and goodbye pages

This example shows how to display unique welcome and goodbye pages for specific users or groups of users.

For this example, assume you have two sets of users: basic and premium. To distinguish the two groups, you have set up the user accounts on the RADIUS server accordingly. (Perhaps you are using access lists to restrict each group to a different section of the public network as described in *Access list example on page 14-40*).

1. Create the following two folders on your Web server: **basic** and **premium**.
2. See *Public access examples on page 13-4*. Copy public access sample files **welcome.html** and **goodbye.html** into each both folders and customize them for each set of users.
3. Add the following entry to the RADIUS profile for the basic users.

   ```
   welcome-url=web_server_URL/basic/welcome.html
   goodbye-url=web_server_URL/basic/goodbye.html
   ```
4. Add the following entry to the RADIUS profile for the premium users.

   ```
   welcome-url=web_server_URL/premium/welcome.html
   goodbye-url=web_server_URL/premium/goodbye.html
   ```
5. Add the following entry to the RADIUS profile for the controller. This gives all unauthenticated users access to the Web server hosting the goodbye page.

   ```
   access-list=loginserver,ACCEPT,tcp,web_server_IP_address,port_number
   ```

Delivering dynamically generated content

Another way to generate custom pages is to add placeholders in the URLs for the custom external pages and then use server-side scripting to dynamically create the pages. This method provides a powerful mechanism to automatically generate completely customized pages on a per-user basis. Rather than designing one or more static pages, as in the previous example, the custom pages in this example can be built on-the-fly based on user preferences stored in a central database, or based on a user's location within the network.

For example, if you want to generate a custom welcome page for each user:

1. Add the following entry to the RADIUS profile for the controller.

   ```
   welcome-url=web_server_URL/premium/
   welcome.html?loginname=%u&IPaddress=%i
   ```
2. Create a server-side script to retrieve the user's login name (%u) and the controller IP address or domain name (%i). The script can use this information to then display a custom page based on user's preferences (stored in the server database) and the user's location within the wireless network.
Supporting PDAs

Users using PDAs that only support a single browser window will have difficulty using the public access interface in its standard configuration.

Once a user logs in to the public access interface, two Web pages are sent to their browser: the Welcome page and the Session page.

The Session page contains a logout button. Users who are unable to view this page will not be able to log out.

To solve the problem, modify the Welcome page to include a logout button.

1. Create a folder called **PDAusers** on your Web server.

2. See *Public access examples on page 13-4*. Copy public access sample files **welcome.html** and **goodbye.html** into the **PDAusers** folder.

3. Edit **welcome.html** to include a logout link with the target:

 \[http://controller_name:port/goform/HtmlLogout.\]

 For example:

 \[http://wireless.mycompany.com:8080/goform/HtmlLogout.\]

 Adds a warning to this page that tells PDA users to bookmark the Welcome page so that they can logout.

4. Add the following entry to the RADIUS profile for all PDA users.

 \[welcome-url=web_server_URL/PDAusers/welcome.html\]
AV-Pair values for customizing pages

The following table lists the AV-Pair values that can be used to change individual pages. To change all pages as a group see *Loading custom pages from an archive on page 14-45.*

<table>
<thead>
<tr>
<th>Web item</th>
<th>Default name</th>
<th>AV-Pair value</th>
<th>See . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>index.asp</td>
<td>login-page</td>
<td>Login page on page 14-46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>login-url</td>
<td>Use the following values to reference pages that reside on an external Web server. on page 14-47</td>
</tr>
<tr>
<td>Welcome Back</td>
<td>welcome-back.asp</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Subscribe</td>
<td>subscribe.asp</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>transport.asp</td>
<td>transport-page</td>
<td>Transport page on page 14-46</td>
</tr>
<tr>
<td>Public IP</td>
<td>public-ip.asp</td>
<td>session-page</td>
<td></td>
</tr>
<tr>
<td>Welcome</td>
<td>welcome.asp</td>
<td>welcome-url</td>
<td>Welcome page on page 14-47</td>
</tr>
<tr>
<td>Session</td>
<td>session.asp</td>
<td>n/a</td>
<td>Session page on page 14-46</td>
</tr>
<tr>
<td>Ads</td>
<td>ads.asp</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or ads-frameset.asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Account</td>
<td>account.asp</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Payment</td>
<td>payment.asp</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Review</td>
<td>review.asp</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Purchase Approved</td>
<td>purchase-approved.asp</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Purchase Failed</td>
<td>purchase-failed.asp</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Goodbye</td>
<td>goodbye.asp</td>
<td>goodbye-url.asp</td>
<td>Goodbye page on page 14-47</td>
</tr>
<tr>
<td>Logo</td>
<td>logo.gif</td>
<td>logo</td>
<td>Logo on page 14-46</td>
</tr>
</tbody>
</table>
Customizing error messages

To customize the error messages, edit the appropriate messages in the files listed in the following table, using the Controller >> Public access > Web content page.

<table>
<thead>
<tr>
<th>If an error occurs on</th>
<th>Messages are taken from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login page (index.asp)</td>
<td>login_error_message.asp</td>
</tr>
<tr>
<td>Subscription page (subscribe.asp), Account page (account.asp), Payment page (payment.asp), Review page (review.asp), Purchase failed page (purchase_failed.asp)</td>
<td>subscription_error_message.asp</td>
</tr>
<tr>
<td>Other pages (Some errors may result in the user being redirected to the Fail page. This should not occur under normal operation, and will generally only be seen due to a site configuration error. For example, if the URL for a new page is badly configured and the page cannot be found.)</td>
<td>Messages.txt</td>
</tr>
</tbody>
</table>
Setting site configuration options

To view, edit, and manage site options, select Controller >> Public access > Web content and configure the settings under Site options.

About ASP variables

A number of ASP variables are defined for use by the public access interface pages. These variables are used to make configuration and status information available via ASP function calls, allowing for customization of the Web pages. Some of the site configuration options set the values of these variables. See Public access interface ASP functions and variables on page 14-75.

Allow subscription plan purchases

When enabled, the Subscribe to this service option is displayed on the default Login page (index.asp). This option provides a link to the default Subscription page (subscribe.asp), where users can choose one of the subscription plans defined on the Users > Subscription plans page. Existing users must enter their username and password to update their current account. New users enter a username and password to create a new account.
For a walkthrough of the public access interface pages related to this option, see About the “Subscribe to the service” feature on page 13-5.

Pre-requisites
To use this feature, the following items must be pre-configured:

- One or more subscription plans must be defined by selecting Users > Subscription plans.
- To support credit card payments, the credit card payment service must be enabled and configured by selecting Public access > Payment services.

Display the Free Access option
When enabled, the Free Access option is displayed on the default Login page (index.asp). This enables users to login to the public access interface without paying.

A user account is automatically created for each user that selects the Free Access option. Each account has the following properties:

- The account name and password are set to the MAC address of the user's device.
- The account is valid for up to 30 minutes from the time it is created. To change this time use the Free accounts are valid for nn minutes option. When a Free Access account expires, the user can choose Free Access again and continue browsing.
- Account settings are imported from the Default AC profile. See About the Default AC profile on page 9-22.

Free accounts are valid for nn minutes
Specify how many minutes a free account is valid, starting from the time the user logs in with the Free Access option.

Support a local Welcome page
Use this feature to host the Welcome page on the controller Web server.

- When enabled, users are redirected to welcome.asp on the controller Web server.
- When disabled, you can use the welcome-url attribute (see Default user URLs on page 14-56) to define a remotely hosted welcome page.

Use frames when presenting ads
This option controls how advertising is displayed:

- When this option is enabled, users are redirected to ads-frameset.asp.
- When this option is disabled, users are redirected to ads.asp.

For more information on how advertising works, see Display advertisements on page 13-32.
Allow SSLv2 authentication

Enable this option to support client stations that use SSL v2 for their HTTPS connections. When disabled, the controller only supports client stations that are using SSL v3 for HTTPS connections. SSL v2 clients are refused.

Redirect users to the Login page via

Select the protocol that will be used when redirecting users to the default Login page (index.asp).

- **HTTP**: This option does not provide any encryption for protecting user login credentials.
- **HTTPS**: Provides a secure connection to protect user login credentials. However, until the default SSL certificate that is installed on the controller is replaced with a certificate signed by a well-known certificate authority, users will see a certificate warning message each time they attempt to log in. See *Managing certificates on page 11-5* for more information on replacing the SSL certificate.
Customizing public access interface Web pages

To view, edit, and customize the public access interface Web page, select Controller >> Public access > Web content.

Site file archive

Use these options to manage the files on the Web server as a single archive file (zip format).

Save current site files to archive

Saves all the current site files to an archive file.

Overwrite current site files from archive

Click Load Archive to load all the site files from an archive, overwriting the currently installed site files.

FTP server

The FTP server provides an easy way to manage the public access interface files on the Web server, allowing you to use third-party Web site editing tools to customize content.
Click **Configure** to define operational settings.

![FTP server configuration](image)

Note
For security reasons you should disable the FTP server once the controller is deployed. Or at minimum, define security filters to restrict FTP access.

User
Specify the username and password that will be required when connecting to the FTP server.

Note
When using FTP, the username and password are not encrypted. They are sent as clear text.

Security

Allowed addresses
Enables you to define a list of IP address from which to permit access to the FTP server. To add an entry, specify the IP address and appropriate mask and click **Add**.

When the list is empty, access is permitted from any IP address.

Active interfaces
Select the interfaces through which client stations can access the FTP server.

To select multiple entries, hold down the shift or control key as you click each entry.

Current site files
These are the files that are currently installed on the Web server and make up the public access interface. You can edit and create text files using the built-in editor. Other files must be created offline and uploaded via FTP.

For an overview of the default site structure and control flow, see *Public access interface flow on page 13-11.*
Add New File
Click this button to create a new text-based file on the server.

Reset to Factory Default Content
Click this button to reset the site files to factory default content. You should make a backup copy of the current content using the Site file archive options before restoring factory defaults.

About ASP variables
A number of ASP variables are defined for use by the public access interface pages. These variables are used to make configuration and status information available via ASP function calls, allowing for customization of Web page content. Some of the site configuration options set the values of these variables. See Public access interface ASP functions and variables on page 14-75.

Site file descriptions

account.asp

text/html

This page is launched by subscribe.asp when the user clicks Next. It displays a summary of the subscription plan that was chosen and prompts for a username and password to create a new user account.

Clicking Cancel launches index.asp.

Clicking Next launches payment.asp.

ads-frame.asp

text/html

This file contains the frame content for ads when using ads-frameset.asp.

ads-frameset.asp

text/html

Page that is used to display advertisements using frames. Users see the ad in a frame and their original Web site in second frame.

Users can click the Continue Browsing button to return to their original Web page, or continue browsing within the frame.

ads.asp

text/html

Page that is used to display advertisements without frames. Users are redirected to this page while browsing and must click the Continue Browsing button to return to their original Web page.
ads.jpg
image/jpeg
This is the default advertisement that is displayed.

fail.asp
text/html
This is a generic error reporting page that is called by various other pages to present an error message.

goodbye.asp
text/html
When a user logs out (by clicking the Logout button on the session.asp page, for example), if no goodbye-url attribute is defined (which specifies the location of a goodbye page), the user is redirected to this page. If this page is missing, than fail.asp is presented.

graceful_ending.js
application/javascript
Provides a graceful ending to subscription plans that are about to expire. When a subscription plan has only 10 minutes left or reaches 80% of its transfer quota (these limits are configurable in this script), a warning appears encouraging the user to purchase another plan before their existing one expires.

index.asp
text/html
This is the Login page that users see when they are first redirected to the public access interface.

The Login page contains a single graphic element suitable for a logo or other identifying element and two fields (username and password) that enable users with an existing account to log in. Additional choices may be visible on the Login page if the following features are enabled on the Controller >> Public access > Web content page under Site options:
- Allow subscription plan purchases
- Display the Free Access option.

login_error_message.asp
text/html
Error messages and the code that is used to display them. Used by index.asp.

logo.gif
image/gif
Re-usable image shared by a number of pages.
payment.asp

text/html

This page is called by **account.asp** when a user clicks **Next**.

It displays a summary of the user's subscription selection.

For Authorize.Net payment service:

- Credit card information is requested.
- Clicking **Review**, launches **review.asp**.
- Errors in payment information cause this page to be redisplayed.
- Clicking **Cancel** returns the user to the Login page (index.asp).

For WorldPay payment service:

- Clicking **Go to WorldPay** launches the payment processing page on the WorldPay site.
- Clicking **Cancel** returns the user to the Login page (index.asp).

prototype.js

application/javascript

Javascript library used to support AJAX for use in **session_ajax.asp** and **subscription_details.asp**.

public-ip.asp

text/html

Message page that is displayed explaining the steps a user must follow to activate a public IP address. This page is only displayed if a public IP address is assigned in the user's account or account profile.

purchase_approved.asp

text/html

This page is displayed as soon as payment is approved.

purchase_failed.asp

text/html

This page is displayed if payment fails.

redirect.asp

text/html

This is the page that is sent when the controller intercepts a connection from a non-authenticated user. Its function is to redirect the browser to the Login page.
review.asp

text/html

This page is called by payment.asp and applies to Authorize.Net payments only. It displays a summary of the user's subscription selections and presents a Pay button. Clicking Pay completes the Authorize.Net transaction. If the transaction is approved, purchase_success.asp page is called, otherwise, purchase_failed.asp is called.

session.asp

text/html

This page shows usage statistics for the session, as well as the logout button that the user clicks to terminate the session.

session.js

text/html

This page is specially designed for AJAX, and provides a JSON page format for use by session.js to provide the same content as session.asp but for Javascript-enabled browsers. This enables smart refresh of the session data; only changed data is updated, not the entire page, eliminating screen flickering.

Session.asp includes session.js which calls session_ajax.asp.

setfocus.js

text/html

This page is called by index.asp and session.asp if Allow subscription plan purchases is enabled on the Controller >> Public access > Web content page under Site options.
The page displays all defined subscription plans so that the user can choose one.

The user can click Next to proceed to account.asp, or Cancel in which case they are redirected to index.asp.

subscription_details.asp

text/html

This page is called by session.asp. It provides information on the subscription plan selected by a user, as well as running totals for data transfer and online time.

subscription_details.js

application/javascript

Included by subscription_details.asp. Provides smart updates for Javascript-based browsers.

subscription_details_ajax.asp

text/html

Included by subscription_details.asp. Provides smart updates for Javascript-based browsers.

This page is specially designed for AJAX, and provides a JSON page format for use by subscription_details.js to provide the same content as subscription_details.asp but for Javascript-enabled browsers. This enables smart refresh of the data; only changed data is updated, not the entire page, eliminating screen flickering.

subscription_details.asp includes subscription_details.js which calls subscription_details_ajax.asp. Also, session.asp includes gracefulending.js which calls subscription_details_ajax.asp.

subscription_details_window.js

application/javascript

Included by session.asp. Contains Javascript functions used to control opening and closing of the subscription details page.

subscription_error_message.asp

text/html

Error messages and code to display them. Used by: subscribe.asp, account.asp, payment.asp, review.asp, and purchase_failed.asp.

transport.asp

text/html

This page appears briefly after the login is approved and redirects the user to the local or external welcome page.
utils.js

application/javascript

Contains Javascript utility functions used by various public access pages.

welcome-back.asp

text/html

If the Automatically reauthenticate HTML-based users for nnn minutes option is enabled on the Controller >> Public access > Access control page under User authentication, this page is displayed for returning users instead of the Login page (index.asp).

welcome.asp

text/html

This page is called after the login process is complete if Support a local Welcome page is enabled on the Controller >> Public access > Web content page under Site options.

WorldPay-cancel.asp/
WorldPay-error.asp/
WorldPay-success.asp

text/html

These pages are retrieved by the WorldPay service during the payment process. This means that the Web server must be accessible to the WorldPay server. Generally this is done by assigning a public IP address to the Internet port. Modifications to these pages must follow WorldPay guidelines.
Global access control settings

The access control mechanism enables the controller to manage user access to the protected network resources. The features provided by the access control mechanism are only supported on VSCs that are configured for access control.

Support for access control must be enabled and disabled individually for each VSC. Select Public access > Access control to configure global settings.

When a VSC is **access controlled**, the options on this page take effect with regards to client station authentication and authorization.

Use the checkbox in the title bar to enable or disable the access control mechanism:

- When enabled, the controller provides access control which can then be configured on a per-VSC basis to control user logins.
- When disabled, access to the public access interface is disabled for all VSCs that are configured to use access control. Users will not be able to log in using these VSCs.

The status light icon indicates the state of the authentication system.

- A green light icon means that the access control feature is working and authentication requests can be processed.
- A red light icon indicates that access control function cannot process requests at this time.
Access control parameter definitions

User authentication
These settings apply to VSCs that have access control enabled.

Allow access if authentication timed out
Enable this option to give users free access to the public access network if authentication services configured for a VSC are unavailable. Once the authentication service is available again, free user sessions remain active until the user logs out.

For example, if a user is connected to a VSC configured for HTML-based authentication using a RADIUS server, and the RADIUS server is down, the user will be granted free access to the network using the settings from the default user profile.

Note
This feature does not work with client stations configured to use 802.1X or WPA.

Add idle-timeout to RADIUS accounting session-time
When enabled, the controller includes the idle time-out in the total session time for a user when reporting to a RADIUS server. To remove the idle time-out from the total session time, disable this option.

Automatically reauthenticate HTML-based users for up to
When this option is enabled, you can specify the amount of time that the controller will remember the login credentials for an HTML-based user after they log out. If the user reconnects to the network before this timeout expires, they are automatically logged in, and instead of being redirected to the Login page, they are redirect to the Welcome-back page.

For this feature to work, users must have successfully been logged in at least once via HTML and must have the same IP address and MAC address as their initial login.

To support this functionality, the DHCP server on the controller will attempt to reserve assigned DHCP addresses even after their lease time has expired. As long as free addresses remain in the DHCP address pool, the expired address will not be reassigned to a new user.

Note
The controller remembers login credentials even if restarted for administrative reasons.

Reauthenticate users on location change
When this option is enabled, the controller will automatically reauthenticate users when they switch to:

- a wireless cell with a different SSID
- a different VLAN ID on the same VSC
- an AP with a different MAC address
- an AP with a different group name
- a different wireless mode.

Note
Location change is not supported for locally authenticated users.
Maximum concurrently authenticated public access users

Specify the maximum number of users that can be authenticated and logged into the public access interface at the same time.

Client polling

The controller continually polls authenticated client stations to ensure that they are active. If no response is received and the number of specified retries is reached, the client station is disconnected. To use this feature, client stations must have L2 connectivity to the controller.

This feature enables the controller to detect if two client stations are using the same IP address but have different MAC addresses. If this occurs, access is terminated for this IP address removing both stations from the network.

Changing these values may have security implications. A large interval provides a greater opportunity for a session to be hijacked.

The initial query is always done after the client station has been idle for 60 seconds. If there is no answer to this query, the settings for **Interval** and **Retries** are used to control additional retries.

Polling interval

Specify how long to wait between polls.

Consecutive retries

Specify how many consecutive polls to which a client station can fail to reply before it is disconnected.

Zero configuration

These settings apply to client stations that are authenticated by the controller for VSCs that have access control enabled.

Support users that have a static IP address

Enable this option to allow client stations with static IP addresses that are not on the same subnet as the controller to connect to the controller. This permits users to access the network without reconfiguring their network settings.

For example, by default the controller creates a network on the subnet 192.168.1.0. A client station that is preconfigured with the address 10.10.4.99 can connect to the controller without changing addresses.

- **Assign addresses on the Public Access subnet**: Enable this option to provide network address translation for client stations with static IP addresses. This permits the controller to assign an alias address to the client station that puts it on the same subnet as the VSC the client station is associated with. This subnet is defined by configuring the DHCP server option in the VSC.

Note

This option cannot be used if NAT is enabled on the Internet port.

Support applications that use

- **HTTP proxy**: Enable this option to allow the controller to support client stations that use a proxy server for HTTP and HTTPS, without reconfiguration of the client stations.
Public/guest network access
Global access control settings

Ensure that client stations:

- Do not use a proxy server on ports 21, 23, 25, 110, 443, 8080, or 8090. To support ports 8080 and 8090, change the port settings under Public access > Web server > Ports.

- Use the same proxy server address and port number for both HTTP and HTTPS.

- **SMTP authentication:** When the controller redirects user SMTP traffic, the server to which the traffic is redirected may need to authenticate the controller. Enable this option to allow the controller to supply a username and password to the server. You can define the username and password in the RADIUS account for the controller or for the user.

Location configuration

These values are returned to IPass clients as well sent in RADIUS authentication Access Requests and Accounting Requests for all users authenticated by this controller.

Location ID
Specify the WISPr location ID assigned to the controller.

Location name
Specify the WISPr location name assigned to the controller.

Display advertisements

When this option is enabled, it causes users to be redirected to an ad content page while they are browsing.

The ads page can be either `ads.asp` or `ads-frameset.asp`, depending on the setting of Use frames when presenting ads under Site options on the Public access > Web content page.

Redirection occurs on TCP port 80.

Note

- Ad display can be suppressed on a per-user basis by setting the appropriate option in the user's account.

- Enabling this feature can cause problems for user applications that expect to obtain network access directly after logging in, instead of being redirected to an ad page.

Display advertisements every `nnn` sec

Specify the interval at which users are redirected to the ads page.

When Public access > Access control > Advertising is enabled, users can be redirected to an advertising page at predefined intervals while they are browsing.

Redirection can be controlled by settings in the users account profile, subscription plan, or via RADIUS attributes.
Web server configuration

The controller features an integrated Web server that, by default, is used to host the Web pages that make up the public access interface. Public access Web pages can also be hosted on third-party Web servers.

Web server configuration settings are defined on the Public access > Web server page.

Options

NOC-based authentication
Enable this option to support NOC-based authentication.

NOC-based authentication must be used in conjunction with the remote login page feature. The remote login page feature enables users to be redirected to a remote Web server to log in instead of using the internal login page on the controller.

To validate user logins, a login application on the remote server must collect user login information and send it to the controller for authentication.

See NOC authentication on page 14-63 and Appendix D: NOC authentication.

Ports

Specify the port number the Web server uses for each protocol.

If you enable support for proxy settings under Public access > Access control > Zero configuration, you must change the selected port to support client stations that are using proxy servers on the standard port (8080 or 8090). The following mappings are recommended:

- Map the unsecure port 8080 to port 81
- Map the secure port 8090 to port 444

Make sure that you do not remap these ports to values already in use on your network.

MIME types

MIME (Multipurpose Internet Mail Extensions) is an Internet standard that is used to describe the type of information that a message or file contains.

By default, the controller contains the definitions for a number of common MIME types. If you need to add your own definition, click **Configure**.

This page lists all MIME types that are currently defined on the Web server. A number of common MIME types are defined by default. (Some of the default definitions cannot be changed.)

Click **Add New MIME Type** to define your own MIME type.

File extension

Specify the file extension that identifies this MIME type.

MIME type

Specify the content-type string that identifies this MIME-type. This is the value that must appear in an HTTP Content-type header for the controller to recognize this MIME type.

Types should be specified in the following format: **type/subtype**

For example: **text/xml**
MIME type is text-based
Enable this option if the MIME type identifies files that are text-based.

Security
Use this option to control access to the Web server.

Allowed addresses
The Web server will only accept connections from devices whose IP addresses appear in this list.

When the list is empty, authentication requests are accepted from any address.

Active interfaces
Select the interface(s) on which the controller will accept connections.

When NOC authentication is active, this is the interface on which the remote login Web server application can be reached. For more information on NOC authentication, see NOC authentication on page 14-63 and Appendix D: NOC authentication.

Note
Ingress interfaces configured inside VSCs (including the LAN port) always have access to the Web server when NOC-based authentication is disabled.
Payment services

The controller can directly interact with payment processing services service such as Authorize.Net and WorldPay, so that users can pay for network access from within their Web browser.

Payment services configuration

To configure payment services, follow this procedure:

1. Select Controller >> Public access > Payment services.

Use this page to define the type of payment options that the public access interface will support.

2. Enable Credit card. Specify the 3-letter Currency code (see online help for list of codes) and Tax rate.

3. For Credit card payment authorization, select either Authorize.NET or WorldPay, and specify the appropriate information. Merchant accounts must be set up to use these services (www.authorize.net or www.worldpay.com).

Service settings

Payment method: Credit card

Enable this option to allow users to pay for services via credit card. The controller makes use of a third-party credit card processing service (either Authorize.Net or WorldPay) to handle credit card transactions.

Communications with the credit card service occurs via an SSL connection that is secured using a digital certificate. This certificate is not supplied. You must purchase the appropriate certificate as required by the credit card service provider and install it on the Controller >> Security > Certificates stores page.

The controller does not keep a record of the user's credit card information. All information handled by the system is securely managed in accordance with the PCI DSS v1.2 standard.
The controller maintains a billing log that provides a simple audit trail of all transactions. The log supports the buffering and retransmission of up to 2000 billing records to an external billing records server. You can configure log options on the Controller >> Public access >> Records page.

Currency code
Specify the three-letter code for the currency in which all charges will be calculated. See the online help for a complete list of currency codes.

Tax rate
Specify the tax rate to use when calculating sales tax for all charges.

Authorize.Net service

Payment URL
Specify the URL of the Authorize.Net server.

Login ID
Specify the login ID of the Authorize.Net account assigned to the controller.

Transaction key
Specify the transaction key for the Authorize.Net account assigned to the controller.

WorldPay service

Payment URL
Specify the URL of the WorldPay server.

Installation ID
Specify your WorldPay installation ID. This informs WorldPay to which merchant all sales will be credited.

Response password
Specify your WorldPay installation response password.

Other configuration issues
To successfully make use of the WorldPay service you must also address the following issues:

- The Internet port of the controller must be reachable by the WorldPay servers. This is required so that the WorldPay pages stored on the controller can be retrieved, and that the controller can receive an HTTP/HTTPS post with payment details. (To support HTTPS, a certificate signed by a well-known certificate authority must be installed on the controller.)

- An access list must be defined on the controller that gives users access to the WorldPay site without being authenticated. For example:

 access-list=factory,ACCEPT,tcp,*worldpay.com,all

 If different, replace *worldpay.com with whatever is configured.

For complete configuration requirements, see the documentation on the WorldPay site.
Billing record logging

The billings records logging system provides a simple audit trail of all billing transactions.

The log supports the buffering and retransmission of up to 2000 billing records to one or more external billing records servers. Log transmission occurs using HTTP/1.1 POST method with a completely customizable data format.

The system will retransmit a billing record until it is successfully acknowledged or until transmission is stopped because of too many failures.

Multiple backup servers can be assigned to a primary server to increase the probability of successfully transmitting a billing record.

To reduce the risk of billing records being lost, data can be mirrored by defining multiple primary servers. A copy of each record is sent to each primary server.

Note

Records are always added to the log, even when record transmission is disabled. If required, these records can be saved (exported) to a file, but cannot be transmitted to a billing server.

To configure Billing record logging, select **Controller >> Public access > Billing records**.

Settings

Suspend payment system when log is full of queued records

Use this option to halt the payment system if external billing servers are unable to receive records and the log is full of **untransmitted** records. (Records with a status of “Queued”). For more information on how the log entries are managed, see *Billing records log on page 13-43*.
When this option is disabled, the oldest untransmitted record is removed from the log to make room for the new record.

Configure Record Formats
Click this button to edit the transmission, export, and acknowledgement formats for the billing records. See the online help for format descriptions.

![Billing records formats](image)

Persistence
Enable this option to have the controller save queued (untransmitted) records in the log to its internal flash memory so that they can be recovered in case of abnormal system shutdown (power failure, for example). See *Billing records log on page 13-43*.

Save queued records every nn minutes
Specify the interval at which the log is saved.

Save Queued Records Now
Force the log to be saved immediately.
External billing records server profiles

This list displays all configured billing records server profiles. Billing records are sent to the servers defined in this list as follows:

- A copy of the current billing record is sent to each primary server. By adding multiple primary servers you create data mirroring and reduce the risk of a record being lost.

- If a primary server fails to acknowledge the record, the controller retries. Once the retry limit is reached, the record is transmitted to any defined backup servers. Once all retries are attempted for all backup servers, the record is either skipped, or the entire process starts again.

For example, if you configure a primary server “Server A” with “Server B” as a backup, with 2 transmission attempts, the following sequence in used to transmit the billing record:

A-[Delay]-A-[Delay]-B-[Delay]-B-[Delay]-A-[Delay]-A-[Delay]-B-[Delay]-B…

To edit an existing profile, click its Name. To add a new profile, click Add New Profile. In either case you will see the Add/Edit external billing records server profile page.

Settings

Type

- **Primary**: Defines a primary server. The controller sends a copy of each billing record to all primary servers. See *Record transmission overview on page 13-42*.

- **Backup**: Defines a backup server. Backup servers can be assigned to act as a backup to a primary server by using the Failover box.
Profile name
Specify a name to identify the server profile.

Hostname/IP address
IP address or hostname of the server.

Port
Port on which to send the HTTP post.

URL
URL to which the HTTP post will be sent.

Transmission timeout
Amount of time that the controller waits for an HTTP response for a transmitted record. If the response is not received within this period, this is considered as a failed transmission.

Failover
Use this box to define one or more backup server profiles for the current primary server profile.

Use these backup servers
Lists all backup server profiles for this primary server profile. Backup profiles are used in the order that they appear in the list.

Available backup servers
Lists all server profiles of type backup.

Retries per server
Number of times that a record will be retransmitted before the next profile is tried.

Note
This parameter also sets the number of retries on the primary.

Delay between retries
Amount of time to wait between retransmitting a record.

Security
Encryption and authentication can be used to increase the transmission security of billing records.

HTTP authentication and secure HTTP using SSLv3 are supported. Also, to make sure that a billing record has not been altered, a secret key, shared between the billing server and the controller, can be defined and used to produce a cryptographic signature of the billing record.

Secret key
Specify the secret key that will be used to generate an encryption signature using HMAC-SHA-1. The signature is generated using the entire contents of the billing record. (The signature field is empty when the signature is calculated.)

Use HTTPS
When enabled, secure HTTP using SSLv3 is used to transmit records to all servers.
Validate server certificate
When enabled, the controller will validate the external billing server certificate. For this to be successful, you must install the billing server CA certificate in the Trusted CA certificate store on the Security > Certificate stores page.

Use HTTP authentication
Enable this option if the billing server requires a username and password.

Fault tolerance
Fault tolerance settings control how many times each billing record is retransmitted.

Retransmit until successful
When enabled, the controller will never skip a record due to transmission failure. Retransmission is continuously retried on the primary server and all backup servers until successful.

Enabling this option may cause log entries to be lost if a record fails to be transmitted before the log wraps around. To avoid losing records, enable the Suspend operation of payment system when log is full option under Log settings on the Controller >> Public access > Billing records page.

Stop after failed nnn retransmissions
Select this option to have the controller stop retransmitting a record when the total number of retransmissions on all servers (primary and backup) exceeds the specified number.

When this occurs the record is flagged as Transmission Failed in the log.

Record transmission overview
Transmission of a billing record occurs as follows:

- Billing record is transmitted to the primary server.
- If the primary server does not send an HTTP reply within the Transmission timeout, then the transmission is considered to have failed. If a response is received, but the status field does not match the value of Ack success value, then the transmission is considered to have failed.
- Failed transmissions are retried on the primary server until the Retries per server limit is met, after which each backup server is tried in order. Once all backups are tried, the sequence resumes again with the primary server.
- Retransmissions only stop if the selected condition under Fault tolerance is met: either the record is successfully transmitted or the total number of retires on all servers passes a predetermined limit.

Note
A billing record is considered to be successfully transmitted only when it has been successfully transmitted to every primary server (or one of its backups).
Billing records log

This table displays the contents of the billing records log. The log can hold up to 2000 records. When full, records are deleted in the following order:

1. Records that have been successfully transmitted.
2. Records that do not have to be transmitted, because transmission is disabled.
3. Records for which transmission has failed.

If transmissions to remote billing server(s) is interrupted, the log can become full of untransmitted records only. (Records with status set to “Queued”.) What happens next is controlled by the Suspend payment system when log is full of queued records when log is full setting under Settings.

- If enabled, payment services are suspended.
- If disabled, the oldest queued record is removed.

Number of billing records

Lists the total number of billing records in the log.

Select the action to apply to all log records

- **Clear log:** Delete all records in the log.
- **Save log:** Save the log to a file using the export format defined by selecting Controller >> Public access >> Billing records >> Configure Records Format.
- **Retransmit failed records:** Force the retransmission of records that have transmission state set to Transmission Failed. This starts the complete transmit cycle all over again for the record.
- **Cancel current transmission:** Terminates the record transmission that is currently in progress.

Table

Record ID

Unique number that identifies each record.

Transaction ID

Credit card transaction ID generated by the credit card service.

Transaction time

Date and time of the transaction.

Charge

Amount charged on the transaction.

Billing method

Identifies the billing method:

- CC - WorldPay
- CC - Authorize.Net
Transmission state
- **Transmitting**: The record is being transmitted.
- **Queued**: The record is queued for transmission.
- **Transmission Disabled**: Transmission of the record was disabled. Once records fall into this category they cannot be retransmitted.
- **Successful**: The record was successfully transmitted and acknowledged by all primary servers (or their backups).
- **Transmission Failed**: The record was not transmitted successfully and retransmission attempts have stopped due to the setting for Fault tolerance in the billing records server profile (Controller >> Public access > Billing records > External billing records server profiles).

Location-aware authentication

This feature enables you to control logins to the public access network based on the wireless access point with which a user is associated. Once authenticated, this feature is also used to monitor and control roaming to other access points in the network.

How it works

Location-aware is automatically enabled when a VSC is set to provide access control. When enabled, the location-aware feature causes the controller to return location-specific information for RADIUS-authenticated users. This information is returned:

- When the user logs in
- Each time the user roam to a new access point or switches SSIDs on the same access point (which causes the user to be re-authenticated).

Note

Due to security constraints in 802.1X client software, users cannot automatically be re-authenticated when roaming to a new access point. Therefore, location-aware information cannot be returned when these users roam.

Returned information

The controller can return the following attributes in the RADIUS access request for all user authentications (whether initial login or re-authentication due to roaming).

- Called-station-ID (Standard RADIUS attribute)
- ProCurve-specific attribute: SSID
- ProCurve-specific attribute: GROUP.
When re-authenticating users, the returned RADIUS attribute Service-Type is set to 8744 (decimal).

Called-Station-ID value

By default, this is the MAC address of the wireless port (radio) the user is associated with. This is the MAC address of the `wvlan0` or `wvlan1` interface in IEEE format as displayed by Tools > System Tools > Interface info.

If required, the controller can return other values for this attribute by setting the Called-Station-Id content on a per-VSC basis. The other available options are:

- SSID: SSID of the access point with which the user is associated.
- GROUP: Group name of the access point with which the user is associated.

Note

If the user is connected via a wired connection, the value returned is the MAC address of the controller wireless/LAN port. To use the MAC address of the Internet port, you must edit the config file and change the setting of `radius-called-station-id-port` to WAN in the <ACCESS-CONTROLLER> section.

ProCurve-specific attribute: SSID

The SSID of the access point with which the user is associated (wireless only).

ProCurve-specific attribute: GROUP

The GROUP of the access point with which the user is associated (wireless only).
Example

Consider the following topology for a fictional small hotel. The restaurant and lounge are available to all hotel users who subscribe to the wireless service. However, the conference room is available only to a specific group of guests who book it in advance.

In this example, the access points in each area are assigned the following unique group names:

- conference_room
- restaurant
- lounge

When a user logs in, server-side code can be used to determine the access point they are associated with by inspecting the Called-Station-ID. Then, using user's account information, access can either be granted or denied.
Security

The controller accepts location-aware information only from MSM APs that have a matching shared secret to its own.
Public/guest network access
Location-aware authentication
Chapter 14: Working with RADIUS attributes

Contents

Introduction ..14-3

Controller attributes overview ...14-4
 Customizing the public access interface using the site attribute14-4
 Defining and retrieving site attributes ..14-5
 Controller attribute definitions ..14-8

User attributes ...14-14
 Customizing user accounts with the user attribute14-14
 Defining and retrieving user attributes ...14-14
 User attribute definitions ..14-20

Administrator attributes ..14-31

Colubris AV-Pair - Site attribute values ..14-33
 Access list ...14-34
 Configuration file ..14-44
 Custom SSL certificate ...14-44
 Custom public access interface Web pages14-45
 Default user interim accounting update interval14-52
 Default user bandwidth level ..14-52
 Default user idle timeout ..14-53
 Default user quotas ..14-53
 Default user data rates ..14-54
 Default user one-to-one NAT ..14-54
 Default user session timeout ..14-55
 Default user public IP address ..14-55
 Default user SMTP server ...14-55
 Default user URLs ..14-56
 HTTP proxy upstream ...14-56
 IPass login URL ..14-57
Working with RADIUS attributes

MAC authentication .. 14-57
Multiple login servers .. 14-58
Redirect URL ... 14-60
NOC authentication ... 14-63
ProCurve WISPr support ... 14-63
Traffic forwarding (dnat-server) ... 14-64
Multiple DNAT servers .. 14-65

Colubris AV-Pair - User attribute values .. 14-68
Access list .. 14-68
Advertising .. 14-69
Bandwidth level ... 14-69
Data rate .. 14-70
One-to-one NAT .. 14-70
Public IP address ... 14-70
Quotas .. 14-71
Redirect URL ... 14-71
SMTP redirection ... 14-72
Station polling .. 14-73
Custom public access interface Web pages ... 14-73

Colubris AV-Pair - Administrator attribute values 14-75
Administrative role ... 14-75

Public access interface ASP functions and variables 14-75
Javascript syntax ... 14-76
Forms .. 14-77
Form errors .. 14-79
RADIUS .. 14-80
Page URLs .. 14-82
Session status and properties ... 14-83
iPass support ... 14-87
Web ... 14-88
Client information ... 14-88
Subscription plan information ... 14-91
Other .. 14-92
Session information ... 14-94
Introduction

RADIUS attributes can be used to customize a wide range of configuration settings on the controller. This includes defining configuration settings for the public access interface, customizing the settings of access-controlled user accounts, or configuring credentials for the administrative accounts that are used to manage/operate the controller.

Attributes can be defined both locally on the controller or retrieved from a third-party RADIUS server. In certain cases, values can be defined locally and then overwritten by values retrieved from a RADIUS server. This allows, for example, default values on the controller to be dynamically updated on a per-user basis.

This chapter splits the supported RADIUS attributes into three categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>For information see...</th>
</tr>
</thead>
</table>
| Controller attributes| Used to customize the operation of the public access interface, and also define default values that are applied to all user accounts. | - Controller attributes overview on page 14-4
- Colubris AV-Pair - Site attribute values on page 14-33. |
| User attributes | Used to customize the settings of individual access-controlled user accounts. | - User attributes on page 14-14
- Colubris AV-Pair - User attribute values on page 14-68 |
| Administrator attributes | Used to define login credentials for administrative users (managers and operators). | - Administrator attributes on page 14-31
- Colubris AV-Pair - Administrator attribute values on page 14-75 |
Controller attributes overview

The controller provides support for a number of standard RADIUS attributes, including those for authentication and accounting. See Controller attribute definitions on page 14-8 for a list of these attributes and a brief definition. For detailed information on these attributes, refer to the documentation that came with your RADIUS server.

The controller also supports several vendor-specific attributes, including the special HP ProCurve attribute (known as the site attribute) that is used to customize the behavior of the public access interface and define global default values for user accounts. To find out more about the site attribute, see the following section.

Customizing the public access interface using the site attribute

HP ProCurve has defined a vendor-specific RADIUS attribute to support configuration of the public access interface and user accounts. This attribute conforms to RADIUS RFC 2865 and is called the Colubris AV-Pair.

Multiple instances of the Colubris AV-Pair attribute can be defined on the controller, each with a different AV-Pair value. For a complete list of all supported AV-Pair values, see Colubris AV-Pair - Site attribute values on page 14-33.

In order for a third-party RADIUS server to support the Colubris AV-Pair attribute you need to define it as described under Colubris AV-Pair on page 14-11.

Note
The Colubris AV-Pair attribute can be used to define settings on the controller and for users and administrators. This section discuses controller settings only.

Important
The documentation for this product frequently uses the terms site attributes and user attributes to refer to the Colubris AV-Pair attribute values depending on whether the AV-Pair attribute values are set with a value that applies to the public access site or to an individual user.
Defining and retrieving site attributes

Site attributes can be retrieved from a third-party RADIUS server or specified directly on the controller. In both cases, configuration settings are defined on the Public Access > Attributes page.

Retrieving site attributes from a RADIUS server

To retrieve attributes from a RADIUS server, enable the Retrieve attributes using RADIUS option. To use this option, you must also configure a RADIUS profile (see Using a third-party RADIUS server on page 10-5) and define an account for the controller on the appropriate RADIUS server. This account must contain all site attributes that you want to retrieve. For a complete list of all supported site attributes and their syntax, see Colubris AV-Pair - Site attribute values on page 14-33.

After the controller is authenticated by the RADIUS server it automatically retrieves the site attributes you defined in the controller's RADIUS account. The retrieved attributes are then combined with the attributes defined in the Configured attributes list (if any) to build the complete list of attributes that are active on the controller. If the same attribute is defined on both the RADIUS server and in the Configured attributes list, the setting of Retrieved attributes override configured attributes determines which definition is used.
A maximum of 128 attributes can be active at any one time (including both the RADIUS and the Configured attributes list).

The maximum attribute size that the controller can receive in a single RADIUS request is 4096 bytes. However, some networks may limit RADIUS request size to around 1500 bytes because they discard UDP fragments.

Configure the Retrieve attributes using RADIUS options as follows:

- **RADIUS profile**: Select a RADIUS profile. The profile is used to establish the connection to a RADIUS server. RADIUS profiles are defined by selecting Controller >> Authentication > RADIUS profiles. For details, see Using a third-party RADIUS server on page 10-5.

- **RADIUS username**: Specify the username of the RADIUS account assigned to the controller.

- **RADIUS password / Confirm password**: Specify the password of the RADIUS account assigned to the controller.

- **Accounting**: Enable this option to have the controller generate a RADIUS accounting request ON/OFF each time its authentication state changes.

- **Retrieved attributes override configured attributes**: Enable this option to have attributes retrieved from the RADIUS server overwrite settings defined in the Configured attributes table.

- **Retrieval interval**: Specify the number of minutes between attribute retrievals. The controller retrieves attributes from its RADIUS account each time this interval expires.

To avoid potential service interruptions that may occur when new attributes are activated by the controller, it is strongly recommended that you use a large interval (12 hours or more).

You can override the value configured on this page by using the RADIUS attribute Session-timeout, which enables the following strategy: Configure Retrieval interval to a small value (10 to 20 minutes) and set the RADIUS attribute Session-timeout to override it with a large value (12 hours) when authentication is successful. Since the Retrieval interval is also respected for Access Reject packets, this configuration results in a short reauthentication interval in the case of failure, and a long one in the case of success.

- **Last retrieved**: Shows the amount of time that has passed since the controller last retrieved attributes.

- **Retrieve Now**: Select to force the controller to contact the RADIUS server and retrieve attributes.
Defining site attributes directly on the controller

Site attributes can be defined directly on the controller eliminating the need to use a RADIUS server. If needed, both methods can be used at the same time. In this case, the retrieved attributes are combined with those attributes defined in the **Configured attributes** list to build the complete list of attributes that are active on the controller. If the same attribute is defined on both the RADIUS server and in the **Configured attributes** list, the setting of **Retrieved attributes override configured attributes** determines which definition is used.

To add a new attribute:

1. Select **Add New Attribute**. The **Public access attribute** page opens.

2. Under **Name**, select an AV-Pair value, as shown in the following figure.

3. Once you select a **Name**, information appears regarding the correct syntax to specify under **Value**. Use the correct syntax to specify the desired **Value**.

 For a complete list of all supported site attributes and their syntax, see *Colubris AV-Pair - Site attribute values on page 14-33*, or consult the online help.

4. Select **Add**.
Controller attribute definitions

The following table lists all RADIUS attributes supported by the controller. A brief description of each attribute follows the table. For detailed information, refer to the documentation that came with your RADIUS server.

<table>
<thead>
<tr>
<th>Access Request</th>
<th>Access Accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct-Session-Id</td>
<td>Class</td>
</tr>
<tr>
<td>Called-Station-Id</td>
<td>EAP-Message</td>
</tr>
<tr>
<td>Calling-Station-Id</td>
<td>Session-Timeout</td>
</tr>
<tr>
<td>CHAP-Challenge</td>
<td>Vendor-specific (Colubris)</td>
</tr>
<tr>
<td>CHAP-Password</td>
<td></td>
</tr>
<tr>
<td>Connect-Info</td>
<td>Access Reject</td>
</tr>
<tr>
<td>EAP-Message</td>
<td>No attributes are supported.</td>
</tr>
<tr>
<td>Framed-IP-Address</td>
<td>Access Challenge</td>
</tr>
<tr>
<td>Framed-MTU</td>
<td>No attributes are supported.</td>
</tr>
<tr>
<td>NAS-Identifier</td>
<td>Accounting Request</td>
</tr>
<tr>
<td>NAS-Ip-Address</td>
<td></td>
</tr>
<tr>
<td>NAS-Port</td>
<td></td>
</tr>
<tr>
<td>NAS-Port-Type</td>
<td></td>
</tr>
<tr>
<td>Message-Authenticator</td>
<td></td>
</tr>
<tr>
<td>Service-Type</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>User-Name</td>
<td></td>
</tr>
<tr>
<td>User-Password</td>
<td></td>
</tr>
<tr>
<td>Vendor-specific (Microsoft)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSCHAP-Challenge</td>
</tr>
<tr>
<td></td>
<td>MSCHAP-Response</td>
</tr>
<tr>
<td></td>
<td>MSCHAPv2-Response</td>
</tr>
<tr>
<td>Vendor-specific (WISPr)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location-Name</td>
</tr>
<tr>
<td></td>
<td>Location-ID</td>
</tr>
<tr>
<td></td>
<td>Logoff-url</td>
</tr>
</tbody>
</table>

In the attribute descriptions, a string is defined as 1 to 253 characters.
Access request

Acct-Session-Id
(32-bit unsigned integer)
Random value generated per authentication by the controller.

Called-Station-Id
(string)
By default, this is set to the MAC address of the controller wireless/LAN port in IEEE format. For example: 00-02-03-5E-32-1A. To use the MAC address of the Internet port, you must edit the config file and change the setting of `radius-called-station-id-port` to `WAN` in the `<ACCESS-CONTROLLER>` section.

Calling-Station-Id
(string)
The MAC address of the controller LAN port in IEEE format. For example: 00-02-03-5E-32-1A.

CHAP-Challenge
(string)
Randomly generated by the product. As defined in RFC 2865. Only present when the authentication method for the RADIUS profile is set to CHAP. Length = 19 bytes.

CHAP-Password
(string)
The password assigned to the controller on the [Public access > Attributes](#) page. Encoded as defined in RFC 2865. Only present when the authentication method for the RADIUS profile is set to CHAP.

Connect-Info
(string)
The string “HTTPS”.

EAP-Message
(string)
As defined in RFC 2869. Only present when the authentication method for the RADIUS profile is set to EAP-MD5.

Framed-IP-Address
(32-bit unsigned integer)
IP Address of the controller LAN port.

Framed-MTU
(32-bit unsigned integer)
Hard-coded to 1496 (802.1X). Hard-coded value of 1496. The value is always four bytes lower than the wireless MTU maximum which is 1500 bytes in order to support IEEE802dot1x authentication.

NAS-Identifier
(string)
The NAS ID set on the [Controller >> Authentication > RADIUS profiles > Add New Profile](#) page for the RADIUS profile being used.
NAS-Ip-Address
(32-bit unsigned integer)
The IP address of the port the controller is using to communicate with the RADIUS server.

NAS-Port
(32-bit unsigned integer)
Always 0.

NAS-Port-Type
(32-bit unsigned integer)
Always set to 19, which represents WIRELESS_802_11.

Message-Authenticator
(string)
As defined in RFC 2869. Always present even when not doing an EAP authentication. length = 16 bytes.

Service-Type
(32-bit unsigned integer)
RADIUS service type.

State
(string)
As defined in RFC 2865.

User-Name
(string)
The RADIUS username assigned to the controller on the Public access > Attributes page.

User-Password
(string)
The password assigned to the controller on the Public access > Attributes page. Encoded as defined in RFC 2865. Only present when the authentication method for the RADIUS profile is set to PAP.

Vendor-specific (Microsoft)
HP ProCurve supports the following Microsoft vendor-specific attributes.

MSCHAP-Challenge
(string)
As defined in RFC 2433. Only present when the authentication method for the RADIUS profile is set to MSCHAPv1 or MSCHAPv2. Length = 8 bytes.

MSCHAP-Response
(string)
As defined in RFC 2433. Only present when the authentication method for the RADIUS profile is set to MSCHAPv1. Length = 49 bytes.

MSCHAPv2-Response
(string)
As defined in RFC 2759. Only present when the authentication method for the RADIUS profile is set to MSCHAPv2. Length = 49 bytes.
Vendor-specific (WISPr)
HP ProCurve supports the following Wi-Fi Alliance vendor-specific attributes.

Location-Name
The WISPr location name assigned to the controller.
- SMI network management private enterprise code = 14122
- Vendor-specific attribute type number = 2
- Attribute type: A string in the format: `wispr-location-name=location_name`

Location-ID
The WISPr location identifier assigned to the controller.
- SMI network management private enterprise code = 14122
- Vendor-specific attribute type number = 1
- Attribute type: A string in the format: `wispr-location-id=location_id`

Logoff-url
The WISPr log-off URL that will be used.
- SMI network management private enterprise code = 14122
- Vendor-specific attribute type number = 3
- Attribute type: A string in the format: `wispr-logoff-url=URL`

Access accept

Class
(string)
As defined in RFC 2865. Multiple instances are supported.

EAP-Message
(string)
Only supported when authentication is EAP-MD5. Note that the content will not be read as the RADIUS Access Accept overrides whatever indication is contained inside this packet.

Session-Timeout
(32-bit unsigned integer)
The controller will retrieve RADIUS attributes when this timer expires. Omitting this attribute or specifying 0 disables the feature. (Note that this is configurable directly on the controller by setting **Public access > Attributes > Retrieval interval**.)

Vendor-specific (Colubris)

Colubris AV-Pair
(string)
HP ProCurve has defined this vendor-specific attribute to support configuration of special features on the controller, such as the customization of the public access interface and global user session settings. This attribute conforms to RADIUS RFC 2865. You may need to define this attribute on your RADIUS server (if it is not already present) using the following values:
Working with RADIUS attributes
Controller attributes overview

- SMI network management private enterprise code = 8744
- Vendor-specific attribute type number = 0
- Attribute type: A string in the following format <keyword>=<value>

Multiple instances of the Colubris AV-pair can be defined in a RADIUS account to configure a variety of settings. For a complete list of all supported attributes, see *Colubris AV-Pair - Site attribute values on page 14-33*.

Access reject
No attributes are supported.

Access challenge
No attributes are supported.

Accounting request

Acct-Authentic
(32-bit unsigned integer)
Always set to 1 which means RADIUS.

Acct-Delay-Time
(32-bit unsigned integer)
As defined in RFC 2869.

Acct-Event-Timestamp
(32-bit unsigned integer)
As defined in RFC 2869.

Acct-Session-Id
(32-bit unsigned integer)
Random value generated by the controller.

Acct-Status-Type
(32-bit unsigned integer)
Supported values are: Accounting-On (7) and Accounting-Off (8).

Called-Station-Id
(string)
The MAC address of the controller LAN port in IEEE format. For example: 00-02-03-5E-32-1A.

Calling-Station-Id
(string)
The MAC address of the controller LAN port in IEEE format. For example: 00-02-03-5E-32-1A.

Class
(string)
As defined in RFC 2865. Multiple instances are supported.
Framed-IP-Address
(32-bit unsigned integer)
IP Address of the controller LAN port.

NAS-Identifier
(string)
The NAS ID for the RADIUS profile being used.

NAS-Ip-Address
(32-bit unsigned integer)
The IP address of the port the controller is using to communicate with the RADIUS server.

NAS-Port
(32-bit unsigned integer)
Always 0.

NAS-Port-Type
(32-bit unsigned integer)
Always set to 19, which represents WIRELESS_802_11.

User-Name
(string)
The RADIUS username assigned to the controller on the Public access > Attributes page.

Accounting response
No attributes are supported.
User attributes

The controller provides support for a number of standard RADIUS user attributes, including those for authentication and accounting. See User attribute definitions on page 14-20 for a list of these attributes and a brief definition. For detailed information on these attributes, refer to the documentation that came with your RADIUS server.

The controller also supports several vendor-specific attributes, including the special HP ProCurve attribute (known as the user attribute) that is used to customize the behavior of the public access interface and define values for user accounts. To find out more about the user attribute, see the following section.

Customizing user accounts with the user attribute

HP ProCurve has defined a vendor-specific RADIUS attribute to support configuration of the public access interface and user accounts. This attribute conforms to RADIUS RFC 2865 and is called the Colubris AV-Pair.

Multiple instances of the Colubris AV-Pair attribute can be defined for each user, each with a different AV-Pair value. For a complete list of all supported AV-Pair values, see Colubris AV-Pair - User attribute values on page 14-68.

In order for a third-party RADIUS server to support the Colubris AV-Pair attribute you need to define it as described under Colubris AV-Pair on page 14-32.

Note

The Colubris AV-Pair attribute can be used to define settings on the controller and for users and administrators. This section discusses user settings only.

Important

The documentation for this product frequently uses the terms site attributes and user attributes to refer to the Colubris AV-Pair attribute values depending on whether the AV-Pair attribute values are set with a value that applies to the public access site or to an individual user.

Defining and retrieving user attributes

User attributes can be retrieved from a third-party RADIUS server or specified directly on the controller in user account profiles.

Defining attributes locally in user accounts

If you are using the local user accounts to authenticate users, then you can define account attributes locally via account profiles.

Each user account can be associated with one or more account profiles. The attributes that are set in each profile are combined in the account to produce the full list of active attributes.

If you are working with access-controlled user accounts, additional attributes can also be defined via the Default AC profile.
The best way to understand how all this works is to look at an example.

Example

In this example, two user profiles (called **Employee** and **Guest**) are defined on the **Controller >> Users > Account profiles** page. The settings for each profile are shown below.

Employee profile

Sets the attributes that will be used to define employee accounts.
Guest profile
Sets the attributes that will be used to define guest accounts.

Once account profiles have been defined, user accounts can be created.
The following sample page shows the initial configuration of a user account for an employee named **Bill**. Notice that before any account profile is assigned, the **Effective attributes** box shows a couple of active attributes: **Idle timeout**, and **Session timeout**.

These attributes come from the **Default AC** profile. Attributes from this profile are automatically assigned to all access-controlled user accounts. To customize the attributes for the **Default AC** profile you need to select **Controller >> Public access > Attributes**. (The default AC profile cannot be edited via the **Controller >> Users > Account profiles** page.) See **About the Default AC profile on page 9-22**.
To complete the configuration of Bill's account, the **Employee** account profile is assigned, which adds additional attributes to the **Effective attributes** list.

Retrieving attributes from a RADIUS server

When you are using a RADIUS server to authenticate users, attributes can be set in individual user accounts to define the same settings that are available via the local user profiles. These settings are accomplished by adding both standard RADIUS attributes (User attribute definitions on page 14-20) and one or more instances of the Colubris AV-Pair (user) attribute (Colubris AV-Pair - User attribute values on page 14-68) to the appropriate RADIUS user accounts.

ProCurve Manager IDM support

HP ProCurve Manager (PCM) is a network management solution for managing HP ProCurve devices. HP ProCurve Identity Driven Manager (IDM) is a plug-in to HP ProCurve Manager Plus that enables dynamic provisioning of network security and performance settings based on user, device, location, time, and endpoint posture.
IDM can be used to define settings in a user’s RADIUS account that the controller will retrieve when the user is authenticated, and then apply to the user’s wireless session. The following PCM settings are supported.

<table>
<thead>
<tr>
<th>PCM setting</th>
<th>Description</th>
<th>Supported on VSCs that are ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tagged VLAN</td>
<td>Specifies a VLAN number only. Names are not supported.</td>
<td>Access controlled and Non-access-controlled</td>
</tr>
<tr>
<td>(The Untagged VLAN setting is not supported.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QoS</td>
<td>Sets the bandwidth level for the user’s account. PCM numerical values are mapped to the user account as follows: 6, 7 = VERY-HIGH 4, 5 = HIGH 0, 3 = NORMAL 1, 2 = LOW</td>
<td>Access controlled and Non-access-controlled Requires that the Bandwidth control feature is enabled on the controller (Controller >> Network > Bandwidth control) when access-controlled VSCs are used.</td>
</tr>
<tr>
<td>Ingress/Egress rate limit</td>
<td>Sets the user’s ingress and egress data rates in bytes.</td>
<td>Access controlled</td>
</tr>
<tr>
<td>Network resources access rule</td>
<td>Sets a custom access control list for the user.</td>
<td>Access controlled</td>
</tr>
</tbody>
</table>

Important

When using PCM to configure settings in a user’s RADIUS account, you should **not** use Colubris AV-Pair values to define other settings in the same account. Standard RADIUS attributes can be used however.
User attribute definitions

The following attributes are supported for user accounts.

Access Request
- Acct-Session-Id
- Called-Station-Id
- Calling-Station-Id
- CHAP-Challenge
- CHAP-Password
- Chargeable User Identity (CUI)
- Connect-Info
- EAP-Message
- Framed-IP-Address
- Framed-MTU
- NAS-Identifier
- NAS-Ip-Address
- NAS-Port
- NAS-Port-Type
- Message-Authenticator
- Service-Type
- State
- User-Name
- User-Password
- Vendor-specific (Microsoft)
 - MSCHAP-Challenge
 - MSCHAP-Response
 - MSCHAPv2-Response
- Vendor-specific (WISPr)
 - Location-Name
 - Location-ID
 - Logoff-url

Access Accept
- Acct-Interim-Interval
- Chargeable User Identity (CUI)
- Class
- EAP-Message
- Idle-Timeout
- Message-Authenticator
- Reply-Message
- Session-Timeout
- Termination-Action
- Tunnel-Medium-Type
- Tunnel-Private-Group-ID
- Tunnel-Type
- Vendor-specific (Microsoft)
 - MS-MPPE-Recv-Key
 - MS-MPPE-Send-Key
- Vendor-specific (Colubris)
 - Colubris AV-Pair
 - Colubris-Intercept

Access Reject
- EAP-Message
- Vendor-specific (Microsoft)
 - MSCHAP-Challenge
- MSCHAP-Response
 - MSCHAP-Error
- Reply-Message

Access Challenge
- EAP-Message
- State

Accounting Request
- Acct-Authentic
- Acct-Delay-Time
- Acct-Event-Timestamp
- Acct-Session-Id
- Acct-Status-Type
- Calling-Station-Id
- Called-Station-Id
- Chargeable User Identity (CUI)
- Class
- Framed-IP-Address
- NAS-Identifier
- NAS-Ip-Address
- NAS-Port
- NAS-Port-Type
- User-Name
- Vendor-specific (WISPr)
 - Location-Name
 - Location-ID
 - Logoff-url
- Acct-Session-Time
- Acct-Input-Gigawords
- Acct-Input-Octets
- Acct-Input-Packets
- Acct-Output-Gigawords
- Acct-Output-Octets
- Acct-Output-Packets
- Acct-Terminate-Cause

Accounting Response
No attributes are supported.
Access request

Acct-Session-Id
(32-bit unsigned integer)
Random value generated per authentication by the controller.

Called-Station-Id
(string)
By default, this is set to the MAC address of the controller wireless/LAN port in IEEE format. For example: 00-02-03-5E-32-1A. To use the MAC address of the Internet port, you must edit the config file and change the setting of `radius-called-station-id-port` to `WAN` in the `<ACCESS-CONTROLLER>` section. If location-aware authentication is enabled for the VSC the user is logged into, then this value is defined by the VSC.

Calling-Station-Id
(string)
The MAC address of the user's station in IEEE format. For example: 00-02-03-5E-32-1A.

CHAP-Challenge
(string)
Randomly generated. As defined in RFC 2865. Only present when the authentication method for the RADIUS profile is set to CHAP. Length = 19 bytes.

CHAP-Password
(string)
The user's password. Encoded as defined in RFC 2865. Only present when the authentication method for the RADIUS profile is set to CHAP.

Chargeable User Identity (CUI)
(string)
As defined in RFC-4372. The CUI is used to associate a unique identifier with a user so that the user can be identified (for billing, authentication or other purposes) when roaming outside of their home network.

Connect-Info
(string)
The string “HTTPS” or “IEEE802.1X”.

EAP-Message
(string)
As defined in RFC 2869. Only present when the authentication method for the RADIUS profile is set to EAP-MD5.

Framed-IP-Address
(32-bit unsigned integer)
IP Address as configured on the client station (if known by the controller).

Framed-MTU
(32-bit unsigned integer)
Hard-coded value of 1496. The value is always four bytes lower than the wireless MTU maximum which is 1500 bytes in order to support IEEE802dot1x authentication.
NAS-Identifier
(string)
The NAS ID set on the Controller >> Authentication >> RADIUS profiles >> Add New Profile page for the RADIUS profile being used.

NAS-IpAddress
(32-bit unsigned integer)
The IP address of the port the controller is using to communicate with the RADIUS server.

NAS-Port
(32-bit unsigned integer)
A port number, other than 0.

NAS-Port-Type
(32-bit unsigned integer)
Always set to 19, which represents WIRELESS_802_11.

Message-Authenticator
(string)
As defined in RFC 2869. Always present even when not doing an EAP authentication. length = 16 bytes.

Service-Type
(32-bit unsigned integer)
RADIUS service type.

State
(string)
As defined in RFC 2865.

UserName
(string)
The username assigned to the user or a device when using MAC authentication.

User-Password
(string)
The password supplied by a user or device when logging in. Encoded as defined in RFC 2865. Only present when the authentication method for the RADIUS profile is set to PAP.

Vendor-specific (Microsoft)
HP ProCurve supports the following Microsoft vendor-specific attributes.

MSCHAP-Challenge
(string)
As defined in RFC 2433. Only present when the authentication method for the RADIUS profile is set to MSCHAPv1 or MSCHAPv2. Length = 8 bytes.

MSCHAP-Response
(string)
As defined in RFC 2433. Only present when the authentication method for the RADIUS profile is set to MSCHAPv1. Length = 49 bytes.
MSCHAPv2-Response

(string)

As defined in RFC 2759. Only present when the authentication method for the RADIUS profile is set to MSCHAPv2. Length = 49 bytes.

Vendor-specific (WISPr)

HP ProCurve supports the following Wi-Fi Alliance vendor-specific attributes.

Location-Name
The WISPr location name assigned to the controller.

- SMI network management private enterprise code = 14122
- Vendor-specific attribute type number = 2
- Attribute type: A string in the format: \texttt{wispr-location-name=location_name}

Location-ID
The WISPr location identifier assigned to the controller.

- SMI network management private enterprise code = 14122
- Vendor-specific attribute type number = 1
- Attribute type: A string in the format: \texttt{wispr-location-id=location_id}

Logoff-url
The WISPr log-off URL that will be used.

- SMI network management private enterprise code = 14122
- Vendor-specific attribute type number = 3
- Attribute type: A string in the format: \texttt{wispr-logoff-url=URL}

Access accept

Acct-Interim-Interval

(32-bit unsigned integer)

When present, enables the transmission of RADIUS accounting requests of the Interim Update type. Specify the number of seconds between each transmission.

Chargeable User Identity (CUI)

(string)

As defined in RFC-4372. The CUI is used to associate a unique identifier with a user so that the user can be identified (for billing, authentication or other purposes) when roaming outside of their home network.

Class

(string)

As defined in RFC 2865. Multiple instances are supported.

EAP-Message

(string)

Only supported when authentication is EAP-MD5. Note that the content will not be read as the RADIUS Access Accept overrides whatever indication is contained inside this packet.
Working with RADIUS attributes

User attributes

Idle-Timeout

(32-bit unsigned integer)

Maximum idle time in seconds allowed for the user. Once reached, the user session is terminated with termination-cause IDLE-TIMEOUT. Omitting the attribute or specifying 0 disables the feature.

Reply-Message

(string)

This string (as defined in RFC 2865) is recorded and passed as is to the GetRadiusReplyMessage() asp function. Multiple string are supported to a maximum length of 252 bytes.

Session-Timeout

(32-bit unsigned integer)

Maximum time a session can be active. The user must re-authenticate when this timer expires. Omitting this attribute or specifying 0 disables the feature.

Termination-Action

(32-bit unsigned integer)

As defined by RFC 2865. If set to 1, a new Access Request is sent. If an Access Accept is returned, the controller then extends the user’s session timeout, and if applicable, session quota, according the value returned by the RADIUS server.

Tunnel-Medium-Type

(24-bit unsigned integer)

Only used when assigning a specific VLAN number to a user. In this case it must be set to 802.

Tunnel-Private-Group-ID

(string)

Only used when assigning a specific VLAN number to a user. In this case it must be set to the VLAN ID.

Tunnel-Type

(24-bit unsigned integer)

Only used when assigning a specific VLAN number to a user. In this case it must be set to 13 (VLAN).

Vendor-specific (Microsoft)

HP ProCurve supports the following Microsoft vendor-specific attributes.

MS-MPPE-Recv-Key

(string)

Use to validate a PMKID inside a 802.11 association request, send EAPOL keys to a wireless station when a VSC has 802.1X WEP enabled, and to perform a four-way handshake.

MS-MPPE-Send-Key

(string)

Use to validate a PMKID inside a 802.11 association request, send EAPOL keys to a wireless station when a VSC has 802.1X WEP enabled, and to perform a four-way handshake.
Vendor-specific (Colubris)

(string)

Colubris AV-Pair
HP ProCurve has defined a vendor-specific attribute to support configuration of user session settings. This attribute conforms to RADIUS RFC 2865. You may need to define this attribute on your RADIUS server (if it is not already present) using the following values:

- SMI network management private enterprise code = 8744
- Vendor-specific attribute type number = 0
- Attribute type: A string in the following format `<keyword>=<value>`

Multiple instances of the Colubris AV-Pair can be defined in a RADIUS account to configure a variety of settings. For a complete list of all supported settings, see *Colubris AV-Pair - Site attribute values on page 14-33*.

Colubris-Intercept
This attribute is used to enable/disable the interception and redirection of traffic for individual users. The destination for intercepted traffic is defined separately for each VSC using the **Interception** option under **VSC egress mapping**. See *VSC egress mapping on page 4-15*.

You may need to define the Colubris-Intercept attribute on your RADIUS server (if it is not already present) using the following values:

- SMI network management private enterprise code = 8744
- Vendor-specific attribute type number = 1
- Attribute type = integer with one of the following values:
 - 0: Do not intercept user traffic.
 - 1: Intercept user traffic and redirect it to the destination defined by the **Intercepted** option under **VSC egress mapping** in the VSC to which the user is connected.

Access reject

EAP-Message

(string)

Only supported when authentication is EAP-MD5. Note that the content will not be read as the RADIUS Access Reject overrides whatever indication is contained inside this packet.

Vendor-specific (Microsoft)
HP ProCurve supports the following Microsoft vendor-specific attributes.

MSCHAP-Error

(string)

A MSCHAP specific error as defined by RFC 2433.
Working with RADIUS attributes

User attributes

Reply-Message

(string)

This string (as defined in RFC 2865) is recorded and passed as is to the GetRadiusReplyMessage() asp function. Multiple string are supported to a maximum length of 252 bytes.

Access challenge

EAP-Message

(string)

One or more occurrences of this attribute is supported inside the same packet. All occurrences are concatenated and transmitted to the IEEE802dot1x client as is. As defined in RFC 2869.

State

(string)

As defined in RFC 2865.

Accounting request

Accounting start, stop. and interim-update

Acct-Authentic

(32-bit unsigned integer)

Always set to 1 which means RADIUS.

Acct-Delay-Time

(32-bit unsigned integer)

As defined in RFC 2869.

Acct-Event-Timestamp

(32-bit unsigned integer)

As defined in RFC 2869.

Acct-Session-Id

(32-bit unsigned integer)

Random value generated by the controller.

Acct-Status-Type

(32-bit unsigned integer)

Supported value are: Start (1), Interim Update (3), and Stop (2).

Calling-Station-Id

(string)

The MAC address of the user's computer in IEEE format. For example: 00-02-03-5E-32-1A.

Called-Station-Id

(string)

The MAC address of the controller LAN port in IEEE format. For example: 00-02-03-5E-32-1A.
Chargeable User Identity (CUI)

(string)

As defined in RFC-4372. The CUI is used to associate a unique identifier with a user so that the user can be identified (for billing, authentication or other purposes) when roaming outside of their home network.

Class

(string)

As defined in RFC 2865. Multiple instances are supported.

Framed-IP-Address

(32-bit unsigned integer)

IP Address of the user's computer.

NAS-Identifier

(string)

The NAS ID for the RADIUS profile being used.

NAS-Ip-Address

(32-bit unsigned integer)

The IP address of the port the controller is using to communicate with the RADIUS server.

NAS-Port

(32-bit unsigned integer)

A virtual port number starting at 1. Assigned by the controller.

NAS-Port-Type

(32-bit unsigned integer)

Always set to 19, which represents WIRELESS_802_11.

User-Name

(string)

The username assigned to the user or to a device when using MAC authentication.

Vendor-specific (WISPr)

HP ProCurve supports the following Wi-Fi Alliance vendor-specific attributes.

Location-Name

The WISPr location name assigned to the controller.
- SMI network management private enterprise code = 14122
- Vendor-specific attribute type number = 2
- Attribute type: A string in the format: `wispr-location-name=location_name`

Location-ID

The WISPr location identifier assigned to the controller.
- SMI network management private enterprise code = 14122
- Vendor-specific attribute type number = 1
- Attribute type: A string in the format: `wispr-location-id=location_id`
Logoff-url
The WISPr log-off URL that will be used.

- SMI network management private enterprise code = 14122
- Vendor-specific attribute type number = 3
- Attribute type: A string in the format: `wispr-logoff-url=URL`

Accounting stop. and interim-update

Acct-Session-Time
(32-bit unsigned integer)
Number of seconds this session since this session was authenticated. Only present when `Acct-Status-Type` is `Interim-Update` or `Stop`.

Acct-Input-Gigawords
(32-bit unsigned integer)
High 32-bit value of the number of octets/bytes received by the user. Only present when `Acct-Status-Type` is `Interim-Update` or `Stop`.

Acct-Input-Octets
(32-bit unsigned integer)
Low 32-bit value of the number of octets/bytes received by the user. Only present when `Acct-Status-Type` is `Interim-Update` or `Stop`.

Acct-Input-Packets
(32-bit unsigned integer)
Low 32-bit value of the number of packets/bytes received by the user. Only present when `Acct-Status-Type` is `Interim-Update` or `Stop`.

Acct-Output-Gigawords
(32-bit unsigned integer)
High 32-bit value of the number of octets/bytes sent by the user. Only present when `Acct-Status-Type` is `Interim-Update` or `Stop`. As defined in 2869.

Acct-Output-Octets
(32-bit unsigned integer)
Low 32-bit value of the number of octets/bytes sent by the user. Only present when `Acct-Status-Type` is `Interim-Update` or `Stop`.

Acct-Output-Packets
(32-bit unsigned integer)
Low 32-bit value of the number of packets/bytes sent by the user. Only present when `Acct-Status-Type` is `Interim-Update` or `Stop`.
Accounting stop only

Acct-Terminate-Cause
(32-bit unsigned integer)
Termination cause for the session See RFC 2866 for possible values. Only present when Acct-Status-Type is Stop.

<table>
<thead>
<tr>
<th>ID</th>
<th>Cause</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>User Request</td>
<td>Supported. Indicates that the user logged out.</td>
</tr>
<tr>
<td>2</td>
<td>Lost Carrier</td>
<td>Supported. Indicates that the client station is no longer alive.</td>
</tr>
<tr>
<td>3</td>
<td>Lost Service</td>
<td>Supported. When location-aware is enabled and a user switches access points, the controller re-authenticates the user. If authentication fails due to timeout, this code is returned.</td>
</tr>
<tr>
<td>4</td>
<td>Idle Timeout</td>
<td>Supported. User exceeded the idle timeout value defined for the session.</td>
</tr>
<tr>
<td>5</td>
<td>Session Timeout</td>
<td>Supported. User exceeded maximum time defined for the session.</td>
</tr>
<tr>
<td>6</td>
<td>Admin Reset</td>
<td>Supported. User session was terminated by the controller administrator via SNMP or the management tool.</td>
</tr>
<tr>
<td>7</td>
<td>Admin Reboot</td>
<td>Not Supported. (not applicable)</td>
</tr>
<tr>
<td>8</td>
<td>Port Error</td>
<td>Supported. If two users are detected using the same IP address, both are logged out with this error. Another cause is if an error is encountered in an access list definition. For example, an invalid host was specified.</td>
</tr>
<tr>
<td>9</td>
<td>NAS Error</td>
<td>Not Supported. (not applicable)</td>
</tr>
<tr>
<td>10</td>
<td>NAS Request</td>
<td>Not Supported. (not applicable)</td>
</tr>
<tr>
<td>11</td>
<td>NAS Reboot</td>
<td>Supported. User was logged out because the controller was restarted.</td>
</tr>
<tr>
<td>12</td>
<td>Port Unneeded</td>
<td>Not Supported. (not applicable)</td>
</tr>
<tr>
<td>13</td>
<td>Port Preempted</td>
<td>Supported. When a user switches AP or SSID with incompatible configurations (authentication type), they are logged out with this code. Also if the user changes authentication type of the same AP.</td>
</tr>
<tr>
<td>14</td>
<td>Port Suspended</td>
<td>Not Supported. (not applicable)</td>
</tr>
<tr>
<td>15</td>
<td>Service Unavailable</td>
<td>Not Supported. (not applicable)</td>
</tr>
<tr>
<td>16</td>
<td>Callback</td>
<td>Not Supported. (not applicable)</td>
</tr>
</tbody>
</table>
Working with RADIUS attributes

User attributes

<table>
<thead>
<tr>
<th>ID</th>
<th>Cause</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>User Error</td>
<td>Supported. An 802.1X client initiated a second authentication request for a user, and this request was refused.</td>
</tr>
<tr>
<td>18</td>
<td>Host Request</td>
<td>Not Supported. (not applicable)</td>
</tr>
<tr>
<td>0x8744 (34628 decimal)</td>
<td>Termination</td>
<td>HP ProCurve Networking-specific termination cause.</td>
</tr>
</tbody>
</table>

Accounting response

No attributes are supported.
Administrator attributes

If you want to support multiple administrator names and passwords, you must use a RADIUS server to manage them. The controller only supports a single admin name and password internally (defined on the Management > Management tool page).

Note

Improper configuration of the administrator profile could expose the controller to access by any user with a valid account. The only thing that distinguishes an administrative account from that of a standard user account is the setting of the service type. Make sure that a user is not granted access if service type is not Administrative, This is the reason why it may be prudent to use a different RADIUS server to handle administrator logins. This practice reduces the risk of a bad configuration on the RADIUS server side creating a security hole.

The following attributes are supported for administrator accounts.

Access Request
- Framed-MTU
- NAS-Identifier
- User-Name
- Service-Type
- Vendor-specific (Microsoft)
 - MSCHAP-Challenge
 - MSCHAP-Response

Access Accept
- Vendor-specific (Colubris)

Access Reject
No attributes are supported.

Access Challenge
No attributes are supported.

Accounting Request
No attributes are supported.

Accounting Response
No attributes are supported.

Access request

Framed-MTU
(32-bit unsigned integer)
Hard-coded value of 1496. The value is always four bytes lower than the wireless MTU maximum which is 1500 bytes in order to support IEEE802dot1x authentication.

NAS-Identifier
(string)
The NAS ID set on the Controller >> Authentication > RADIUS profiles > Add New Profile page for the RADIUS profile being used.

User-Name
(string)
The username assigned to the administrator.
Service-Type
(32-bit unsigned integer)
As defined in RFC 2865. Set to a value of 6, which indicates SERVICE_TYPE_ADMINISTRATIVE.

Vendor-specific (Microsoft)
HP ProCurve supports the following Microsoft vendor-specific attributes.

MSCHAP-Challenge
(string)
As defined in RFC 2433. Only present when the authentication method for the RADIUS profile is set to MSCHAPv1 or MSCHAPv2. Length = 8 bytes.

MSCHAP-Response
(string)
As defined in RFC 2433. Only present when the authentication method for the RADIUS profile is set to MSCHAPv1. Length = 49 bytes.

Access accept

Vendor-specific (Colubris)
(string)

Colubris AV-Pair
HP ProCurve has defined a vendor-specific attribute to support configuration of user session settings. This attribute conforms to RADIUS RFC 2865. You may need to define this attribute on your RADIUS server (if it is not already present) using the following values:

- SMI network management private enterprise code = 8744
- Vendor-specific attribute type number = 0
- Attribute type: A string in the following format `<keyword>=<value>`

Multiple instances of the Colubris AV-Pair can be defined in a RADIUS account to configure a variety of settings. For a complete list of all supported attributes, see *Colubris AV-Pair - Administrator attribute values on page 14-75.*
Colubris AV-Pair - Site attribute values

Site values let you define global settings that affect operation of the public access network and all user accounts.

Each Colubris AV-Pair value is specified using the following format: `<keyword>=<value>`

The following table lists all supported site value keywords and provides a link to complete descriptions for each one.

<table>
<thead>
<tr>
<th>Colubris AV-Pair keyword</th>
<th>For more information see</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list</td>
<td>Access list on page 14-34</td>
</tr>
<tr>
<td>use-access-list=uselistname</td>
<td></td>
</tr>
<tr>
<td>use-access-list-unauth=uselistname</td>
<td></td>
</tr>
<tr>
<td>default-user-access-list</td>
<td></td>
</tr>
<tr>
<td>configuration-file</td>
<td>Configuration file on page 14-44</td>
</tr>
<tr>
<td>ssl-certificate</td>
<td>Custom SSL certificate on page 14-44</td>
</tr>
<tr>
<td>custom-pages</td>
<td>Loading custom pages from an archive on page 14-45</td>
</tr>
<tr>
<td>login-page</td>
<td></td>
</tr>
<tr>
<td>transport-page</td>
<td>Loading individual pages on page 14-46</td>
</tr>
<tr>
<td>session-page</td>
<td>These keywords have been deprecated. If you are creating a new installation, use the custom-pages keyword or the site file archive feature on the Controller >> Public access > Web content page. If you are upgrading from a previous release, your existing configuration will still work.</td>
</tr>
<tr>
<td>fail-page</td>
<td></td>
</tr>
<tr>
<td>logo</td>
<td></td>
</tr>
<tr>
<td>welcome-url</td>
<td>Hosting pages on an external Web server on page 14-47</td>
</tr>
<tr>
<td>login-err</td>
<td></td>
</tr>
<tr>
<td>goodbye-url</td>
<td></td>
</tr>
<tr>
<td>login-url</td>
<td>Remote login page on page 14-47</td>
</tr>
<tr>
<td>messages</td>
<td>Custom message file on page 14-52</td>
</tr>
<tr>
<td>default-user-acct-interim-update</td>
<td>Default user interim accounting update interval on page 14-52</td>
</tr>
<tr>
<td>default-user-bandwidth-level</td>
<td>Default user bandwidth level on page 14-52</td>
</tr>
<tr>
<td>default-user-idle-timeout</td>
<td>Default user idle timeout on page 14-53</td>
</tr>
<tr>
<td>default-user-one-to-one-nat</td>
<td>Default user one-to-one NAT on page 14-54</td>
</tr>
<tr>
<td>default-user-use-public-ip-subnet</td>
<td>Default user public IP address on page 14-55</td>
</tr>
<tr>
<td>default-user-session-timeout</td>
<td>Default user session timeout on page 14-55</td>
</tr>
<tr>
<td>default-user-smtp-redirect</td>
<td>Default user SMTP server on page 14-55</td>
</tr>
</tbody>
</table>
Colubris AV-Pair keyword

<table>
<thead>
<tr>
<th>Colubris AV-Pair keyword</th>
<th>For more information see</th>
</tr>
</thead>
<tbody>
<tr>
<td>default-user-welcome-url</td>
<td>Default user URLs on page 14-56</td>
</tr>
<tr>
<td>default-user-goodbye-url</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>default-user-max-input-packets</td>
<td>Default user quotas on page 14-53</td>
</tr>
<tr>
<td>default-user-max-output-packets</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>default-user-max-total-packets</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>default-user-max-input-octets</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>default-user-max-output-octets</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>default-user-max-total-octets</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>default-user-max-input-rate=value</td>
<td>Default user data rates on page 14-54</td>
</tr>
<tr>
<td>default-user-max-output-rate=value</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>http-proxy-upstream</td>
<td>HTTP proxy upstream on page 14-56</td>
</tr>
<tr>
<td>ipass-login-url</td>
<td>IPass login URL on page 14-57</td>
</tr>
<tr>
<td>mac-address</td>
<td>MAC authentication on page 14-57</td>
</tr>
<tr>
<td>primary-web-server-status-url</td>
<td>Multiple login servers on page 14-58</td>
</tr>
<tr>
<td>secondary-web-server-status-url</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>primary-web-server-status-url</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>secondary-web-server-status-url</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>redirect-url</td>
<td>Redirect URL on page 14-60.</td>
</tr>
<tr>
<td>ssl-noc-certificate</td>
<td>NOC authentication on page 14-63</td>
</tr>
<tr>
<td>ssl-noc-ca-certificate</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>wispr-login-url</td>
<td>ProCurve WISPr support on page 14-63</td>
</tr>
<tr>
<td>wispr-abort-login-url</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>redirect-page</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>access-procedure</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>dnat-server</td>
<td>Traffic forwarding (dnat-server) on page 14-64.</td>
</tr>
<tr>
<td>primary-dnat-server-status-url</td>
<td>Hold for now.</td>
</tr>
<tr>
<td>secondary-dnat-server-status-url</td>
<td>Hold for now.</td>
</tr>
</tbody>
</table>

Access list

Access lists enable you to create public areas on your network that all users can browse, and protected areas that are restricted to specific user accounts or groups.

Each access list is a set of rules that governs how the controller controls access to network resources. You can create multiple access lists, each with multiple rules to manage the traffic on your public access network.

Default setting

By default no access lists are defined. This means that:
- If authentication (802.1X, WPA, HTML, MAC) is not enabled on a VSC, all users that connect to the VSC have access to the protected network.

- If authentication (802.1X, WPA, HTML, MAC) is enabled on a VSC, then:
 - Unauthenticated users only reach the public access login page. Access to the protected network is blocked, except for register.procurve.com which enables product registration.
 - Authenticated users have access to the protected network.

Note

If you only enable MAC-based authentication on a VSC, wired users are not required to authenticate and gain access to the protected network. In this case it is important to restrict network access with the appropriate access list definition.

How the access lists work

Access lists can be applied on the controller (site access lists), in which case they affect all user traffic, or individually for each user account (user access lists).

Incoming traffic cascades through the currently active lists. Traffic that is accepted or denied by a list is not available to the list that follows it. Traffic that passes through all lists without being accepted or denied is dropped.

- Access list rules that accept traffic are: ACCEPT, ACCEPT-MORE, DNAT-SERVER, and REDIRECT.

- Access list rules that deny traffic are: DENY and WARN.

The following diagram illustrates how incoming traffic from a user session is processed by the access list mechanism.
Within each access list, traffic cascades through the list rules in a similar manner.

Access list rules are numbered according to the order in which they are specified. Only data that is not accepted or denied by a rule is available to the next rule in the list.

Accounting support

Each rule in an access list can be configured with an account name for billing purposes. The controller sends billing information based on the amount of traffic matched by the rule.

This lets you create rules to track and bill traffic to particular destinations.

Tips on using the access list

With certificates

- If you replaced the default SSL certificate on the controller with one signed by a well-known CA, you should define the access list to permit access to the CA certificate for all non-authenticated users. This enables the user's browser to verify that the certificate is valid without displaying any warning messages.

- Users may have configured their Web browsers to check all SSL certificates against the Certificate Revocation List (CRL) maintained by the CA that issued the certificate. The location of the CRL may be configured in the browser, or embedded in the certificate. The access list should be configured to permit access to the CRL, otherwise the user's browser times out before displaying the login page.

Remote login page

If you are using the remote login page feature, make sure that access to the Web server hosting the login page is granted to all unauthenticated users via the site access list.
SMTP redirect

If an unauthenticated user establishes a connection to their email server, the SMTP redirect feature will not work once the user logs in. The user's email is still sent to the original email server.

To avoid this, do not use an access list to open TCP port 25 for unauthenticated users.

Critical access list definitions (such as for a remote login page, certificates) should not use the OPTIONAL setting because if these definitions fail to initialize there is no indication in the log.

Defining access lists

Access lists are defined by adding the following Colubris AV-Pair value string to the RADIUS profile for a controller or to the local list (Public access > Attributes page).

access-list=value

Each value string defines one rule. Up to 99 rules can be defined for an access list.

All rules that make up an access list must be initialized without error for the list to be active. (You can force the controller to ignore initialization errors on a rule-by-rule basis by using the OPTIONAL parameter.)

You can define up to 32 access lists.

Activating site access lists

When an access list is activated on the controller, it applies to all access controlled user traffic handled by the controller.

Access lists are activated by adding the following Colubris AV-Pair value string to the RADIUS profile for a controller or to the local list (Public access > Attributes page).

use-access-list=uselistname

Only one access list can be active on the controller. This list must be initialized without an error.

It is possible to set an access list to apply only for unauthenticated users by specifying the following value string:

use-access-list-unauth=uselistname

User access lists

Access lists can also be activated on a per-user basis by configuring the appropriate settings for each user account. See Access list on page 14-68 for more information.

A default access list can be defined by adding the following Colubris AV-Pair value string to the RADIUS profile for a controller or to the local list (Public access > Attributes page). This defines the access list to use for all users whose profiles do not contain an access list value.

default-user-access-list=uselistname
Syntax

access-list=
listname[,OPTIONAL],action,protocol,address,port[,account[,interval]]

use-access-list=uselistname

default-user-access-list=uselistname

use-access-list-unauth=uselistname

Note

You can use spaces as separators instead of commas.

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>listname</td>
<td>Specify a name (up to 32 characters long) to identify the access list this rule applies to. If a list with this name does not exist, a new list is created. If a list with this name exists, the rule is added to it.</td>
</tr>
<tr>
<td>uselistname</td>
<td>Specify the name of an existing access list. This list is activated for the current profile. Lists are checked in the order they are activated.</td>
</tr>
<tr>
<td>OPTIONAL</td>
<td>Allows the access list to be activated even if this rule fails to initialize. For example, if you specify a rule that contains an address which cannot be resolved for some reason, the other rules that make up the access list will still be initialized. If you do not specify optional, a failed rule will cause the entire list to fail. Critical access list definitions (such as for a remote login page, certificates) should not use the OPTIONAL setting because if these definitions fail to initialize there will be no indication in the log.</td>
</tr>
<tr>
<td>action</td>
<td>Specify what action the rule takes when it matches incoming traffic. The options are:</td>
</tr>
<tr>
<td></td>
<td>ACCEPT - Allow traffic matching this rule.</td>
</tr>
<tr>
<td></td>
<td>ACCEPT-MORE - Allow traffic matching this rule and allocate extra connections (when required) to enable users to connect with the specified address.</td>
</tr>
</tbody>
</table>

By default the controller allows up to 200 TCP or UDP connections per authenticated or unauthenticated user. If a user has exceeded this connection limit, this parameter allows the controller to permit extra connections from the user when connecting to the specified destination. Connections are assigned from a global pool of 100 connections.
Working with RADIUS attributes
Colubris AV-Pair - Site attribute values

This can be used to make sure that users can always reach an important resource on the network. For example, the following access list definition allows additional connections as needed to any user who is trying to reach my-web-server.com.

```
access-list=procurve,ACCEPT-MORE,all,my-web-server.com,80
use-access-list=procurve
```

- **DENY** - Reject traffic matching this rule.
- **DNAT-SERVER**: Traffic matching this rule is forwarded to the destination defined by the `dnat-server` value. See *Traffic forwarding (dnat-server) on page 14-64* for more information.

Note: SSL traffic cannot be forwarded as this breaks SSL security during connection negotiation resulting in the connection not being established.

- **REDIRECT**: Reject traffic matching this rule and redirect the user's Web browser to the page specified by `redirect-url`, or `login-url` if `redirect-url` is not defined. See *Redirect URL on page 14-60* for more information. For example, one use for this feature could be to block access to a popular protocol, then prompt the user for additional fees to activate support.

- **WARN**: Reject traffic matching this rule and return an HTTP error message (which is not customizable) indicating that access to the site is not allowed by the network. For example:

```
protocol Specify the protocol to check: tcp, udp, icmp, all
```

![Error Page](image-url)

Error Page!

Due to the nature of the content, the website you are trying to view is unreachable through this network.
Working with RADIUS attributes
Colubris AV-Pair - Site attribute values

Access list example
This example illustrates how access lists can be used to control access to network resources for different groups of users at a fictitious university campus.

Topology
The following two topologies show potential wireless deployments for the campus using different types of HP ProCurve Networking equipment. In both cases, a RADIUS server is used to store configuration attributes for the public access network. Although the topologies are slightly different, the same access list definitions are used for both installations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| address | Specify one of the following:
- IP address or domain name (up to 107 characters in length)
- Subnet address. Include the network mask as follows:
 address/subnet mask For example: 192.168.30.0/24
- Use the keyword all to match any address.
- Use the wildcard symbol * to match any sequence of characters at the beginning or the end of a domain name. For example:
 *.mydomain matches any host on the domain .mydomain.
 myhost.* matches myhost at any domain. For example,
 myhost.com or myhost.ca
- Use the keyword none if the protocol does not take an address range (ICMP for example). |
| port | Specify a specific port to check or a port range as follows:
- none - Used with ICMP (since it has no ports).
- all - Check all ports.
- 1-65535[:1-65535] - Specify a specific port or port range.
 Note: If you choose all possible protocols for an access-list definition, then you must supply all ports as well. |
| account | Specify the name of the user account the controller will send billing information to for this rule. Account names must be unique and can be up to 32 characters in length. |
| interval | Specify time between interim accounting updates. If you do not enable this option, accounting information is only sent when a user connection is terminated. Range: 5 to 99999 seconds in 15 second increments. |
Topology 1:

[Network Operating Center diagram]
Access list definitions
The RADIUS profile for the controller contains the following:

access-list=everyone,ACCEPT,tcp,192.168.50.2,80

access-list=students,ACCEPT,tcp,192.168.50.1,80,students_reg,500
access-list=students,ACCEPT,all,192.168.40.0/24,all
access-list=students,DENY,all,192.168.20.0/24,all
access-list=students,DENY,all,192.168.30.0/24,all
access-list=students,ACCEPT,all,all.all,student_internet_use,5000

access-list=faculty,ACCEPT,tcp,192.168.50.1,80,faculty_reg,500
access-list=faculty,ACCEPT,all,192.168.30.0/24,all
access-list=faculty,DENY,all,192.168.20.0/24,all
access-list=faculty,DENY,all,192.168.40.0/24,all
access-list=faculty,ACCEPT,all,all.all,faculty_internet_use,5000

use-access-list=everyone
The RADIUS profile for every student contains the following:

```
use-access-list=students
```

The RADIUS profile for every faculty member contains the following:

```
use-access-list=faculty
```

This definitions create three access lists: everyone, students, and faculty.

Everyone

This list applies to all users (students, teachers, guests), whether they are authenticated or not. This is because the list is active on the controller, which is accomplished with the entry:

```
use-access-list=everyone
```

It enables everyone to access the public Web server.

Students

This list applies to authenticated students only. It is composed of the following entries:

```
access-list=students,ACCEPT,tcp,192.168.50.1,80,students_reg,500
```

Enables Web traffic to the registration Web server. Accounting data is recorded in the account students_reg.

```
access-list=students,ACCEPT,all,192.168.40.0/24,all
```

Enables traffic to reach the student segment.

```
access-list=students,DENY,all,192.168.20.0/24,all
access-list=students,DENY,all,192.168.30.0/24,all
```

These two entries deny access to the faculty subnet and the NOC.

```
access-list=students,ACCEPT,all,all.all,student_internet_use,5000
```

Enables all other traffic to reach the Internet (via routers on the backbone LAN and the router in the NOC). If this last rule did not exist, this traffic would be dropped.

Faculty

This list applies to authenticated faculty members only. It is composed of the following entries:

```
access-list=faculty,ACCEPT,tcp,192.168.50.1,80,faculty_reg,500
```

Enables Web traffic to the registration Web server. Accounting data is recorded in the account faculty_reg.

```
access-list=faculty,ACCEPT,all,192.168.30.0/24,all
```

Enables traffic to reach the faculty segment.

```
access-list=faculty,DENY,all,192.168.20.0/24,all
access-list=faculty,DENY,all,192.168.40.0/24,all
```

These two entries deny access to the student subnet and the NOC.

```
access-list=faculty,ACCEPT,all,all.all,faculty_internet_use,5000
```

Enables all other traffic to reach the Internet (via routers on the backbone LAN and the router in the NOC).
Enables all other traffic to reach the Internet (via routers on the backbone LAN and the router in the NOC). If this last rule did not exist, this traffic would be dropped.

Configuration file

The controller can retrieve and load a new configuration file automatically, based on the URL you specify.

Syntax

```
configuration-file=URL[placeholder]
```

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>Specify the URL that points to the new configuration file.</td>
</tr>
</tbody>
</table>

By using the following placeholders, you can customize the URL for each controller. This is useful when you need to update multiple units.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%n</td>
<td>Returns the NAS ID assigned to the controller. By default, this is the unit serial number.</td>
</tr>
<tr>
<td>%s</td>
<td>Returns the RADIUS login name assigned to the controller on the Public access > Attributes page. By default, this is the unit serial number.</td>
</tr>
<tr>
<td>%i</td>
<td>Returns the domain name assigned to the controller Internet port.</td>
</tr>
<tr>
<td>%a</td>
<td>Returns the IP address of the controller Internet port.</td>
</tr>
</tbody>
</table>

Custom SSL certificate

The controller can retrieve a custom SSL security certificate to replace the HP ProCurve certificate that is included by default.

Syntax

```
ssl-certificate=URL[placeholder]
```

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>Specify the URL that points to the new certificate.</td>
</tr>
</tbody>
</table>
By using the following placeholders, you can customize the URL for each controller. This is useful when you need to update multiple units.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%n</td>
<td>Returns the NAS ID assigned to the controller. By default, this is its serial number.</td>
</tr>
<tr>
<td>%s</td>
<td>Returns the RADIUS login name assigned to the controller. By default, this is its serial number.</td>
</tr>
<tr>
<td>%i</td>
<td>Returns the domain name assigned to the controller Internet port.</td>
</tr>
<tr>
<td>%a</td>
<td>Returns the IP address of the controller Internet port.</td>
</tr>
</tbody>
</table>

The certificate is encoded using PKCS#12 format, and contains:

- the private key of the Web server
- the certificate of the Web server

The file is locked using a password.

Note

The password with which the certificate was locked must be the same as the password specified on the Public access > Attributes page. This is the password the controller uses to login to the RADIUS server.

Example

```plaintext
ssl-certificate=http://www.mycompany.com/%s_certificate
```

Custom public access interface Web pages

Several options are available to define custom pages.

Loading custom pages from an archive

This option enables you load site files from an external file archive, allowing you to replace the entire public access Web site in one simple operation. The archive must be in .zip format.

Note

The contents of the existing public access site is deleted and replaced by the contents of the archive (.zip) file. If the archive does not contain a complete set of valid pages, the public access interface will not function correctly.

Note

When unzipped the total size of all files must be less than 1MB.

Syntax

```plaintext
custom-pages=ArchiveURL
```
Working with RADIUS attributes
Colubris AV-Pair - Site attribute values

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArchiveURL</td>
<td>URL of the .zip archive to be loaded.</td>
</tr>
</tbody>
</table>

Loading individual pages

These keywords have been deprecated. If you are creating a new installation, use the custom-pages keyword or the site file archive feature on the Controller >> Public access > Web content page. If you are upgrading from a previous release, your existing configuration will still work.

Use the following values to retrieve pages from an external location and load them onto the controller. For descriptions of the individual pages see Current site files on page 13-22.

Note
The maximum length of any page URL is 512 characters. If this is exceeded (when using placeholders for example), the URL is truncated. Therefore, it is recommended that you specify the most-important placeholders first.

The pages can only be changed as a group. You cannot, for example, just specify the login-page value. You must specify all of the following pages:

Login page

```
login-page=URL_of_page [placeholder]
```

Can be omitted if a remote login page is being used. See Remote login page on page 14-47.

Transport page

```
transport-page=URL_of_page [placeholder]
```

Session page

```
session-page=URL_of_page [placeholder]
```

Fail page

```
fail-page=URL_of_page [placeholder]
```

Logo

```
logo=URL_of_gif_file [placeholder]
```

Placeholders
The following placeholder is only available when using a RADIUS server. If these values are specified under Public access > Attributes > Configured attributes, the placeholder cannot be used.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%a</td>
<td>Returns the IP address of the controller's Internet port.</td>
</tr>
</tbody>
</table>

Hosting pages on an external Web server
Use the following values to reference pages that reside on an external Web server.

Note
The maximum length of any page URL is 512 characters. If this is exceeded (when using placeholders for example), the URL is truncated. Therefore, it is recommended that you specify the most-important placeholders first.

Note
The controller maintains a separate copy of the URLs for external pages for each user. This means it is possible to provide different pages for each user. See Displaying custom welcome and goodbye pages on page 13-14.

Welcome page
welcome-url=URL_of_page[placeholder]
The user is authenticated, so the welcome page can be located on any URL reachable by the user.

Login error page
login-err-url=URL_of_page[placeholder]
Access to the Web server hosting this page must be granted to all unauthenticated users. Do this with an appropriate access list definition. (Users can see this page before they are logged in.)

if the radius server denies user authentication, this is used instead of an error being presented on the login page.

Goodbye page
goodbye-url=URL_of_page[placeholder]
Access to the Web server hosting this page must be granted to all unauthenticated users. Do this with an appropriate access list definition. (Users see this page after they are logged out.)

Remote login page
Use this value to redirect users to a remote server to log in to the public access interface instead of using the internal login page.
Although the remote login page feature enables you to host the public access login page on a remote Web server, authentication of users is still performed by the controller through a RADIUS server or using the local user list. To accomplish this, the remote Web server must send user login information back to the controller. There are two ways this can be done: basic remote login (as described in this section), or by using the NOC-based authentication feature (described in *Appendix D: NOC authentication*).
The following diagram shows the sequence of events for a typical user session when using a remote login page and a RADIUS server for authentication.

<table>
<thead>
<tr>
<th>User</th>
<th>Controller</th>
<th>RADIUS server</th>
<th>Web server hosting remote login page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-authenticated user attempts to browse a web site on the protected network.</td>
<td>Request is intercepted.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User logs in.</td>
<td>Web browser is redirected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User login info is sent.</td>
<td></td>
<td></td>
<td>Login page is sent.</td>
</tr>
<tr>
<td>User's web browser is redirected to the Welcome page.</td>
<td>HTML redirect is sent to the user’s browser pointing it to the controller</td>
<td>Login approved. User configuration settings are returned.</td>
<td>HTML redirect is sent to the user’s browser pointing it to the Welcome page</td>
</tr>
<tr>
<td></td>
<td>(This page could be hosted on a different web server.)</td>
<td></td>
<td>Web server sends the Welcome page with URL of originally requested web site.</td>
</tr>
</tbody>
</table>

Syntax

```
login-url=URL_of_the_page [placeholder]
```

Access to the Web server hosting this page must be granted to all unauthenticated users. Do this with an appropriate access list definition. (Users see this page before they are logged in.)
Placeholders

An important feature of these pages is that they make it easy to deliver a unique experience for each user. By appending the following optional placeholders to the Colubris AV-Pair value strings, you can pass important information to the Web server. Server-side code can process this information to generate custom pages on-the-fly.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%d</td>
<td>Returns the WISPr location-ID. Supported for login-url only.</td>
</tr>
<tr>
<td>%e</td>
<td>Returns the WISPr location-Name. Supported for login-url only.</td>
</tr>
<tr>
<td>%l</td>
<td>Returns the URL on the controller where user login information should be posted for authentication. This option is used with the remote login page feature. By default, this value is URL encoded. (To enable/disable URL encoding, set the value of <code>url-encode</code> in the <code><ACCESS-CONTROLLER></code> section in the configuration file.)</td>
</tr>
<tr>
<td>%n</td>
<td>Returns the NAS ID assigned to the controller. By default, this is the unit serial number. Not supported in local mode.</td>
</tr>
<tr>
<td>%s</td>
<td>Returns the RADIUS login name assigned to the controller. By default, this is the unit serial number.</td>
</tr>
<tr>
<td>%u</td>
<td>Returns the login name of the user.</td>
</tr>
<tr>
<td>%o</td>
<td>Returns the original URL requested by the user. By default, this value is URL encoded. (To enable/disable URL encoding, set the value of <code>url-encode</code> in the <code><ACCESS-CONTROLLER></code> section in the configuration file.)</td>
</tr>
<tr>
<td>%i</td>
<td>Returns the domain name assigned to the controller Internet port.</td>
</tr>
<tr>
<td>%p</td>
<td>Returns the IP port number on the controller where user login information should be posted for authentication.</td>
</tr>
<tr>
<td>%a</td>
<td>Returns the IP address of the controller Internet port.</td>
</tr>
<tr>
<td>%E</td>
<td>When the location-aware feature is enabled, returns the ESSID of the wireless AP the user is associated with.</td>
</tr>
<tr>
<td>%P</td>
<td>When the location-aware feature is enabled, returns the wireless mode (“ieee802.11a”, “ieee802.11b”, “ieee802.11g”) the user is using to communicate with the AP.</td>
</tr>
<tr>
<td>%G</td>
<td>When the location-aware feature is enabled, returns the group name of the wireless AP the user is associated with.</td>
</tr>
<tr>
<td>%C</td>
<td>When the location-aware feature is enabled, returns the Called-station-id content for the wireless AP the user is associated with.</td>
</tr>
<tr>
<td>%r</td>
<td>Returns the string sent by the RADIUS server when an authentication request fails. The RADIUS server must be configured to support this feature. The information contained in the returned string depends on the configuration of the RADIUS server.</td>
</tr>
</tbody>
</table>
Working with RADIUS attributes

Colubris AV-Pair - Site attribute values

Security issues

- It is recommended that the Web server hosting the remote login page be secured with SSL (requires an SSL certificate from a well-known certificate authority), to ensure that user logins are secure. Without SSL security, logins are exposed and may be compromised, enabling fraudulent use of the network.

- Communications between the user's browser and the controller is always SSL-based. The default certificate on the controller generates a warning on the user's browser unless replaced with a certificate signed by a well-known certificate authority.

Example

1. Create the following folder on your Web server: newlogin.

2. See Public access examples on page 13-4. Copy the following sample pages into the newlogin folder:
 - login.html
 - transport.html
 - session.html
 - fail.html
 - logo.gif

3. Add the following entries to the Configured attributes table on the Public access > Attributes page. (You can also define these attributes in the RADIUS profile for the controller if you are using a RADIUS server.)

   ```
   login-url=web_server_URL/newlogin/login.html?loginurl=%l
   transport-page=web_server_URL/newlogin/transport.html
   session-page=web_server_URL/newlogin/session.html
   fail-page=web_server_URL/newlogin/fail.html
   logo=web_server_URL/newlogin/logo.gif
   access-list=loginserver,ACCEPT,tcp,web_server_IP_address
   use-access-list=loginserver
   ```

4. Customize login.html to accept username and password information from users and then send it to the controller. You can use code similar to the following example to redirect the user's Web browser to the login URL on the controller for authentication:

   ```html
   <form action="https://wireless.colubris.com:8090/goform/HtmlLoginRequest" method="POST">
   ```

 For more flexibility, the remote login page should be written using a server-side scripting language such as ASP, PHP, or PERL. This enables the remote login page to take advantage of any placeholders that may have been defined in the login-url.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%m</td>
<td>Returns the MAC address of the client station that is being authenticated.</td>
</tr>
<tr>
<td>%v</td>
<td>Returns the VLAN assigned to the client station at the controller ingress (LAN port).</td>
</tr>
</tbody>
</table>
Custom message file

Use this value to load a custom message file. These messages are used when various error conditions occur.

`messages=URL_of_text_file [placeholder]`

If you specify a new message file, you must also specify values for:

- Login page
- Transport page
- Session page
- Fail page
- Logo

Placeholders

The following optional placeholder can be appended to the Colubris AV-Pair value for the message file.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%a</td>
<td>Returns the IP address of the controller Internet port.</td>
</tr>
</tbody>
</table>

Default user interim accounting update interval

This keyword lets you define the interim accounting update interval for all users that do not have a specific interval set in their profile.

Syntax

`default-user-acct-interim-update=value`

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Number of seconds between interim updates.</td>
</tr>
</tbody>
</table>

Default user bandwidth level

This keyword lets you define the bandwidth level for all users that do not have a specific level set in their profile. The actual data rate associated with a bandwidth level is defined on the Network > Bandwidth control page.

Syntax

`bandwidth-level=level`
Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>Specify one of the following the bandwidth levels for the user’s session:</td>
</tr>
<tr>
<td></td>
<td>VERY-HIGH</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
</tr>
</tbody>
</table>

Default user idle timeout

Use this to set the default idle timeout for all users whose RADIUS profile does not contain a value for the RADIUS attribute `idle-timeout`.

Syntax

default-user-idle-timeout=seconds

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Specify the maximum amount of time a user session can be idle. Once this time expires, the session is automatically terminated. A value of 0 means no timeout.</td>
</tr>
</tbody>
</table>

Default user quotas

These keywords let you define upload and download limits for all users that do not have a specific limit set in their profile. Limits can be defined in terms of packets or octets (bytes).

Syntax

default-user-max-input-packets=value
default-user-max-output-packets=value
default-user-max-total-packets=value
default-user-max-input-octets=value
default-user-max-output-octets=value
default-user-max-total-octets=value
default-user-max-input-rate=value
default-user-max-output-rate=value
Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| value | For packets: 32-bit unsigned integer value.
 For octets: 64-bit unsigned integer value. |

When a user session is terminated based on a quota, a new non-standard termination cause is used. The value for this termination cause is 0x8744. You can customize this by modifying the value of “radius-quota-exceeded-cause” in the “ACCESS-CONTROLLER” section of the configuration file.

Default user data rates

These keywords let you define data rate limits for all users that do not have a specific limit set in their profile.

Syntax

default-user-max-input-rate=value
default-user-max-output-rate=value

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| value | For packets: 32-bit unsigned integer value.
 For octets: 64-bit unsigned integer value. |

Default user one-to-one NAT

This keyword lets you define the default setting for one-to-one NAT support for all users that do not have this setting specified in their profile. This feature only applies to users making IPSec or PPTP VPN connections with a remote site via controller Internet port.

Syntax

default-user-one-to-one-nat=value

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Set this to 1 to activate one-to-one NAT support.</td>
</tr>
</tbody>
</table>
Default user session timeout

Use this to set the default session timeout for all users whose RADIUS profile does not contain a value for the RADIUS attribute session-timeout.

Syntax

default-user-session-timeout=seconds

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Specify the maximum amount of time a user session can be connected. Once this time expires, the session is automatically terminated. A value of 0 means no timeout.</td>
</tr>
</tbody>
</table>

Default user public IP address

Use this to set the default value for public IP address assignment for users whose RADIUS profile does not contain a value for use-public-ip-subnet (Public IP address on page 14-70).

Syntax

default-user-use-public-ip-subnet=value

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Set this to 1 to activate assignment of a public IP address. Set to 0 to disable.</td>
</tr>
</tbody>
</table>

Default user SMTP server

Use this to set the default SMTP server address for all user sessions. This address is used if a specific server is not set for a particular user.

Syntax

default-user-smtp-redirect=hostname[:port][,username,password]

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname</td>
<td>Specify the IP address or domain name of the e-mail server. Maximum length is 253 characters.</td>
</tr>
</tbody>
</table>
Working with RADIUS attributes
Colubris AV-Pair - Site attribute values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port</td>
<td>Specify the port on the e-mail server to relay to. Range: 1 to 65535. Default: 25</td>
</tr>
<tr>
<td>username</td>
<td>Specify the username required to log on to the SMTP server. Maximum 32 characters. Only used if the SMTP authentication option is enabled on the Public Access > Access Control page. Works with SMTP servers that support plain or CRAM-MD5 authentication.</td>
</tr>
<tr>
<td>password</td>
<td>Specify the password required to log on to the SMTP server. Maximum 32 characters. Only used if the SMTP authentication option is enabled on the Public Access > Access Control page. Works with SMTP servers that support plain or CRAM-MD5 authentication.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>Specify the URL of an external Web page.</td>
</tr>
</tbody>
</table>

Default user URLs

Use this to set the default URLs for the welcome and goodbye pages for all users that do not have default pages specified in their profile.

Syntax

default-user-welcome-url=URL
default-user-goodbye-url=URL

Where:

HTTP proxy upstream

The HTTP proxy upstream feature can be used to force all outgoing TCP traffic to be sent to a third-party upstream HTTP proxy server.

Outgoing traffic is automatically translated into HTTP proxy format because many HTTP proxies are not able to handle transparent proxy requests. HTTP requests such as GET / HTTP/1.0 are transformed into GET http://www.website.com/ HTTP/1.0 before being forwarded to the upstream server.

Note

The HTTP proxy upstream feature targets the HTTP protocol and not HTTPS. Because of this, HTTPS only works if users have configured their browsers for HTTP proxy usage. In the case of transparent proxy, the connection will not be detected as HTTP-compatible and will not be redirected to the upstream proxy server.

By default this feature listens to TCP port 8088 on the LAN port. However, it can be configured to capture other ports. This is done by defining an access list and DNAT server. For example:
HTTP-Proxy-Upstream=myproxy.com:8888
Access-List=mylist,DNAT-SERVER,tcp,*mydomain.com,80
Use-access-list=mylist
DNAT-Server=mylist,192.168.1.1,8088

This forces any traffic any incoming traffic with a target address inside `mydomain.com` to be redirected to the internal HTTP proxy. Then, because of the HTTP-Proxy-Upstream keyword, the traffic is forwarded to `myproxy.com`.

Note
The HTTP-Proxy-Upstream definition must exclude any traffic addressed to the controller public access interface, otherwise HTML-based users will not be able to login.

Syntax
HTTP-Proxy-Upstream=hostname:port

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname</td>
<td>Specify the IP address or domain name of the proxy server. Maximum length is 253 characters.</td>
</tr>
<tr>
<td>port</td>
<td>Specify the port on the proxy server. Range: 1 to 65535.</td>
</tr>
</tbody>
</table>

IPass login URL

This keyword lets you define the location of the IPass login page. The controller will automatically redirect users with IPass client software to this page.

Syntax
ipass-login-url=URL_of_page

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL_of_page</td>
<td>Address of the IPass login page.</td>
</tr>
</tbody>
</table>

MAC authentication

The controller can authenticate devices based on their MAC address. This is useful for authenticating devices that do not have a Web browser (cash registers, for example). It can also be used to authenticate an AP.

To make use of this feature you need to define a local user account or a RADIUS user account for each device as follows:
Working with RADIUS attributes
Colubris AV-Pair - Site attribute values

- username: Set this to the username you specified in the mac-address value string. If no username is specified, set the account name to the MAC address of the device. Use dashes to separate characters in the address. For example: 00-20-E0-6B-4B-44.

- password: Set this to the password you specified in the mac-address-value string. If no password is specified, set this to the same password that is used for the user account.

Note
The username and password are not encrypted for transmission so it is important that the link with the RADIUS server is secure.

Note
MAC authentication only applies to VSCs that have HTML-based authentication enabled.

Syntax
mac-address=address[,username[,password]]

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>Specify the MAC address of the device to authenticate. Use dashes to separate characters in the address. Do not use colons (:). For example: 00-20-E0-6B-4B-44.</td>
</tr>
<tr>
<td>username</td>
<td>Specify the username to associate with this MAC address. Maximum 32 alphanumeric characters. The username field cannot contain a comma.</td>
</tr>
<tr>
<td>password</td>
<td>Specify the password to associate with this MAC address. Maximum 32 alphanumeric characters. The password field cannot contain a comma.</td>
</tr>
</tbody>
</table>

Example
Consider the scenario where several APs are installed with a controller. If the APs are going to perform software updates from a remote Web or FTP server, they will need to log into the public access network. By using MAC-based authentication, this can easily be accomplished.

Multiple login servers
This feature lets you dynamically set the URL used for retrieving custom external pages or a remote login page based on the status of a primary or secondary Web server.

Syntax
primary-web-server-status-url=URL_of_page
secondary-web-server-status-url=URL_of_page
Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL_of_page</td>
<td>Specify the URL that points to the Web server status file. Use HTTP or HTTPS with a port number if required. The status file must contain the following code:</td>
</tr>
</tbody>
</table>

```xml
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
   xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
   xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:xsd="http://www.w3.org/2001/XMLSchema"
   xmlns:MYCOMPANY="http://www.mycompany.com">
   <SOAP-ENV:Body>
     <MYCOMPANY:WebServerStatus>
       <MYCOMPANY:result>UP</MYCOMPANY:result>
     </MYCOMPANY:WebServerStatus>
   </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

Change the `<MYCOMPANY:result>` line to indicate the status of the server as follows:

- **Server is UP**
 `<MYCOMPANY:result>UP</MYCOMPANY:result>`

- **Server is DOWN**
 `<MYCOMPANY:result>DOWN</MYCOMPANY:result>`

Do not change any other lines in the file.

Polling

The controller attempts to retrieve the server status file from the primary server first. If no response is received before the polling timeout expires (30 seconds by default), the controller attempts to retrieve the server status file from the secondary server. If no response is received before the polling timeout expires, unauthenticated users attempting to login will see the Fail page with the message: “Login server is unavailable”.

After initialization, the controller continuously polls the servers to determine their status. As long as the primary server is available, it is used. If the primary server fails to respond or returns status DOWN, then the secondary server will be used, but only until the primary server comes back up.

The polling interval and polling timeout are configured by editing the following entries in the configuration file: **web-server-polling-interval** and **web-server-polling-timeout**.

To change the error message, edit the entry **err-msg-login-server-down** in **messages.txt**.
Setting the URLs of other AV-Pair values

This feature will redefine the URLs in the following AV-Pair values, if they have the same hostname as is specified for the `primary-web-server-status-url`:

- login-url
- welcome-url
- goodbye-url
- logout-url
- login-err-url
- ipass-login-url

For example, if the following values are defined:

```
primary-web-server-status-url=https://srv1.abc.com/status.html
secondary-web-server-status-url=https://srv2.abc.com/status.html
login-url=https://srv1.abc.com/loginpage.html
welcome-url=http://srv1.abc.com/mywelcome.html
```

- If the primary server is up, then the URLs are not changed.
- If the primary server is down and the secondary server is up, then login-url and welcome-url are changed as follows:

```
login-url=https://srv2.abc.com/loginpage.html
welcome-url=http://srv2.abc.com/mywelcome.html
```

- If both servers are down, then the URLs are not changed.

Redirect URL

The redirect-url value is used to specify the target URL for redirection when using an access list with the REDIRECT action. Only one `redirect-url` value can be specified in each controller or user RADIUS account.

When an access list rule with the REDIRECT action is processed, the user's browser is redirected to a different HTTP address in this order:

- redirect-url keyword in the user account, if present
- redirect-url keyword in the controller account, if present
- login-url keyword, in the controller account, if present

The URL can contain any of the applicable placeholders defined here.
Note

Placeholders %G, %C, %E, %P, and %v do not produce constant values. These values may vary over time.

Use the following Colubris AV-Pair value string:

```
redirect-url=URL_of_the_page [placeholder]
```

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL_of_the_page</td>
<td>URL of the redirect page. Access to the Web server hosting this page must be granted to all unauthenticated users. Do this with an appropriate access list definition.</td>
</tr>
</tbody>
</table>

The following placeholders can be added to the redirect-url string.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%c</td>
<td>Returns the IP address of the user's computer.</td>
</tr>
<tr>
<td>%l</td>
<td>Returns the URL on the controller where user login information should be posted for authentication. By default, this value is URL encoded. (To enable/disable URL encoding, set the value of url-encode in the <ACCESS-CONTROLLER> section in the configuration file.)</td>
</tr>
<tr>
<td>%n</td>
<td>Returns the NAS ID assigned to the controller. By default, this is the unit serial number. Not supported in local mode.</td>
</tr>
<tr>
<td>%s</td>
<td>Returns the RADIUS login name assigned to the controller. By default, this is the unit serial number. Not supported in local mode.</td>
</tr>
<tr>
<td>%o</td>
<td>Returns the original URL requested by the user. By default, this value is URL encoded. (To enable/disable URL encoding, set the value of url-encode in the <ACCESS-CONTROLLER> section in the configuration file.)</td>
</tr>
<tr>
<td>%i</td>
<td>Returns the domain name assigned to the controller Internet port.</td>
</tr>
<tr>
<td>%p</td>
<td>Returns the port number on the controller where user login information should be posted to for authentication.</td>
</tr>
<tr>
<td>%a</td>
<td>Returns the IP address of the controller interface that is sending the authentication request.</td>
</tr>
<tr>
<td>%E</td>
<td>When the location-aware feature is enabled, returns the ESSID of the wireless access point the user is associated with.</td>
</tr>
<tr>
<td>%P</td>
<td>When the location-aware feature is enabled, returns the wireless mode (“ieee802.11a”, “ieee802.11b”, “ieee802.11g”) the user is using to communicate with the access point.</td>
</tr>
</tbody>
</table>
Working with RADIUS attributes

Colubris AV-Pair - Site attribute values

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%G</td>
<td>When the location-aware feature is enabled, returns the group name of the wireless access point the user is associated with.</td>
</tr>
<tr>
<td>%C</td>
<td>When the location-aware feature is enabled, returns the Called-station-id content for the wireless access point the user is associated with.</td>
</tr>
<tr>
<td>%r</td>
<td>Returns the string sent by the RADIUS server when an authentication request fails. The RADIUS server must be configured to support this feature. The information contained in the returned string depends on the configuration of the RADIUS server.</td>
</tr>
<tr>
<td>%m</td>
<td>Returns the MAC address of the wireless/wired client station that is being authenticated.</td>
</tr>
<tr>
<td>%v</td>
<td>Returns the VLAN assigned to the client station at the controller ingress (LAN port).</td>
</tr>
</tbody>
</table>

Note

The maximum length of the remote login page URL is 512 characters. If this is exceeded (when using placeholders for example), the URL is truncated. It is therefore recommended that you specify the most-important placeholders first.

Example

One way to use this feature is to offer a premium service for a given (or all) sites. For example, in the controller profile, define two lists, one for normal usage and one for premium usage:

```
access-list=normal,REDIRECT,tcp,www.mypremiumservice.com,80
access-list=normal,ACCEPT,all,all,all
access-list=premium,ACCEPT,all,all,all
redirect-url=http://www.mysite.com/getpremium/
```

In the RADIUS profile for normal users, map them to the “normal” access list:

```
use-access-list=normal
```

In the RADIUS profile for premium users, map them to the “premium” access list:

```
use-access-list=premium
```

The access list only takes effect on an authentication, so a change of service as shown in this example takes effect only at the user’s next authentication (login).
NOC authentication

The NOC authentication feature provides a secure way of authenticating public access users, with strong mutual authentication between the login application on the Web server hosting the remote login page and the controller used for authenticating user logins. This occurs via the two Colubris AV-Pair value strings (`ssl-noc-certifcate` and `ssl-noc-ca-certifcate`), which define the locations of two certificates. These certificates enable the controller to validate that the user login information does indeed come from a trusted application.

For example, from a login application on the Web server:

```plaintext
ssl-noc-certifcate=URL_of_the_certificate
```

Certificate issued to the application on the Web server that will send user info to the controller for authentication.

```plaintext
ssl-noc-ca-certifcate=URL_of_the_certificate
```

Certificate of the certificate authority (CA) that issued the NOC certificate.

For a more detailed example of using NOC authentication, see *Appendix D: NOC authentication*

ProCurve WISPr support

WISPr login URL

This keyword lets you define the location of the WISPr login page. The controller automatically redirects users with WISPr-compatible wireless client software to this page. To customize the redirection use the WISPr redirect page keyword.

Syntax

```plaintext
wispr-login-url=URL_of_page
```

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL_of_page</td>
<td>URL of the WISPr login page.</td>
</tr>
</tbody>
</table>

WISPr abort login URL

This keyword lets you define the destination where the WISPr abort login will be POSTed.

Syntax

```plaintext
wispr-abort-login-url=URL_of_page
```

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL_of_page</td>
<td>URL where to POST the WISPr abort login.</td>
</tr>
</tbody>
</table>
WISPr redirect page

This keyword lets you define the location of the WISPr redirect page. Use this page to customize the code that the controller includes in the HTTP redirect sent to a user's browser.

Syntax

```plaintext
redirect-page=URL_of_page
```

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL_of_page</td>
<td>URL of the page containing code to use for WISPr redirect.</td>
</tr>
</tbody>
</table>

If this keyword is not defined, default code is used. To view the default code, open the file `redirect.html` which is available in the Public Access Examples file. See *Public access examples on page 13-4.*

WISPr access procedure

Specifies the version of the WISPr client access procedure supported by the controller.

access-procedure=procedure_version

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>procedure_version</td>
<td>Specify the WISPr client access procedure supported by the controller. Currently, the controller only supports the value “1.0”.</td>
</tr>
</tbody>
</table>

Traffic forwarding (dnat-server)

This keyword defines the external server to which the controller will forward traffic when an access list rule with the DNAT-SERVER action matches incoming traffic.

Note

SSL traffic cannot be forwarded as this breaks SSL security during connection negotiation resulting in the connection not being established.

Two external servers can be defined with this keyword. A status polling mechanism is available that enables the controller to determine the status of the external servers and forward traffic to the one this is operational. To activate the polling mechanism see *Multiple DNAT servers* below.

This keyword can be defined directly on the controller or in the controller RADIUS profile.

Syntax

```plaintext
dnat-server=listname,hostname,port[,hostname2,port2]
```
Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>listname</td>
<td>Specify the name of an access list definition that has its action set to DNAT-SERVER.</td>
</tr>
<tr>
<td>hostname</td>
<td>Specify the IP address or domain name of the primary server to which traffic will be redirected. Maximum length is 253 characters. If polling is not enabled, traffic is always sent to this server, even if it is down.</td>
</tr>
<tr>
<td>port</td>
<td>Specify the port on the primary server to which traffic will be redirected. Range: 1 to 65535.</td>
</tr>
<tr>
<td>hostname2</td>
<td>Specify the IP address or domain name of the secondary server to which traffic will be redirected. Maximum length is 253 characters. Traffic will only be sent to the secondary server if polling is enabled and the primary server is down. See Multiple DNAT servers on page 14-65.</td>
</tr>
<tr>
<td>port2</td>
<td>Specify the port on the secondary server to which traffic will be redirected. Range: 1 to 65535.</td>
</tr>
</tbody>
</table>

Example

The following creates an access list called `redirect` which is used to redirect HTTP traffic for authenticated users to `server1.mycompany.com` on port `8080`.

The following entry is added to the local profile for the controller:

```
access-list=redirect,DNAT-SERVER,tcp,all,80
 dnat-server=redirect,srv1.mycompany.com,8080
```

Multiple DNAT servers

The `dnat-server` keyword supports the definition of two external servers. To make use of these servers a polling mechanism is provided. Two keywords are available to activate and configure the polling mechanism.

Syntax

```
primary-dnat-server-status-url=listname,URL_of_page
secondary-dnat-server-status-url=listname,URL_of_page
```

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>listname</td>
<td>Specify the name of an access list definition that has its action set to DNAT-SERVER.</td>
</tr>
</tbody>
</table>
Working with RADIUS attributes
Colubris AV-Pair - Site attribute values

Polling
Initially, the controller polls the primary server at an interval of 10 minutes. As long as the primary is active, it is used. If it is not available, then the secondary server is used, but only until the primary server becomes available again.

If both servers are not available, both are polled in turn with no delay (other than the poll timeout) until one becomes available. When both servers are unavailable the access list DNAT-SERVER definition is skipped with no action taken, and processing moves to the next rule in the access list. This next rule can then be used to define the action taken when both DNAT-SERVERS are down.
The following table shows possible results when polling is active for both the primary and secondary servers.

<table>
<thead>
<tr>
<th>Server 1</th>
<th>Server 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>UP</td>
<td>Traffic matching the DNAT-SERVER rule is forwarded to server 1.</td>
</tr>
<tr>
<td>UP</td>
<td>DOWN</td>
<td>Traffic matching the DNAT-SERVER rule is forwarded to server 1.</td>
</tr>
<tr>
<td>DOWN</td>
<td>UP</td>
<td>Traffic matching the DNAT-SERVER rule is forwarded to server 2.</td>
</tr>
<tr>
<td>DOWN</td>
<td>DOWN</td>
<td>No action is performed for the DNAT-SERVER rule. Processing moves to the next rule in the list. To accept all traffic if both servers are down, define this rule as: ACCEPT,all,all,all</td>
</tr>
</tbody>
</table>

Example

The following creates an access list called **redirect** which is used to redirect HTTP traffic for authenticated users to either **srv1.mycompany.com** or **srv2.mycompany.com** depending on which one is active. Port **8080** is used to forward traffic. If neither the primary or secondary DNAT-SERVER is available, all traffic is accepted.

The following entry is added to the local profile for the controller:

access-list=redirect,DNAT-SERVER,tcp,all,80
access-list=redirect,ACCEPT,all,all,all

The following entry is added to the RADIUS profile for each user:

dnat-
server=redirect,srv1.mycompany.com,8080,srv2.mycompany.com,8080
Colubris AV-Pair - User attribute values

User values let you define settings for individual user accounts.

Each Colubris AV-Pair value is specified using the following format: `<keyword>=<value>`.

The following table lists all supported user value keywords and provides a link to complete descriptions for each one.

<table>
<thead>
<tr>
<th>Colubris AV-Pair keyword</th>
<th>For more information see</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list</td>
<td>Access list on page 14-68.</td>
</tr>
<tr>
<td>ads-presentation</td>
<td>Advertising on page 14-69.</td>
</tr>
<tr>
<td>bandwidth-level</td>
<td>Bandwidth level on page 14-69.</td>
</tr>
<tr>
<td>max-output-rate</td>
<td>Data rate on page 14-70.</td>
</tr>
<tr>
<td>max-input-rate</td>
<td></td>
</tr>
<tr>
<td>one-to-one-nat</td>
<td>One-to-one NAT on page 14-70.</td>
</tr>
<tr>
<td>use-public-ip-subnet</td>
<td>Public IP address on page 14-70.</td>
</tr>
<tr>
<td>max-input-packets</td>
<td>Quotas on page 14-71.</td>
</tr>
<tr>
<td>max-output-packets</td>
<td></td>
</tr>
<tr>
<td>max-input-octets</td>
<td></td>
</tr>
<tr>
<td>max-output-octets</td>
<td></td>
</tr>
<tr>
<td>max-total-octets</td>
<td></td>
</tr>
<tr>
<td>max-total-packets</td>
<td></td>
</tr>
<tr>
<td>smtp-redirect</td>
<td>SMTP redirection on page 14-72.</td>
</tr>
<tr>
<td>polling-arp-interval</td>
<td>Station polling on page 14-73.</td>
</tr>
<tr>
<td>polling-max-arp-count</td>
<td></td>
</tr>
<tr>
<td>redirect-url</td>
<td>Redirect URL on page 14-60.</td>
</tr>
<tr>
<td>welcome-url</td>
<td>Custom public access interface Web pages on page 14-73.</td>
</tr>
<tr>
<td>goodbye-url</td>
<td>Custom public access interface Web pages on page 14-73.</td>
</tr>
</tbody>
</table>

Access list

An access list is a set of rules that govern how the controller controls user access to protected network resources (those attached to the controller Internet port). Access lists are defined in the profile for the controller and are activated in user profiles as needed.

Only one access list can be activated per user profile. See [Access list on page 14-34.](#)
Syntax

use-access-list=uselistname

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>uselistname</td>
<td>Specify the name of an existing access list. This list is activated for the current user.</td>
</tr>
</tbody>
</table>

Advertising

Add this keyword to enable the presentation of advertising at preconfigured intervals while the user is browsing.

Syntax

ads-presentation=value

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Set this to 1 to activate the display of advertising. Set to 0 to disable.</td>
</tr>
</tbody>
</table>

Bandwidth level

This keyword sets bandwidth level for a user's session. The actual data rate associated with a bandwidth level is defined on the Network > Bandwidth control page.

Syntax

bandwidth-level=level

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>Specify one of the following the bandwidth levels for the user's session:</td>
</tr>
<tr>
<td></td>
<td>VERY-HIGH</td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td>NORMAL</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
</tr>
</tbody>
</table>
Data rate

This keyword sets the transmit and receive rates for a user’s session. These rates are applied on a per-user basis providing direct control of a user's throughput in Kbps. Two keywords are available:

- max-input-rate: Controls the data rate at which traffic can be transferred from the user to the controller.
- max-output-rate: Controls the data rate at which traffic can be transferred from the controller to the user.

Note
The settings for bandwidth level always take precedence over user data rates. This means if you set a data rate which exceeds the configured bandwidth level, the rate is capped at the bandwidth level.

Syntax

```
max-output-rate=rate
max-input-rate=rate
```

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>Maximum transmit or receive speed in Kbps.</td>
</tr>
</tbody>
</table>

One-to-one NAT

Note
This feature only applies to client traffic using IPSec or PPTP on the Internet port. Add this keyword if the user requires a unique IP address when NAT is enabled on the controller.

Syntax

```
one-to-one-nat=value
```

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Set this to 1 to activate one-to-one NAT support.</td>
</tr>
</tbody>
</table>

Public IP address

Add this keyword if the user requires a public IP address that is visible on the external network connected to the controller Internet port.
Syntax

use-public-ip-subnet=value

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Set this to 1 to activate assignment of a public IP address. Set to 0 to disable.</td>
</tr>
</tbody>
</table>

Quotas

These keywords let you define upload and download limits for each user. Limits can be defined in terms of packets or octets (bytes).

Syntax

max-input-packets=value
max-output-packets=value
max-input-octets=value
max-output-octets=value
max-total-octets=value
max-total-packets=value

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>For packets: 32-bit unsigned integer value. For octets: 64-bit unsigned integer value.</td>
</tr>
</tbody>
</table>

When a user session is terminated based on a quota, a new non-standard termination cause is used. The value for this termination cause is 0x8744. The text value of for the termination cause is defined in the message.txt file under the token “stat-quota-exceeded”. The default value for this token is “Logged out. (Quota Exceeded.).” This value can be displayed with the ASP function `GetAuthenticationErrorMessage()` on page 14-92.

A series of ASP functions are available that enable you to display quota information on the session page. See `Session quotas on page 14-86`.

Redirect URL

The redirect-url keyword is used to specify the target URL for redirection when using an access list with the REDIRECT action. Only one `redirect-url` value can be specified in a user RADIUS account. See `Redirect URL on page 14-60`.
SMTP redirection

The controller is able to provide SMTP email service on a per-user basis. This enables users to send e-mail while on the road without the restrictions imposed by most ISPs regarding the source address of outgoing mail. It works by intercepting the call to a user's e-mail server and redirecting it to an SMTP server that you configure. This setting overrides the setting of Default user SMTP server on page 14-55.

Note

For mail redirection to work, the user's email server name must be publicly known. If the e-mail server name cannot be resolved, mail redirection fails.

Note

If an access list definition is active in the controller profile that enables unauthenticated users to access their SMTP servers, the SMTP redirect feature will not work for these users.

Syntax

smtp-redirect=address[:port] [,username,password]

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>Specify the IP address or domain name of the e-mail server which is used to send outgoing redirected mail.</td>
</tr>
<tr>
<td>port</td>
<td>Specify the port on the e-mail server to relay to. Range: 1 to 65535. Default: 25</td>
</tr>
<tr>
<td>username</td>
<td>Specify the username required to log on to the SMTP server. Maximum 32 characters. Only supported if the Support authentication on SMTP proxy server option is enabled on the Public access > Access control page. Works with SMTP servers that support PLAIN, CRAM-MD5, and no authentication.</td>
</tr>
<tr>
<td>password</td>
<td>Specify the password required to log on to the SMTP server. Maximum 32 characters. Only supported if the Support authentication on SMTP proxy server option is enabled on the Public access > Access control page. Works with SMTP servers that support PLAIN, CRAM-MD5, and no authentication.</td>
</tr>
</tbody>
</table>

Example 1: Proxy support on

smtp-redirect=smtp.mycompany.com,jimmy,letMEin
smtp-redirect=smtp.mycompany.com:8025,jimmy,letMEin

Example 2: Proxy support off

smtp-redirect=smtp.mycompany.com
smtp-redirect=smtp.mycompany.com:8025
Station polling

The controller continually polls authenticated client stations to ensure they are active. This feature is configured using the Client polling settings on the Public access > Access control page. If no response is received and the number of retries is reached, the client station is disconnected.

These keywords let you override the Client polling settings on a per-user basis.

Syntax

polling-arp-interval=interval
polling-max-arp-count=count

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interval</td>
<td>Specify how long (in seconds) to wait between polls.</td>
</tr>
<tr>
<td>count</td>
<td>Specify how many polls a client station can fail to reply to before it is disconnected.</td>
</tr>
</tbody>
</table>

To disable polling, set both interval and count to 0.

The initial query is always done after the client station has been idle for 60 seconds. If there is no answer to this query, the settings for polling-arp-interval and polling-max-arp-count are used to control additional retries.

Custom public access interface Web pages

The following keywords let you define a custom welcome page and goodbye page on a per-user basis. These pages must be hosted on an external Web server.

- Welcome page: Users see this page after they are logged in. So, access to the Web server hosting this page must be granted to all authenticated users.
- Goodbye page: Users see this page after they are logged out. So, access to the Web server hosting this page must be granted to all unauthenticated users.

Syntax

welcome-url=URL_of_page[placeholder]
goodbye-url=URL_of_page[placeholder]

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL_of_page</td>
<td>Specify the URL of a Web page on an external Web server.</td>
</tr>
<tr>
<td>placeholder</td>
<td>Placeholder as defined in the following table.</td>
</tr>
</tbody>
</table>
Placeholders

By appending the following optional placeholders, you can pass important information to the Web server about the user. Server-side code can process this information to generate custom pages on-the-fly.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%l</td>
<td>Returns the URL on the controller where user login information should be posted for authentication. This option is used with the remote login page feature. By default, this value is URL encoded. (To enable/disable URL encoding, set the value of <code>url-encode</code> in the <code><ACCESS-CONTROLLER></code> section in the configuration file.)</td>
</tr>
<tr>
<td>%n</td>
<td>Returns the NAS ID assigned to the controller. By default, this is the unit serial number. Not supported in local mode.</td>
</tr>
<tr>
<td>%s</td>
<td>Returns the RADIUS login name assigned to the controller. By default, this is the unit serial number.</td>
</tr>
<tr>
<td>%u</td>
<td>Returns the login name of the user.</td>
</tr>
<tr>
<td>%o</td>
<td>Returns the original URL requested by the user. By default, this value is URL encoded. (To enable/disable URL encoding, set the value of <code>url-encode</code> in the <code><ACCESS-CONTROLLER></code> section in the configuration file.)</td>
</tr>
<tr>
<td>%i</td>
<td>Returns the domain name assigned to the controller Internet port.</td>
</tr>
<tr>
<td>%p</td>
<td>Returns the IP port number on the controller where user login information should be posted for authentication.</td>
</tr>
<tr>
<td>%a</td>
<td>Returns the IP address of the controller Internet port.</td>
</tr>
<tr>
<td>%E</td>
<td>When the location-aware feature is enabled, returns the ESSID of the wireless AP with which the user is associated.</td>
</tr>
<tr>
<td>%P</td>
<td>When the location-aware feature is enabled, returns the wireless mode the user is using to communicate with the AP.</td>
</tr>
<tr>
<td>%G</td>
<td>When the location-aware feature is enabled, returns the group name of the wireless AP with which the user is associated.</td>
</tr>
<tr>
<td>%C</td>
<td>When the location-aware feature is enabled, returns the Called-station-id content for the wireless AP with which the user is associated.</td>
</tr>
<tr>
<td>%r</td>
<td>Returns the string sent by the RADIUS server when an authentication request fails. The RADIUS server must be configured to support this feature. The information contained in the returned string depends on the configuration of the RADIUS server.</td>
</tr>
<tr>
<td>%m</td>
<td>Returns the MAC address of the client station that is being authenticated.</td>
</tr>
</tbody>
</table>
Colubris AV-Pair - Administrator attribute values

Administrator values let you define settings for administrator accounts.

Each Colubris AV-Pair value is specified using the following format: `<keyword>=<value>`

The following administrator value keyword is supported:

Administrative role

Use this AV-Pair value to identify the role of administrative accounts. See *Management tool on page 2-2*.

Syntax

`web-administrative-role=role`

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>role</td>
<td>Use one of the following values to identify the role of the account:</td>
</tr>
<tr>
<td></td>
<td>- Manager: A manager is able to access all configuration pages and can change and save all configuration settings.</td>
</tr>
<tr>
<td></td>
<td>- Operator: An operator is able to view all configuration pages, but is limited in the types of changes that can be made.</td>
</tr>
</tbody>
</table>

Public access interface ASP functions and variables

The public access interface Web pages use a number of ASP functions to perform specific tasks. These ASP functions are written in embedded Javascript, which is a limited version of Javascript running on the integrated Web server.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%v</td>
<td>Returns the VLAN assigned to the client station at the controller ingress (LAN port).</td>
</tr>
</tbody>
</table>
Also, a number of ASP variables are defined that can be used to store and retrieve configuration and user settings. There are two types of variables:

- **ASP variables**: The values of these variables must be loaded before they can be used by calling the appropriate ASP function. Values are only persistent per page. Therefore they must be loaded separately on each page before use.

- **Session variables**: Session variables are persistent across all public access pages.

Javascript syntax

The following syntax is used by embedded Javascript code.

Equality and relational operators

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>==</code></td>
<td>Equal to</td>
</tr>
<tr>
<td><code>!=</code></td>
<td>Not equal to</td>
</tr>
<tr>
<td><code>></code></td>
<td>Greater than</td>
</tr>
<tr>
<td><code>>=</code></td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td><code><</code></td>
<td>Less than</td>
</tr>
<tr>
<td><code><=</code></td>
<td>Less than or equal to</td>
</tr>
</tbody>
</table>

Conditional operators

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&&</code></td>
<td>Conditional And</td>
</tr>
<tr>
<td>`</td>
<td></td>
</tr>
</tbody>
</table>

Unary operator

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>!</code></td>
<td>Not (Inverts the value of a boolean value.)</td>
</tr>
</tbody>
</table>

String operator

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>+</code></td>
<td>Concatenates two strings.</td>
</tr>
</tbody>
</table>

Arithmetic operators

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>+</code></td>
<td>Addition.</td>
</tr>
<tr>
<td><code>-</code></td>
<td>Subtraction.</td>
</tr>
<tr>
<td><code>/</code></td>
<td>Division.</td>
</tr>
<tr>
<td><code>*</code></td>
<td>Multiplication.</td>
</tr>
<tr>
<td><code>()</code></td>
<td>Priority of evaluation.</td>
</tr>
</tbody>
</table>

Control flow

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>if (logical condition) {} else {}</code></td>
<td>If then else statement.</td>
</tr>
<tr>
<td><code>for(start; until; steps) {}</code></td>
<td>Looping.</td>
</tr>
</tbody>
</table>
Forms

The following forms can be used to gather information from a user and submit it to the public access interface for processing.

HtmlSubscriptionRequest

This form can be used to create a user account and to execute a payment.

To complete certain form actions, you may be required to submit several parameters. These parameters do not all have to be submitted at the same time. The public access interface will combine the values from multiple POSTs and execute the required task once all required data has been submitted. This allows tasks that require many user inputs (creation of a new account, for example) to be spread out over multiple pages.

Before submitting this form you should clear any variable which may still be present in the session store as follows:

- ClearSessionVar(subscription_plan)
- ClearSessionVar(payment_method)
- ClearSessionVar(password)
- ClearSessionVar(card_number)
- ClearSessionVar(card_expiration)
- ClearSessionVar(cart_id)

Fields

- cancel: Redirects the user to cancel_url.
- cancel_url: URL to which the user is redirected when the cancel field is specified.
- card_expiration: Credit Card expiration in the format mm/yy.
- card_number: Credit Card number.
- confirm_password: Password of the user account.
- error_url: URL to which the user is redirected if an error occurs.
- password: Password of the user account.
- pay: Include this field (with any value) to execute a payment.
- payment_method: Payment method must be “CreditCard”.
- subscription_plan: Name of the subscription plan.
- success_url: URL to which the user is redirected if no error occurs.
- username: Username of the user account.
- valid_fields: Specify the names of the fields that should be validated. Separate field names with a space. For example: valid_fields “username password confirm_password”.

To create an account
Supply to following fields to create a new user account, or to reset an existing account:

- payment_method
- subscription_plan
- username
- password
- confirm_password
- valid_fields (listing all supplied fields) For example:
 valid_fields "payment_method subscription_plan username password confirm_password"

To execute a payment
Supply to following fields to execute a payment:

- payment_method
- subscription_plan
- username
- password
- confirmation_password
- card_expiration
- card_number
- pay
- valid_fields (listing all supplied fields) For example:
 valid_fields "payment_method subscription_plan username password confirm_password card_expiration card_number"

Note
To review payment settings, omit the pay field.

HtmlLoginRequest
This form can be used to perform several login-related actions.

Fields
- **access_type**: Determines the type of action that will be executed:
 - **login**: The **username** and **password** are used to attempt an HTML login. If the login is successful, the user is redirected to the page specified by **success_url**. If the login fails, the user is redirected to the page specified by **error_url**.
 - **subscribe**: The user is redirected to the page specified by **subscription_url**.
Working with RADIUS attributes

Public access interface ASP functions and variables

- **free_access**: A user account is created (with the user’s MAC address as the username and password) and the user is logged into the public access interface. If the login is successful, the user is redirected to the page specified by `success_url`. If the login is fails, the user is redirected to the page specified by `error_url`.

- **error_url**: The URL to which the user is sent if the login fails. Applies to `access_type = login` or `free_access`.

- **original_url**: The URL that the user came from. Normally initialized using `GetOriginalURL()`;

- **password**: Password to use for authentication. Applies to `access_type = login`.

- **subscription_url**: The URL to which the user is sent when `access_type = subscribe`.

- **success_url**: The URL to which the user is sent if the login is successful. Applies to `access_type = login` or `free_access`.

- **username**: Username to use for authentication. Applies to `access_type = login`.

- **valid_fields**: Name of the form fields to do validation upon.

HtmlLogout

This form performs a logout operation.

Field

- **success_url**: The URL to which the user is sent if the logout is successful.

Form errors

When the Web server validates a form, it builds a list of all fields that have validation errors. The following functions can be used to scan this list and retrieve error information for each field.

GetLastFormSubmitFirstField()

Returns the name of the first field (as a string) that generated a validation error. If no error occurred for any fields in the form, an empty string is returned.

Example

```javascript
var firstField = GetLastFormSubmitFirstField();
```

GetLastFormSubmitNextField(field_name)

Returns the name of the next field after the specified `field_name` that generated an error. This enables you to move through the field error list one field at a time.

The field name is returned as a string. If no error occurred for any other fields in the form, an empty string is returned.

Example

```javascript
var nextField = GetLastFormSubmitNextField("previousField");
```
LoadFormFieldError(field_name)

This function the following ASP variables with details about the errors caused by the specified field_name.

ASP variables
- field_error: Numeric error value.
 - 0 - No error found.
 - 1 - The field required a value but was empty.
 - 2 - The field contained a value which exceeds the maximum supported length.
 - 3 - The field contained a value which is invalid (only specific values were allowed).
- field_error_details: Additional information about the error. Will contain an empty string if not applicable. When field_error is set to 2, field_error_details will be equal to the maximum supported field length.

Example
LoadFormFieldError("field");
write(field_error);
write(field_error_details);

RADIUS

GetMsChapV2Failed()

Displays the MS CHAP V2 error string received in the last RADIUS Reject or RADIUS Accept packet for the user. This function is only supported if you select MSCHAP V2 as the authentication scheme on the controller (Controller >> Authentication >> Authentication > RADIUS profiles page). The RADIUS server must also support this feature. For a list of possible return values see RFC 2759.

This is not a normal return value. It cannot be assigned to an ASP variable, and is inserted directly into the HTML page.

GetRadiusNasId()

Returns the NAS ID configured for RADIUS Profile on the controller. This can be used to identify the controller that authenticated a user. For an example of how this function is used, see GetNasAddress().

This is not a normal return value. It cannot be assigned to an ASP variable, and is inserted directly into the HTML page.

GetRadiusReplyMessage()

Displays the reply message content received inside the last RADIUS Request or RADIUS Accept packet for the user. The RADIUS server must be configured to support this feature. The information contained in the returned string depends on the configuration of the RADIUS server.
This is not a normal return value. It cannot be assigned to an ASP variable, and is inserted directly into the HTML page.

GetNasAddress()

Returns the fully-qualified domain name of the controller as is specified in the currently loaded SSL certificate.

For example, in certain instances you may want users to register for an account before they log in. To accomplish this you could modify the Login page by adding a register button. This redirects the user's browser to a registration Web server where they can set up their account. (This page must be made accessible to non-authenticated users using the appropriate access list rule.)

To avoid having the user login once registration is complete, the registration Web server can send the user back to the controller using a special URL that automatically logs the user into the public access interface.

This is not a normal return value. It cannot be assigned to an ASP variable, and is inserted directly into the HTML page.

Example

Assuming the registration server is 192.169.30.1, the register button code on the Login page might look something like this:

```
<FORM><INPUT onclick="javascript:window.location='https://192.168.30.1/demo-php/register.php?NASip=<%GetNasAddress();%>&NASid=<%GetRadiusNasId();%>';" type=button value="Click Here to Register"> </FORM>
```

The NAS ID and NAS address are required when the user is redirected back to the controller after registration. The code on the registration Web page would look something like this:

```
// Registering user information in the backend database
RegisterUser($username, $firstname, $lastname, $company, $title, $phone, $email, $NASid, // identifies the controller the user is connected to $NASip);

// set URL to redirect browser to
$targetURL = "location: https://" . $NASip . ":8090/goform/HtmlLoginRequest?username=" . $username . "&password=" . $password;
```
// When done
header($targetURL);

The target URL is built using the NAS IP and username and password. The form name is hard-coded.

Page URLs

GetFailRetryUrl()

This feature has been deprecated.

Returns the URL of the next internal page to display as follows:

- Returns the Fail page URL if a login or logout request is currently pending.
- Returns the Transport page URL if the user is already logged in.

This function is designed to be used in conjunction with IsRequestPending().

This is not a normal return value. It cannot be assigned to an ASP variable, and is inserted directly into the HTML page.

GetLoginUrl()

Returns the URL of the Login page.

This is not a normal return value, it cannot be assigned to an ASP variable, it is inserted directly into the HTML page.

GetOriginalUrl()

Displays the URL the user tried to access before being redirected to the Login page.

This is not a normal return value. It cannot be assigned to an ASP variable, and is inserted directly into the HTML page.

GetSessionUrl()

Returns the URL of the Session page.

This is not a normal return value. It cannot be assigned to an ASP variable, and is inserted directly into the HTML page.

GetWelcomeUrl()

Returns the URL of the Welcome page.

This is not a normal return value. It cannot be assigned to an ASP variable, and is inserted directly into the HTML page.
Session status and properties

All functions in this section do not provide a normal return value that can be assigned to an ASP variable. Instead, the return value is inserted directly into the HTML page.

Session time

GetSessionStateMessage()

Returns a message (from message.txt) indicating the status of the user session.

GetSessionTime()

Returns session duration for the current user in minutes and seconds in the format: mm:ss.

ConvertSessionTime(unit)

Returns session duration for the current user in the specified unit. See ConvertMaxSessionTime(unit) on page 14-84.

TruncateSessionTime(unit)

Returns session duration for the current user truncated to the specified unit. See TruncateMaxSessionTime(unit) on page 14-84.

GetSessionTimeHMS()

Returns session duration for the current user in hours, minutes and seconds in the format: hh:mm:ss.

GetSessionRemainingTime()

Returns the amount of connection time remaining for the current user session in minutes and seconds in the format: mm:ss.

GetSessionRemainingTimeHMS()

Returns the amount of connection time remaining for the current user session in hours, minutes and seconds in the format: hh:mm:ss.

ConvertSessionRemainingTime(unit)

Returns the total amount of connection time remaining for the current user in the specified unit. See ConvertMaxSessionTime(unit) on page 14-84.

TruncateSessionRemainingTime(unit)

Returns the total amount of connection time remaining for the current user truncated to the specified unit. See TruncateMaxSessionTime(unit) on page 14-84.
GetMaxSessionTime()
Returns the total amount of connection time configured for the current user session in minutes and seconds in the format: mm:ss.

GetMaxSessionTimeHMS()
Returns the total amount of connection time configured for the current user session in hours, minutes and seconds in the format: hh:mm:ss.

ConvertMaxSessionTime(unit)
Returns the total amount of connection time configured for the current user in the specified unit.

<table>
<thead>
<tr>
<th>y</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Days</td>
</tr>
<tr>
<td>h</td>
<td>Hours</td>
</tr>
<tr>
<td>m</td>
<td>Minutes</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
</tbody>
</table>

For example if the user account is configured for 5000 seconds, then:
- ConvertMaxSessionTime(“y”) returns 0, calculated as (5000 / (365*24 *60*60)).
- ConvertMaxSessionTime(“d”) returns 0, calculated as (5000 / (24*60*60)).
- ConvertMaxSessionTime(“h”) returns 1, calculated as (5000 / (60*60)).
- ConvertMaxSessionTime(“m”) returns 83, calculated as (5000 / 60).
- ConvertMaxSessionTime(“s”) returns 5000, calculated as (5000 / 1).

TruncateMaxSessionTime(unit)
Returns the total amount of connection time configured for the current user truncated to the specified unit.

<table>
<thead>
<tr>
<th>y</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Days</td>
</tr>
<tr>
<td>h</td>
<td>Hours</td>
</tr>
<tr>
<td>m</td>
<td>Minutes</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
</tbody>
</table>

For example if the user account is configured for 5000 seconds, then:
- TruncateSessionTime("y") returns 0.
- TruncateSessionTime("d") returns 0.

14-84
- TruncateSessionTime("h") returns 1.
- TruncateSessionTime("m") returns 23.
- TruncateSessionTime("s") returns 20.

Session input/output/totals

If you specify a value for the optional parameter `div`, then the return value is divided by `div`.

GetSessionInputPackets()
GetSessionInputOctets(div)

Returns the number of packets/octets received by the current user session.

GetSessionOutputPackets()
GetSessionOutputOctets(div)

Returns the number of packets/octets sent by the current user session.

GetSessionTotalPackets()
GetSessionTotalOctets(div)

Returns the number of packets/octets sent and received by the current user session.

GetSessionMaxTotalPackets()
GetSessionMaxTotalOctets(div)

Returns the maximum number of packets/octets that can be sent and received by the current user session.

GetSessionRemainingInputPackets()
GetSessionRemainingInputOctets(div)

Returns the remaining number of packets/octets that can be received by the current user session.

GetSessionRemainingOutputPackets()
GetSessionRemainingOutputOctets(div)

Returns the remaining number of packets/octets that can be sent by the current user session.

GetSessionRemainingTotalPackets()
GetSessionRemainingTotalOctets(div)

Returns the remaining number of packets/octets that can be sent or received by the current user session.
GetSessionMaxInputPackets()
GetSessionMaxInputOctets(div)
Returns the maximum number of packets/octets that can be received by the current user session.

GetSessionMaxOutputPackets()
GetSessionMaxOutputOctets(div)
Returns the maximum number of packets/octets that can be sent by the current user session.

Session quotas
These functions let you retrieve the quota limits that are set for the current user session. If any of these limits are reached, the user is logged out. See Quotas on page 14-71.

If you specify a value for the optional parameter div, then the return value is the number of octets divided by div.

- Packets values are returned as a decimal string (10 characters) representing a 32-bit unsigned integer.
- Octet values are returned as a decimal string (20 characters) representing a 64-bit unsigned integer.

GetSessionRemainingInputPackets()
GetSessionRemainingInputOctets(div)
Returns the number of incoming packets/octets the current user session can still receive.

GetSessionRemainingOutputPackets()
GetSessionRemainingOutputOctets(div)
Returns the maximum number of outgoing packets/octets the current user session can still send.

GetMaxSessionInputPackets()
GetMaxSessionInputOctets(div)
Returns the maximum number of incoming packets/octets the current user session can receive.

Returns the maximum number of incoming octets the current user session can receive.

GetMaxSessionOutputPackets()
GetMaxSessionOutputOctets(div)
Returns the maximum number of outgoing packets/octets the current user session can send.
iPass support

iPassGetLoginUrl()
Returns the iPass Login URL.

iPassGetAbortLoginUrl()
Returns the iPass Abort Login URL.

iPassGetLogoffUrl()
Returns the iPass Logout URL.

iPassGetRedirectResponseCode()
 Checks if the iPass authentication server is reachable and enabled. Returns one of the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Authentication server is reachable and enabled.</td>
</tr>
<tr>
<td>105</td>
<td>The authentication server could not be reached or is unavailable.</td>
</tr>
<tr>
<td>255</td>
<td>The authentication server could not be reached due to an error on the controller (Internet port not up, for example).</td>
</tr>
</tbody>
</table>

iPassGetAccessProcedure()
Returns the access procedure supported by the controller. The controller supports procedure version 1.0.

iPassGetLocationName()
Returns the location ID defined on the **Public access > Access control** page.

iPassGetAccessLocation()
Returns a value which can be used to determine the access point a user is connected to. This is useful when you are using one or more APs in addition to the controller.

- If a user logs into a AP, this function returns the MAC address of the AP's downstream port.
- If a user logs into the controller, this function returns the MAC address of the controller LAN port.

iPassGetLoginResponseCode()
Returns one of the following values when a user attempts to login to iPass:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Login was successful.</td>
</tr>
<tr>
<td>100</td>
<td>Login failed. Access was rejected.</td>
</tr>
</tbody>
</table>
Working with RADIUS attributes
Public access interface ASP functions and variables

iPassGetLogoutResponseCode()
Returns one of the following values when a user attempts to logout from iPass:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>Logout was successful.</td>
</tr>
<tr>
<td>255</td>
<td>The authentication server could not be reached due to an error on the controller (Internet port not up, for example).</td>
</tr>
</tbody>
</table>

Web

GetWebFullURL(“http” | “https”)
This function returns the full URL (protocol, hostname and port) to the root of the Web server as either HTTP or HTTPS.

Example
```javascript
var url = GetWebFullURL("http");
```

GetHTTPProtocol()
Returns the protocol used when requesting the current Web page as a string. Possible values are:
- http
- https

Example
```javascript
var protocol = GetHTTPProtocol();
write(protocol); /* will write either "http" or "https" depending on the URL you typed to view the page. */
```

Client information

LoadClientInformation()
This function initializes a set of variables that provide information on the user that is requesting the current page.

ASP variables
- **client_username**: String containing the username of the user if known.
- **client_useraccount_index**: String that uniquely identifies the user's account.
- **client_ip_address**: String containing the IP address of the user that requested the page.
- **client_state**: The user's authentication state: 1 for authenticated, 0 otherwise. If 0, all other variables will contain their last value, unless the user was never authenticated, in which case they will be blank.
- **client_session_time**: The user's session time, indicating how many seconds have elapsed since the user was first authenticated by the controller. Re-authentication will not affect the value unless the authentication was terminated.
- **client_session_idle_time**: Indicates how many seconds have elapsed since the controller first received traffic from this user that was inside the user's defined access-list destination(s).
- **client_session_transmitted_packets**: Number of packets the user has transmitted to destinations inside the user's defined access-list destination(s).
- **client_session_transmitted_bytes**: Number of bytes the user has transmitted to destinations inside the user's defined access-list destination(s).
- **client_session_received_packets**: Number of packets the user has received from sources inside the user's defined access-list destination(s).
- **client_session_received_bytes**: Number of bytes the user has received from sources inside the user's defined access-list destination(s).
- **client_subscription_plan_index**: The subscription plan index with which the user account is associated. A value of 0 indicates that the user account is not associated with a plan.
- **client_authentication_mode**: Indicates how the user was authenticated:
 - 0 - Unknown, authentication may be pending or the user is not authenticated.
 - 1 - Authenticated using the local user accounts.
 - 2 - Authenticated using a third-party RADIUS server.
 - 3 - Authenticated using Active Directory.
- **client_subscription_plan_name**: Name of the subscription plan assigned to the user. Additional information can be obtained using the function LoadSubscriptionPlanInformation().
- **client_subscription_plan_state**: User's subscription plan state:
 - 0 - Plan is invalid, expired or no plan exists for that client.
 - 1 - Plan is valid.
- **client_ads_presentation**: User's advertisement presentation state.
 - 0 - Advertisements are enabled for the user.
 - 1 - Advertisements are displayed for the user.
- **client_public_ip**: Indicates if the user's IP address is public or private.
0 - IP address is private.
1 - IP address is public.

- **client_public_ip_reserved**: Indicates if the public IP is reserved or preferred.
 0 - Public IP is preferred.
 1 - Public IP is reserved.

LoadClientAccountStatusInformation()

This function initializes a set of variables that provide information on the current user.

ASP variables

- **client_account_status_is_online_time_exhausted**: Set to 1 if online time has been exhausted.
- **client_account_status_is_time_since_first_login_expired**: Set to 1 if time since first login has been exceeded its configured limit.
- **client_account_status_is_time_currently_outside_valid_period_of_day**: Set to 1 if the current time is outside the valid period for the account.
- **client_account_status_is_validity_period_not_begun**: Set to 1 if the validity period for the account has not yet begun.
- **client_account_status_is_validity_period_ended**: Set to 1 if the validity period for the account has ended.
- **client_account_status_is_input_octets_quota_exhausted**: Set to 1 if the download limit for the account has been exhausted.
- **client_account_status_is_output_octets_quota_exhausted**: Set to 1 if the upload limit for the account has been exhausted.
- **client_account_status_is_total_octets_quota_exhausted**: Set to 1 if the total traffic quota for the account has been exceeded.
- **client_account_status_first_login_time**: Time the user first logged in.
- **client_account_status_time_since_first_login**: Elapsed time since the user first logged in.
- **client_account_status_remaining_online_time**: Amount of online time remaining.
- **client_account_status_remaining_session_time**: Amount of time remaining for which the account is still valid.
- **client_account_status_expiration_time**: Date/time at which the account will expire. This is set by determining the first Validity period rule (*Defining subscription plans on page 9-29*) that will be reached, excluding the rules that apply to time limits during a day.
- **client_account_status_remaining_input_octets**: Amount of traffic the user can still download.
- **client_account_status_remaining_output_octets**: Amount of traffic the user can still upload.
- **client_account_status_remaining_total_octets**: Total amount of traffic the user can still upload or download.
- **client_account_status_active_sessions**: Number of sessions active on this account.

Subscription plan information

LoadSubscriptionPlanInformation(subscription_plan)

This function initializes a set of variables that provide information on the specified subscription plan.

ASP variables

- **subscription_plan_name**: Name of the plan.
- **subscription_plan_id**: ID which uniquely identifies each subscription plan.
- **subscription_plan_fee**: Subscription plan cost.
- **subscription_plan_tax**: Subscription plan tax. Calculated based on the subscription plan cost and the configured tax rate.
- **subscription_plan_total**: Total subscription plan charge.
- **subscription_plan_description**: Description of the plan.

GetFirstSubscriptionPlan()

The function returns the first subscription plan name (as a string) configured on the controller for which billing is enabled.

Example

```javascript
var plan;
for (plan = GetFirstSubscriptionPlan(); plan != ""; plan = GetNextSubscriptionPlan(plan)) {
    LoadSubscriptionPlanInformation(plan);
}
```

GetNextSubscriptionPlan(plan_name)

Returns the next subscription plan name that follows the specified `plan_name`. If `plan_name` is the last plan, an empty string is returned.

Example

```javascript
var plan;
for (plan = GetFirstSubscriptionPlan(); plan != ""; plan = GetNextSubscriptionPlan(plan)) {
    LoadSubscriptionPlanInformation(plan);
}
```
Other

AssignBillingRecordId()

Use this function to reserve a billing record ID. If this function returns 0, it means that the payment system has been halted. Any subscription-related activities should not be attempted until this function returns a non-zero value. See Suspend payment system when log is full of queued records on page 13-38).

Example
var billingRecordId = AssignBillingRecordId();
if (billingRecordId == 0) {
 <p>The service is temporarily unavailable. Please try again later.</p>
}

ConditionalDisplay(condition, state)

This function is used to dynamically control execution of a block of code based on the value of a logical expression. An effective use for this function is to control blocks of display code, for certain features for example, that need to be turned on/off depending on user selections.

Parameters

- **Condition**: A logical embedded Javascript expression. If the expression is true, all content between the Begin and End function calls is executed.
- **State**: Indicates if this function marks the beginning or end of the block of code.
 - **Begin**: Marks the beginning of the code block.
 - **End**: Marks the end of the code block.

Example
<% ConditionalDisplay(client_state == 1, "begin"); %>
<p>Welcome to the wireless network.</p>
<% ConditionalDisplay(client_state == 1, "end"); %>

GetUserName()

Returns the username for the current user.

GetAuthenticationErrorMessage()

Reserved for use by fail.asp to display error messages for certain specific conditions. Do not use this function on other pages. Instead, use LoadFormFieldError() or GetSessionVar with the variable last_login_error.

IncludeAsp(filename)

Pauses ASP processing in the current file and continue with the specified ASP filename.

Example
IncludeAsp("file.asp");
SetSessionRefreshInterval(sec)
Specifies the refresh interval for the session page in seconds.

write(string)
Writes the specified string to the browser.

Example
write("<p>You are connected.</p>);

LoadAccessInformation()
This function initializes a set of variables that provide information on the site access options configured on the Controller >> Public access > Web content page.

ASP variables
- access_free: Set to 1 if the Free Access option is enabled.
- access_purchase: Set to 1 if the Allow creation of user accounts option is enabled.

Example
LoadAccessInformation();
if (access_free) {
 <p>Welcome to your free trial of the new high-speed wireless network service.</p>
}

LoadPaymentInformation()
This function initializes a set of variables that provide information on the current payment services configured on the Controller >> Public access > Payment services page.

ASP variables
- payment_currency: Contains the 3-letter code identifying the currency that will be used for all transactions.
- payment_cc_gateway: Returns a string that identifies the payment service that is configured. Either authorize.net or worldpay.

Example
LoadPaymentInformation();
if (payment_currency == "USD") {
 write(subscription_plan_fee + " $");
}

LoadWorldPayInformation()
This function initializes a set of variables that contain WorldPay-specific information.

ASP variables
- worldpay_url: String containing the configured WorldPay URL on the controller.
Working with RADIUS attributes
Public access interface ASP functions and variables

- **worldpay_installation_id**: String containing the configured WorldPay Installation ID on the controller.
- **worldpay_cart_id**: String containing a unique number for this order that represents a virtual cart in which items that are being bought are stored.

Example
LoadWorldPayInformation();
write(worldpay_url);

LoadTaxInformation()
This function initializes a variable that provide information on the current tax setting configured on the Controller >> Public access > Payment services page.

ASP variable
- **tax_percent**: Tax rate that will be applied to all charges. The tax rate is configured on the controller.

Example
LoadTaxInformation();
write("Tax is " + tax_percent + ",% here.");

Session information
The controller maintains a block of data, called a session, for each IP address that is connected to the public access interface. The session makes it possible to store and access data across more than one page in the public access interface.

Session variables are reset when:
- the ASP function ClearSessionVar() is called
- the user's session is deleted or restarted

A session ends when 3 minutes passes without any user activity on the public access interface.

Session functions

GetSessionVar(variable)
Returns the value of the specified session variable.

ClearSessionVar(variable)
Clears the value of the specified session variable.
Session variables

The following session variables are provided:

- **last_login_error**: Contains the error number generated by the last login attempt. This is converted into the appropriate visual representation by the file `login_error_messages.asp`.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or ""</td>
<td>No error occurred.</td>
</tr>
<tr>
<td>1</td>
<td>A problem occurred that caused the current login process to stop before it completed. This is normally an issue related to an administrator changing the configuration which may cause a temporary failure.</td>
</tr>
<tr>
<td>2</td>
<td>The login was refused by the product or external authentication server.</td>
</tr>
<tr>
<td>3</td>
<td>The external authentication server was unreachable.</td>
</tr>
<tr>
<td>4</td>
<td>There is already another login from the user in progress, so this one has been stopped.</td>
</tr>
<tr>
<td>5</td>
<td>The user account username/password appear to be valid, however the account is invalid due to subscription plan usage being exceeded or validity limit being exceeded.</td>
</tr>
<tr>
<td>6</td>
<td>The user account username/password appear to be valid, however the associated account is administratively disabled.</td>
</tr>
</tbody>
</table>

- **username**: Contains the username a user submitted to login or define a subscription.

- **password**: Contains the password, as a sting of asterisks (***), a user submitted to login or define a subscription.

- **card_expiration**: Contains credit card expiration information in the form `mm/yy`.

- **card_number**: Contains the credit card number. The string contains all asterisks (*) with only the last four digits not hidden.

- **payment_method**: Contains the user's choice for payment method: Currently only supports the value: “CreditCard”.

- **subscription_plan**: This variable hold the name of the subscription plan submitted in a subscription form.

- **cart_id**: Holds the cart ID for WorldPay payments. The cart ID is automatically generated and needs to be transmitted to the WorldPay Web site via a form. See the code in `payment.asp` for an example of how to do this.

- **authorize_net_reason**: Contains a text message indicating why the Authorize.Net credit card gateway refused a payment transaction.

- **authorize_net_transaction_id**: Contains the transaction ID that the Authorize.Net credit card gateway assigned to the transaction attempt. You can display this information to the user so that they can supply this information when calling for support.
- `last_subscription_error`: Contains the error number generated by the last subscription attempt. This is converted into the appropriate visual representation by the file `subscription_error_messages.asp`.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or ""</td>
<td>No error occurred.</td>
</tr>
<tr>
<td>1</td>
<td>A problem occurred that caused the current login process to stop before it completed. This is normally an issue related to an administrator changing the configuration which may cause a temporary failure.</td>
</tr>
<tr>
<td>2</td>
<td>The password and confirm password fields do not match.</td>
</tr>
<tr>
<td>3</td>
<td>The wrong password was supplied for the specified username.</td>
</tr>
<tr>
<td>4</td>
<td>An error occurred when creating the user account.</td>
</tr>
<tr>
<td>5</td>
<td>The subscription plan name is invalid.</td>
</tr>
<tr>
<td>6</td>
<td>The credit card payment failed.</td>
</tr>
<tr>
<td>7</td>
<td>The credit card payment succeeded, however an error occurred when activating the user account.</td>
</tr>
<tr>
<td>8</td>
<td>Reserved.</td>
</tr>
<tr>
<td>9</td>
<td>Reserved.</td>
</tr>
<tr>
<td>10</td>
<td>Same as #3, but indicates that user account creation is currently not allowed.</td>
</tr>
</tbody>
</table>

- `last_form_error`: Contains specific errors for each field in a form. To extract this information use the ASP functions described in under *Form errors on page 14-79.*
Working with VPNs

Contents

Overview .. 15-2

Securing wireless client sessions with VPNs.. 15-3
 - Configure an IPSec profile for wireless client VPN .. 15-4
 - Configure L2TP server for wireless client VPN .. 15-5
 - Configure PPTP server for wireless client VPN ... 15-5
 - VPN address pool ... 15-5

Securing controller communications to remote VPN servers.. 15-6
 - Configure an IPSec policy for a remote VPN server .. 15-7
 - Configure PPTP client for a remote VPN server .. 15-8
 - Keeping user traffic out of the VPN tunnel ... 15-10

Additional IPSec configuration ... 15-11
 - IPSec VLAN mapping .. 15-11
 - Local group list .. 15-11
 - IPSec security policy database .. 15-11
Overview

Virtual private networks (VPNs) create secure tunnels across non-secure infrastructure such as the Internet or publicly-accessible networks. The controller features virtual private network (VPN) capabilities that enable it to do the following:

- Secure wireless client sessions with a VPN tunnel between wireless clients such as wireless point-of-sale (POS) terminals and the controller. IPSec, L2TP, and PPTP are all supported. (VPN tunnel represented in green.)

![Diagram of wireless client connection]

- Secure controller communications to VPN servers, including both management and client traffic. For example, the controller can securely contact a remote RADIUS server for user authentication. IPsec and PPTP are supported. (VPN tunnel represented in blue.)

![Diagram of controller connection]

Note

For WPA-capable wireless clients, a better alternative to VPNs, is to extend WPA termination from the AP to the controller. See *Terminate WPA at the controller on page 4-22.*

- Secure controller communications to VPN servers, including both management and client traffic. For example, the controller can securely contact a remote RADIUS server for user authentication. IPsec and PPTP are supported. (VPN tunnel represented in blue.)

![Diagram of controller connection]
Securing wireless client sessions with VPNs

Note

The ability to secure wireless client sessions is intended for low-data-volume applications like that of wireless POS terminals.

To secure wireless client sessions, create a VPN tunnel from the wireless client to the controller. The sample topology seen earlier serves as an example for the sample configurations that follow. In this example, the controller LAN port has an IP address of 7.1.1.1, the APs are at 7.1.1.2 and 5.1.1.2, and the wireless POS are at 7.1.1.3 and 5.1.1.3.

To use VPNs to secure wireless client sessions, configure an IPSec policy for this purpose, or configure the L2TP server or PPTP server.

Note

Wireless clients are typically assigned IP addresses from the VPN address pool. Configure this first via Controller >> Network > Address allocation > VPN address pool. See VPN address pool on page 15-5.

Note

Wireless clients require VPN software that is configured to work with your VPN configuration on the controller.
Configure an IPSec profile for wireless client VPN

1. On page Controller > VPN > IPSec select Add Policy, and define a policy similar to this:

![Add/Edit security policy](image)

Note the selections made in the sample Add/Edit security policy page above. See the online help for option descriptions.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value to set</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>User-defined</td>
<td></td>
</tr>
<tr>
<td>Phase 1 mode</td>
<td>Aggressive mode</td>
<td>Aggressive mode requires that a group be configured. See Local group list on page 15-11.</td>
</tr>
<tr>
<td>Mode</td>
<td>Tunnel with Virtual IP</td>
<td>Allows IP addresses to be assigned to the wireless clients.</td>
</tr>
<tr>
<td>Interface</td>
<td>LAN port</td>
<td></td>
</tr>
<tr>
<td>Encryption algorithm</td>
<td>Select as desired</td>
<td></td>
</tr>
<tr>
<td>Perfect Forward Secrecy</td>
<td>Leave enabled</td>
<td></td>
</tr>
<tr>
<td>Accept any peer</td>
<td>Enabled</td>
<td>Accepts any wireless client.</td>
</tr>
<tr>
<td>XAUTH > Authentication</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Allocate address from</td>
<td>VPN address pool</td>
<td>First define address pool on Network > Address allocation.</td>
</tr>
<tr>
<td>Security policy</td>
<td>Subnet and Mask of 0.0.0.0</td>
<td>A Subnet and Mask of 0.0.0.0. causes all wireless traffic between the client and the controller to be accepted.</td>
</tr>
</tbody>
</table>
Configure L2TP server for wireless client VPN

1. On page Controller >> VPN > L2TP server enable L2TP over IPSec configuration-LAN port.

2. Either select X.509 certificates and install an X.509 security certificate (see IPSec certificates on page 11-11), or specify a Preshared key.

Note

The VPN client running on the wireless device must also be configured with a matching X.509 certificate, or the Preshared key specified here.

3. Set Address source to VPN address pool.

Configure PPTP server for wireless client VPN

1. On page Controller >> VPN > PPTP server enable PPTP server configuration - LAN port.

2. Set Address source to VPN address pool. See the online help for option descriptions.

VPN address pool

When securing wireless client sessions with VPNs, it is typically necessary to provide an IP address to each client. To define a pool of addresses for this purpose, follow this procedure.

1. Select Network > Address allocation.
2. In **VPN address pool**, for **Address allocation** select either **Use static IP addresses** or **Use external DHCP server**.

- For **Use static IP addresses**, define a sequential pool of addresses by specifying the **Starting IP address** and **Max connections**. For example a Starting IP address of 7.1.1.2 and a Max connections of 50, will yield a pool of IP addresses in the range 7.1.1.2 through 7.1.1.51.

- For **Use external DHCP server**, specify settings that correspond to your external DHCP server configuration. Set **Use port** to the controller port that will send out DHCP requests.

3. Select **Save**.

See the online help for option descriptions.

Securing controller communications to remote VPN servers

To secure the communications between the controller and remote VPN servers, create a VPN tunnel from the controller to the remote VPN server.

The sample topology seen earlier serves as an example for the sample configurations that follow. In this example, the controller Internet port has an IP address of 21.1.14, the remote VPN server is at 3.1.1.2, and the secure resource is at 10.0.0.2.
Create a VPN tunnel like this either by configuring an IPSec policy or configuring the PPTP client.

Caution
The VPN tunnel should not be used to transport user traffic. The tunnel should only be used to carry management traffic (RADIUS, SNMP, and management sessions). See *Keeping user traffic out of the VPN tunnel* on page 15-10.

Configure an IPSec policy for a remote VPN server

1. On page Controller > VPN > IPSec select *Add New Policy* and define a policy similar to this, substituting your own IP addresses:
Note the selections made in the sample **Add/Edit security policy** page above.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value to set</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>user-defined</td>
<td></td>
</tr>
<tr>
<td>Phase 1 mode</td>
<td>Main mode</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>Tunnel</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>Internet port</td>
<td></td>
</tr>
<tr>
<td>Encryption algorithm</td>
<td>Select as desired</td>
<td></td>
</tr>
<tr>
<td>Perfect Forward Secrecy</td>
<td>Leave enabled</td>
<td></td>
</tr>
<tr>
<td>Accept any peer</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>Peer information</td>
<td>User-defined</td>
<td>Set according to VPN server needs. In this example, the VPN server address is 3.1.1.1.</td>
</tr>
<tr>
<td>Authentication method</td>
<td>User-defined</td>
<td>Set according to VPN server needs. Either the X.509 certificates or the Preshared key must match server configuration.</td>
</tr>
<tr>
<td>Security policy > Only permit incoming...</td>
<td>Identify the subnet</td>
<td>Identify the local subnet for which you wish to filter traffic, for example, 7.1.1.0. This must match the value defined in the policy on the peer (VPN server).</td>
</tr>
<tr>
<td>Only permit outgoing...</td>
<td>Identify the remote subnet</td>
<td>Identify the remote subnet for which you wish to filter traffic, for example, 10.0.0.0. This must match the value defined in the policy on the peer (VPN server).</td>
</tr>
</tbody>
</table>

See the online help for option descriptions.

See *Keeping user traffic out of the VPN tunnel on page 15-10*.

Configure PPTP client for a remote VPN server

Configure the PPTP client for the controller VPN client capability via the **Controller >> VPN > PPTP client** menu.

The PPTP client enables the controller to create a secure tunnel to any device that provides a PPTP server. All traffic sent through this tunnel is protected against eavesdropping by means of encryption.
The PPTP tunnel should not be used to transport user traffic. To prevent user traffic from entering the tunnel, you must define access list definitions to DENY access to all subnets on the other side of the tunnel. The tunnel should be used to carry management traffic only (RADIUS, SNMP, management sessions). See *Keeping user traffic out of the VPN tunnel* on page 15-10.

Configuration

To view and configure the PPTP client, select **Controller >> VPN > PPTP client**. The PPTP client is disabled by default.

Connection

PPTP server address

Specify the domain name or IP address of the PPTP server the controller will connect to.

Domain name(s)

Specify the domain name(s) that are reachable through the tunnel. Put a space between each name as a separator. The controller routes all traffic addressed to this domain through the PPTP connection. If you do not want to enter a Domain name, enter `private.lan` instead.

Auto-route discovery

Enable this option if you want the controller to automatically discover and add routes to IP addresses on the other side of the PPTP tunnel. The addresses must be part of the specified domain. Routes are added only when an attempt is made to access the addresses.

LCP echo requests

Certain VPN servers may terminate your connection if it is idle. If you enable this option, the controller will send a packet from time to time to keep the connection alive.
Account

Username
Specify the username the controller will use to log on to the PPTP server. If you are logging on to a Windows XP domain, specify `domain_name\username`

Password / Confirm password
Specify the password the controller will use to log on to the PPTP server.

Network Address Translation (NAT)
If you enable NAT, it effectively hides the addresses of all local computers so that they are not visible on the other side of the PPTP connection.

If you disable NAT, then the appropriate IP routes must be added to send traffic through the tunnel.

Keeping user traffic out of the VPN tunnel

Note
The VPN tunnel should not be used to transport user traffic. The tunnel should only be used to carry management traffic (RADIUS, SNMP, and management sessions).

To prevent user traffic from entering the tunnel, you must define access list definitions to DENY access to all subnets on the other side of the tunnel.

Consider the following scenario:

```
To protect the VPN, add the following definitions to the site access list:

access-list=vpn,DENY,all,192.168.30.0/24,all
use-access-list=vpn
```

This definition applies to all users, whether they are authenticated or not. It blocks access to the VPN subnet for all traffic. For more information on using the access list feature, see *Access list on page 14-34*.
Additional IPSec configuration

Page Controller >> VPN > IPSec provides some additional configuration options and information. For information about IPsec certificates see IPSec certificates on page 11-11.

IPSec VLAN mapping

Use these settings to define how IPSec traffic is routed on the LAN and Internet ports. You can assign traffic to the untagged interface (no VLAN) or to any defined VLAN.

Local group list

When using IPSec aggressive mode, groups can be used to authenticate IPSec connections from clients (peers). The client must supply the group name matching one of the groups defined here to establish a security association with the controller.

Create all needed groups, providing information as follows:

- **Group name**: Group names are case-sensitive and should be in the format user@FQDN.com or FQDN.com. For example, fred@mycompany.com or server99.mycompany.com.
- **Password/Confirm password**: Passwords must be at least six characters long and contain at least four different characters.

IPSec security policy database

The **IPSec security policy database** table shows all the IPSec security policies that are defined on the controller. A security policy defines the criteria that must be met for a peer to establish an IPSec security association (SA) with the controller.

<table>
<thead>
<tr>
<th>Name</th>
<th>Port</th>
<th>Peer address</th>
<th>Mode</th>
<th>Status</th>
<th>Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSec Remote</td>
<td>Internet port</td>
<td>5.1.1.1</td>
<td>tunnel</td>
<td>enabled</td>
<td>preshared key</td>
</tr>
<tr>
<td>IPSec Wireless</td>
<td>LAN port</td>
<td>ANY</td>
<td>tunnel</td>
<td>enabled</td>
<td>preshared key</td>
</tr>
</tbody>
</table>

This information is provided:

- **Name**: Name assigned to the security policy.
- **Port**: Port assigned to the security policy.
- **Peer address**: Address of the peer which can establish an SA using this policy.
- **Mode**: Indicates the IPSec mode (tunnel or transport) supported by this policy.
- **Status**: Indicates whether the policy has been enabled. An SA can only be established when a policy is enabled.
- **Authentication**: Indicates the method used to authenticate peers.
Working with VPNs
Additional IPSec configuration
Chapter 16: LLDP

Contents

Overview ... 16-2
LLDP-MED... 16-2
Local mesh.. 16-3
SNMP support .. 16-3

Configuring LLDP on the controller ... 16-4
TLV settings .. 16-6

Configuring LLDP on an AP ... 16-7
LLDP agent ... 16-7
Media endpoint discovery (MED) features ... 16-8
LLDP settings ... 16-10
Overview

The IEEE 802.1AB Link Layer Discovery Protocol (LLDP) provides a standards-based method for network devices to discover each other and exchange information about their capabilities. An LLDP device advertises itself to adjacent (neighbor) devices by transmitting LLDP data packets on all ports on which outbound LLDP is enabled, and reading LLDP advertisements from neighbor devices on ports that are inbound LLDP-enabled. An LLDP enabled port receiving LLDP packets inbound from neighbor devices stores the packet data in a Neighbor database (MIB).

LLDP information is used by network management tools to create accurate physical network topologies by determining which devices are neighbors and through which ports they connect.

LLDP operates at layer 2 and requires an LLDP agent to be active on each network interface that will send and receive LLDP advertisements. LLDP advertisements can contain a variable number of TLV (type, length, value) information elements. Each TLV describes a single attribute of a device.

When an LLDP agent receives information from another device, it stores it locally in a special LLDP MIB (management information base). This information can then be queried by other devices via SNMP. For example, the ProCurve Manager software retrieves this information to build an overview of a network and all its components.

Note

LLDP information is only sent/received on Ethernet links. LLDP information is not collected from wireless devices connected to an AP.

LLDP-MED

LLDP provides the base capabilities for network devices, but was not considered sufficient for IP telephony devices. As a result, in 2004, an initiative by ProCurve and was undertaken to enhance LLDP so that it could better support IP telephony devices. The development of LLDP-Medium Endpoint Discovery (LLDP-MED) (ANSI/TIA-1057/D6) extended the LLDP standard to support advanced features on the network edge for VoIP endpoint devices with specialized capabilities and LLDP-MED standards-based functionality. The extensions to LLDP include the specification of additional TLV (Type, Length, and Value) entries specifically for VoIP management. LLDP-MED benefits include:

- Plug-and-play provisioning for MED-capable, VoIP endpoint devices.
- Simplified, vendor-independent management enabling different IP telephony systems to interoperate on one network.
- Configurable endpoint location data to support the Emergency Call Service (ECS) such as Enhanced 911, 999 and 112.
- Detailed VoIP endpoint data inventory readable via SNMP from the switch.
- Power over Ethernet (PoE) status and troubleshooting support via SNMP.
- Support for IP telephony network troubleshooting of call quality issues via SNMP.

LLDP-MED endpoint devices are located at the network edge and communicate using the LLDP-MED framework. Any LLDP-MED endpoint device belongs to one of the following three classes:

- **Class 1 (Generic Endpoint Devices):** These devices offer the basic LLDP discovery services, network policy advertisement (VLAN ID, Layer 2/802.1p priority, and Layer 3/DSCP priority), and PoE management. This class includes such devices as IP call controllers and communication-related servers.

- **Class 2 (Media Endpoint Devices):** These devices offer all Class 1 features plus media streaming capability, and include such devices as voice/media gateways, conference bridges, and media servers.

- **Class 3 (Communication Devices):** These devices are typically IP phones or end-user devices that otherwise support IP media and offer all Class 1 and Class 2 features, plus location identification and emergency 911 capability, Layer 2 switch support, and device information management.

Local mesh

LLDP is not supported over local mesh links when running in controlled mode.

In autonomous mode, each AP only sees the APs with which it has a local mesh link as neighbors.

SNMP support

Support is provided for the following Physical Topology MIB (RFC 2922).

Note

When operating in controlled mode the LLDP agents on controlled APs cannot be queried via SNMP. Instead, all LLDP information from the APs is stored in the controller's MIBs.
Configuring LLDP on the controller

Controller settings are defined by selecting Controller >> Network > Discovery protocols.

 LLDP agents
Select this option to globally activate LLDP support on the controller.

 LAN port / Internet port
For each port, select whether the agent will transmit and/or receive LLDP information. Select Configure TLVs to customize TLV support for each interface.

 Transmit
Enable this option to have the agent transmit LLDP information to its neighbors.

 Receive
Enable this option to have the agent accept LLDP information from its neighbors.

 LLDP settings
Use these options to define global LLDP settings on the controller.

 Transmit interval
Sets the interval (in seconds) at which local LLDP information is updated and TLVs are sent to neighboring network devices.

 Multiplier
The value of Multiplier is multiplied by the Transmit interval to define the length of Time to live.
Time to live
Indicates the length of time that neighbors will consider LLDP information sent by this agent to be valid. **Time to live** is automatically calculated by multiplying **Transmit interval** by **Multiplier**.

Generate dynamic system names
When enabled, this feature replaces the system name with a dynamically generated value which you can define.

Controller name
Specify how the dynamically generated name will be created. You can use regular text in combination with placeholders to create the name. Placeholders are automatically expanded each time the name is regenerated.

If the placeholders cause the generated name to exceed 32 characters, it is truncated.

Placeholders
- **%RN**: System name of the neighboring device to which the port is connected, obtained via the System Name TLV. Since this is an optional TLV, if it is not available, the Chassis ID TLV is used instead.
- **%RP**: Port description of the port on the neighboring device to which the local port is connected, obtained via the Port Description TLV. Since this is an optional TLV, if it is not available, the Port ID TLV is used instead.
- **%SN**: Controller's serial number.
- **%IP**: Controller's IP address. An IP address can require up to 15 characters (nnn.nnn.nnn.nnn).

Note
- When the LLDP agent is active on both the LAN port and the Internet port, the name generated on the LAN port is used for both interfaces.
- The dynamic name on the controller is only updated when a change is detected in the neighbor to which a port is connected.
- Once AP names are dynamically changed by this feature, there is no way to return to the old AP names.
- To define the suffix for APs, select **Controlled APs >> Configuration > LLDP**.

Expanded controller name
Shows the generated name with all placeholders expanded. To see the generated name you must select **Save**, wait about 10 seconds, and then click the **Refresh** button in your browser.

Update AP names every nn seconds
Specify the interval at which dynamic names for all controlled APs are updated.
TLV settings

To customize TLV settings, select **Configure TLVs** on the **Controller >> Network > Discovery protocols** page. The same TLV settings are available on both the LAN port and the Internet port.

Basic TLVs

The controller supports all mandatory and optional TLVs (type, length, value) information elements that are part of the basic management set.

Mandatory TLVs

The controller always sends these TLVs with the values as shown.

- **Chassis ID** (Type 1): The MAC address of the controller.
- **Port ID** (Type 2): The MAC address of the port on which the TLV will be transmitted.
- **Time to live** (Type 3): Defines the length of time that neighbors will consider LLDP information sent by this agent to be valid. Calculated by multiplying **Transmit interval** by the **Multiplier** (as defined on the **Discovery protocols** page).

Optional TLVs

Select the optional TLVs that you want to send with the values as shown.

- **Port description** (Type 4): A description of the port.
- **System name** (Type 5): Administrative name assigned to the device from which the TLV was transmitted. By default this is the SNMP system name. If the **Dynamic system name** option is enabled, the system name is replaced by the dynamically generated name. The controller can only have one system name. If both the LAN and Internet ports have active agents, then the name generated by the LAN port is used.
- **System description** (Type 6): Description of the system, comprised of the following information: hardware serial number, hardware revision number, and firmware version.
- **System capabilities** (Type 7): Indicates the primary function of the device. Set to:
- **WLAN access point** for APs
- **Router** for controllers.

- **Management IP address** (Type 8): The controller *always* sends a management IP address TLV containing the IP address of the port. This optional TLV lets you specify a secondary IP address on which the agent will respond to management requests. If set to 0.0.0.0, no secondary address is sent.

802.3 TLVs
The IEEE 802.3 organizationally specific TLV set is optional for all LLDP implementations. The controller supports a single optional TLV from the 802.3 definition.

MAC/PHY configuration/status
This TLV provides the following information:
- Bit-rate and duplex capability
- Current duplex and bit-rating
- Whether these settings were the result of auto-negotiation during link initiation or manual override.

Configuring LLDP on an AP
AP settings are defined by selecting **Controlled APs >> Configuration > LLDP**.

![LLDP configuration interface](image)

LLDP agent
Enable this option to activate LLDP support on the AP. When active, the agent will transmit and receive LLDP information.

When operating in controlled mode:
The LLDP agent on an AP will not respond to SNMP requests. Therefore, local and remote MIB information is not available to external devices via the AP. Instead, this information can be retrieved from the controller.

LLDP is not supported on local mesh links.

Supported TLVs
The LLDP agent on an AP supports the following Basic TLVs:

Mandatory TLVs
- Chassis ID (Type 1): The MAC address of the AP.
- Port ID (Type 2): The MAC address of port on which the TLV will be transmitted.
- Time to live (Type 3): Defines the length of time that neighbors will consider LLDP information sent by this agent to be valid. Calculated by multiplying Transmit interval by the Multiplier.

Optional TLVs
- Port description (Type 4): A description of the port.
- System name (Type 5): Administrative name assigned to the device from which the TLV was transmitted. By default this is the SNMP system name. If the Dynamic system name option is enabled, the system name is replaced by the dynamically generated name.
- System description (Type 6): Description of the system, comprised of the following information: operational mode, hardware type, hardware revision, and firmware version.
- System capabilities (Type 7): Indicates the primary function of the device. Set to: **WLAN access point**.

Media endpoint discovery (MED) features
The MED LLDP extensions specify two kinds of network devices: *network connectivity* and *endpoint*. Network connectivity devices connect endpoint devices to an IEEE 802-based LAN infrastructure. This means that ProCurve access points and controllers are network connectivity devices. Endpoint devices are located at the network edge, and include devices such as IP phones, IP media servers, and IP communication controllers.

A network connectivity device does not send LLDP-MED TLVs on any port unless it detects an endpoint device connected to the port and receives LLDP-MED TLVs from the endpoint device.
The LLDP-MED TLVs supported by ProCurve APs are as follows:

<table>
<thead>
<tr>
<th>TLV name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP-MED Capabilities</td>
<td>Indicates the supported capabilities on the device by setting the appropriate bit to 1.</td>
</tr>
<tr>
<td></td>
<td>- Bit 0: LLDP-MED Capabilities</td>
</tr>
<tr>
<td></td>
<td>- Bit 1: Network Policy</td>
</tr>
<tr>
<td></td>
<td>- Bit 2: Location Identification</td>
</tr>
<tr>
<td></td>
<td>- Bit 3: Extended Power via MDI - PSE (only supported on the MSM317)</td>
</tr>
<tr>
<td></td>
<td>- Bit 4: Extended Power via MDI - PD (not supported)</td>
</tr>
<tr>
<td></td>
<td>- Bit 5: Inventory</td>
</tr>
<tr>
<td></td>
<td>- Bits 6-15: Reserved</td>
</tr>
<tr>
<td>Network Policy</td>
<td>The network policy TLV is a fixed length TLV that indicates a port VLAN type, VLAN identifier (VID), and both the Layer 2 and Layer 3 priorities associated with a specific set of application types.</td>
</tr>
<tr>
<td>Location Identification</td>
<td>Indicates the physical location of the device using the following form:</td>
</tr>
<tr>
<td></td>
<td>- Emergency Call Services ELIN, as described for example by NENA TID 07-501.</td>
</tr>
<tr>
<td>Extended Power-via-MDI</td>
<td>Indicates the IEEE 802.1af (PoE) power related information on the device which includes:</td>
</tr>
<tr>
<td></td>
<td>- Power type</td>
</tr>
<tr>
<td></td>
<td>- Power source</td>
</tr>
<tr>
<td></td>
<td>- Power priority</td>
</tr>
<tr>
<td></td>
<td>- Power value</td>
</tr>
<tr>
<td>MAC/PHY Configuration/</td>
<td>Indicates the following:</td>
</tr>
<tr>
<td>Status</td>
<td>- Bit-rate and duplex capability</td>
</tr>
<tr>
<td></td>
<td>- Current duplex and bit-rating</td>
</tr>
<tr>
<td></td>
<td>- Whether these settings were the result of auto-negotiation during link initiation or manual override</td>
</tr>
</tbody>
</table>

ELIN location
Emergency Call Services ELIN as described, for example, by NENA TID 07-501.
Fast Start timer
After an MED LLDPDU is received, this timer is started and the agent sends one MED LLDPDU to the MED device each second.

LLDP settings

Transmit interval
Sets the interval (in seconds) at which local LLDP information is updated and TLVs are sent to neighboring network devices.

Multiplier
The value of *Multiplier* is multiplied by the *Transmit interval* to define *Time to live*.

Time to live
Indicates the length of time that neighbors will consider LLDP information sent by this agent to be valid. *Time to live* is calculated by multiplying *Transmit interval* by *Multiplier*.

AP name
When the *Generate dynamic system names* option is enabled on the *Controllers >> Network > Discovery protocols* page, the system name of the AP will be replaced with a dynamically generated name that you define.

Specify how the dynamically generated name will be created. You can use regular text in combination with placeholders to create the name. Placeholders are automatically expanded each time the name is regenerated.

If the placeholders cause the generated name to exceed 32 characters, it is truncated.

Placeholders

- **%RN**: System name of the neighboring device to which the port is connected, obtained via the System Name TLV. Since this is an optional TLV, if it is not available, the Chassis ID TLV is used instead.

- **%RP**: Port description of the port on the neighboring device to which the local port is connected, obtained via the Port Description TLV. Since this is an optional TLV, if it is not available, the Port ID TLV is used instead.

- **%SN**: The AP serial number.

- **%IP**: The AP IP address. An IP address can require up to 15 characters (nnn.nnn.nnn.nnn).

Important
Once a system name is dynamically changed by this feature, there is no way to automatically return to the original system name.
Chapter 17: sFlow

Contents

Overview ...17-2
sFlow proxy..17-2
MIB support..17-3
Configuring and activating sFlow ..17-3
sFlow settings ..17-4
Collectors ...17-4
Active sFlow agents ..17-5
Overview

sFlow is a technology for monitoring traffic in high speed switched or routed networks. The standard sFlow monitoring system is comprised of the following:

- An **sFlow Agent** that runs on a network device such as an AP, switch, or router. The agent uses sampling techniques to capture information about the data traffic flowing through the device and forwards this information to an sFlow collector.

- An **sFlow Collector** that receives monitoring information from sFlow agents. The collector stores this information so that a network administrator can analyze it.

sFlow proxy

In the case of the controller and its controlled APs, the sFlow monitoring system operates slightly differently. Instead of each AP sending information directly to a collector, the APs send their information to the controller, which acts as an sFlow proxy. The controller then forwards the information to one or more collectors.

The collectors are not aware of the APs, as all sFlow information is repackaged by the controller to indicate that it is the source device. Essentially, the interfaces on the APs appear as interfaces on the controller. When the controller detects that an AP is missing, it will answer SNMP SET and GET queries from collectors with an SNMP error message.
Note

- The controller does not generate any sFlow information of its own. The sFlow information is only generated by APs.
- The MSM317 only monitors ingress traffic on the Uplink and switch ports.

MIB support

The following MIBs are supported:

- sFlow-MIB base OID: 1.3.6.1.4.1.14706
- SNMP MIB2 System base OID: 1.3.6.1.2.1.1
- SNMP MIB2 Interfaces base OID: 1.3.6.1.2.1.2 Note: The ifType OID of the SNMP MIB2 Interfaces will have the value 71 (ieee802.11) for the wireless interfaces.
- SNMP MIB2 IPAddrTable base OID: 1.3.6.1.2.1.4.20
- SNMP MIB2 ifXTable base OID: 1.3.6.1.2.1.31.1.1.1
- SNMP MIB: HP-WLAN-SFLOW-EXTENSIONS-MIB base OID: 1.3.6.1.4.1.11.2.14.11.6.4.2

Configuring and activating sFlow

All sFlow configuration occurs via the controller management tool by selecting Controller >> Tools > sFlow.
Important

Under normal conditions, sFlow settings on the controller will be configured by an sFlow collector operating elsewhere on the network. Therefore, in most cases all you need to do is select the Enabled option under Global settings to active sFlow.

The settings on this page are provided for advanced users who want to fine tune their sFlow configuration or who are using an sFlow collector in manual mode.

Manual configuration of sFlow will not work with PCM, and other collectors may require special configuration to operate in this manner.

This page provides access to all sFlow configuration settings, including those on controller APs. (Configuration settings for the sFlow agents operating on an AP are also available by selecting the AP in the Network Tree and then selecting Tools > sFlow.)

sFlow settings

Turns sFlow support on or off. Once enabled, sFlow agents will be activated on all controlled APs, and the agents will appear in the Active sFlow agents list.

Collectors

Up to three collectors can be configured. To configure a collector, click its name in the list. Once configured, collectors can be assigned to receive data from the sampling instances for any active sFlow agent.

The table lists the following information for each collector.

- **Name:** Name used to identify the collector.
- **IP address:** IP address of the collector. This is the address to which the controller will send sFlow data.
- **Timeout:** The time (in seconds) that the collector maintains ownership of a sampling instance.
- **Max datagram size:** The maximum number of data bytes that will be sent to the collector in a single sFlow datagram.
- **HP PMM compatibility:** When enabled, information not supported by HP PMM network management software is dropped from the sFlow data to conserve network bandwidth.
Collector configuration settings

A collector profile defines the settings that will be used to communicate with a collector.

Name
Friendly name used to identify the collector.

IP address
IP address of the collector.

Timeout
The time (in seconds) that the collector maintains ownership of a sampling instance.

- **Never expire**: Select this option to set the timeout to never expire.

Maximum datagram size
The maximum number of data bytes that will be sent to the collector in a single sample datagram.

Port
The UDP port on which sFlow data will be sent to the collector.

HP PMM compatibility
Enable this option to generate sFlow data in a format that is compatible with the HP PMM application. When enabled, information not supported by PMM is dropped from the sFlow data to conserve network bandwidth.

Active sFlow agents

Agents automatically appear in this table once sFlow support is enabled. An agent will appear for each controlled AP that is synchronized (green) under **Controlled APs** in the **Network Tree**.

- To configure the agent on an AP, click its name in the list. See **sFlow agent settings**.
- To sort the list based on the values in a column, click the column title.
The table lists the following information for each agent.

- **AP name**: Name assigned to the AP. By default, this is its serial number.
- **MAC address**: MAC address assigned to the AP.
- **Product**: Product name of the AP.
- **Group name**: Name of the group to which the AP is assigned.

sFlow agent settings

This page displays all data sources that are available for sampling on an AP. Each data source can support up to three configurable sampling instances.

Data source

Name of a port on which the sFlow agent is active.

Global ifIndex

Each port on an AP is automatically assigned a unique number starting at 32001. This uniquely identifies the port across all ports on all controlled APs. The number is available to the collectors as an ifIndex value and can be retrieved using ifIndex-related MIB elements.

Instance

Each port can support up to three instances. Each instance defines a configurable sampling process. To configure an instance, click it.

Packet flow sampling

- **Collector**: Name of the collector to which packet sampling data will be sent.
- **Sampling rate**: Defines how often samples are taken.

Counter polling

- **Collector**: Name of the collector to which counter polling data will be sent.
- **Polling interval**: Defines how often samples are taken.
Instance configuration settings
Each instance can be customized as follows:

Packet flow sampling
Packet flow sampling is executed by copying a specified amount of data from the header of packets and sending it to a collector for analysis.

Collector
Select the collector to which data will be sent.

Sampling rate
Specify the approximate number of packets between samples. For example, if set to 5, approximately every fifth packet will be sampled (There is some jitter introduced purposefully into the sample collection).

Max header size
Specify the maximum number of bytes to copy and forward from the header of the sampled packet.

Counter sampling
Counter sampling measurement are obtained by counting the number of packets and octets passing through the target interface between the defined polling interval.

Collector
Select the collector to which data will be sent.

Polling interval
Specify the amount of time (in seconds) between sending successive octet and packet counter values for this instance.
sFlow
Configuring and activating sFlow
Chapter 18: Working with autonomous APs

Contents

Key concepts...18-2
 Autonomous AP detection ...18-3
 Viewing autonomous AP information ...18-3
 Switching a controlled AP to autonomous mode...18-4

Configuring autonomous APs..18-5
 VSC definitions ..18-5

Working with third-party autonomous APs ...18-6
 VSC selection ...18-6
This chapter describes how to use the controller in conjunction with autonomous APs.

Tip
Most of this chapter applies to working with autonomous MSM APs. For third-party autonomous APs, see Working with third-party autonomous APs on page 18-6.

APs can operate in either controlled mode or autonomous mode. In controlled mode, the controller provides centralized management of APs. This is the preferred operation mode. See Chapter 5: Working with controlled APs.

However, in some other cases it is necessary to operate APs in autonomous mode, for example under the following circumstances:

- When an AP is used to create a static WDS (local mesh) link. Controlled mode does not support static local mesh links. It is strongly recommended that dynamic WDS (local mesh) links be used. They provide the same capabilities but with greater flexibility. Furthermore, local mesh is supported in controlled mode.

- An AP at software version 4.x or earlier is used. Controlled mode is available on APs at software version 5.x or higher. It is strongly recommended that controllers and autonomous APs be updated to the same software version, and preferably 5.x or higher. Controlled APs are automatically updated to the controller software version.

It is recommended that you operate most MSM APs in controlled mode, reserving autonomous mode only for APs that need features unique to autonomous mode. In autonomous mode, the following features are not available: Centralized management, wireless mobility, and WPA2 Opportunistic key caching.
Autonomous AP detection

The controller automatically detects all autonomous APs that have their CDP discovery option enabled (default setting) and are installed on the same subnet as the controller.

To configure this CDP discovery, select **Network > CDP** on the AP management tool.

Viewing autonomous AP information

When the controller detects at least one autonomous AP, the **Summary** box and the **Network Tree** are updated to include autonomous AP information as follows:

As shown in the above image, the **Summary** list includes a **Detected** link and count in the **Summary** list, and the **Network Tree** includes an **Autonomous APs** branch on **Controller**. These elements only appear when at least one autonomous APs has been detected. As shown, when Autonomous APs is selected, the list of **Detected Autonomous APs** list appears in the right pane.
Click a link in the **Device ID** column to display the **Autonomous APs details** like this:

![Autonomous AP details](image)

You can also click the link in **IP address** column to launch the AP management tool. See the *MSM3xx/MSM4xx Management and Configuration Guide*.

Switching a controlled AP to autonomous mode

To switch a controlled AP to autonomous mode, select the AP in the **Default Group** branch of the Network Tree, and then in the right pane select **Maintenance > System** and select **Switch to Autonomous Mode**.

Note

The AP will restart and lose all configuration settings received from the controller, returning to its default configuration. You can then configure it via its management tool.
Configuring autonomous APs

Autonomous APs must be configured via their own management tool. For convenience, you can launch an autonomous AP management tool from within the controller management tool by clicking the link in the IP address column of the Detected Autonomous APs page, providing network access is possible.

When connecting one or more autonomous APs to co-exist with a controller, some configuration issues must be addressed to ensure that data traffic and management traffic is able to flow between both devices.

If the management computer connects to the AP through the controller Internet port but the AP connects via the LAN port, static NAT mappings will be needed to be created to allow traffic to go through the controller firewall. See the *MSM3xx/MSM4xx Management and Configuration Guide*.

VSC definitions

Although the controller cannot configure autonomous APs, the APs can work with the controller to benefit from the advanced access control services a controller provides. To do this, use the autonomous AP management tool to configure VSCs that use the same SSID and/or VLAN as already configured on the controller. The matching VSC configuration is illustrated as follows:
Management with VLANs

When operating in a VLAN environment, management traffic can be carried on its own VLAN. Configure the VSC on both the autonomous AP and the controller as illustrated here:

In this example, the traffic for each wireless network is carried on its own VLAN. This leaves only management traffic from the autonomous AP on VLAN 10. A static IP is assigned on both ends to permit the two devices to communicate.

Working with third-party autonomous APs

Third-party APs can be used with a controller with both access controlled and non-access controlled VSCs.

VSC selection

User traffic from third-party APs is mapped to a VSC on the controller in the same way as for MSM APs. See Using multiple VSCs on page 4-33. This means that traffic is assigned to the default VSC, unless it is on a VLAN, in which case it is assigned to the VSC with matching VLAN ingress definition.
Because the HP ProCurve Networking location-aware feature is not available on third-party APs, support for VSC selection using an SSID requires that the following additional configuration be performed:

- Configure the AP to send its SSID as the NAS ID in all authentication and accounting requests.
- Enable the Detect SSID from NAS-Id option on the Controller >> Authentication >> RADIUS server page.
Working with autonomous APs
Working with third-party autonomous APs
Maintenance

Contents

Config file management..19-2
 Manual configuration file management ..19-2
 Scheduled operations...19-3

Software updates..19-4
 Performing an immediate software update ..19-4
 Performing a scheduled software update ..19-5

Licenses...19-6
 Factory reset considerations ...19-7
 Generating and installing a feature license ..19-7
Config file management

The configuration file contains all the settings that customize the operation of the controller. You can save and restore the configuration file manually or automatically.

Select **Maintenance > Config file management**.

![Config file management interface](image)

Manual configuration file management

The following options are available for manual configuration file management.

Backup configuration

This option enables you to backup your configuration settings so they can be easily restored in case of failure. This option is also used when you want to directly edit the configuration file.

Before you install new software, you should always make a backup of your current configuration. Click **Backup** to start the process. You will be prompted for the location to place the configuration file.

Configuration information is saved in the backup file as follows:

- **Certificates and private keys**: If you specify a password when saving the configuration file, certificates and private keys are encrypted with a key based on the password. If you do not specify a password, certificates and private keys are still encrypted, but with a default key that is identical on all APs.

- **Manager and operator username/password**: This information is not saved in the backup configuration file. This means that if you restore a configuration file, the current username and password on the AP are not overwritten.

- **All other configuration information**: All other configuration information is saved as plain text, allowing the settings to be viewed with a standard text editor.
Reset configuration
See *Appendix C: Resetting to factory defaults*.

Restore configuration

The **Restore configuration** option enables you to load a previously saved configuration file.

This option enables you to maintain several configuration files with different settings, which can be useful if you must frequently alter the configuration of the controller or if you are managing several controllers from a central site.

Use the following steps to restore a saved configuration file.

1. Select **Browse** and then locate the configuration file you want to restore.
2. Select **Restore** to upload it to the controller. If the configuration file is protected with a password, you must supply the password to restore the complete configuration. If you supply an invalid password, all settings are restored except for any certificates and private keys.

Note
The controller automatically restarts when once the file has been loaded.

Scheduled operations

The **Scheduled operations** feature enables you to schedule unattended backups or restorations of the configuration file.

Use the following steps to schedule a backup or restoration of the configuration file.

1. Select **Maintenance > Config file management**. The **Config file management** page opens.
2. Select the **Scheduled operations** checkbox.
3. For **Operation**, select **Backup** or **Restore**.
4. For **Day of week**, select **Everyday**, or select a specific day of the week on which to perform the backup or restoration.
5. For **Time of day**, specify the hour and minute on which to perform the backup or restoration. Use the format *hh mm*, where
 - *hh* ranges from 00 to 23
 - *mm* ranges from 00 to 59
6. For **URL**, specify the path that leads to the local or remote directory in which to save the configuration file or from which to load the configuration file. For example
 - *ftp://username:password@192.168.132.11/new.cfg*
 - *http://192.168.132.11/new.cfg*
7. Select **Validate** to test that the specified **URL** is correct.
8. Select **Save**.
Software updates

Controller software updates are managed by selecting **Maintenance > Firmware updates.**

![Software updates GUI](image)

Caution

- Before updating be sure to check for update issues in the Release Notes.
- Even though configuration settings are preserved during software updates, it is recommended that you backup your configuration settings before updating.
- After updating the controller software, controlled APs are automatically updated to the same version that is installed on the controller. At the end of the update process, the controller and all controlled APs automatically restart, causing all users to be disconnected. Once the controller and APs resume operation, all users must reconnect. To minimize network disruption, use the scheduled install option to have updates performed outside of peak usage hours.

Performing an immediate software update

To update the controller software now, **Browse** to the software file (extension .cim) and then select **Install.**
Performing a scheduled software update

The controller can automatically retrieve and install software from a remote Web site identified by its URL.

To schedule software installation, follow this procedure:

1. Enable Scheduled install.

2. For Day of week, select a specific day or Everyday and set Time of day.

3. For URL, specify an ftp or http address like this:
 - ftp://username:password@192.168.132.11/newsoftware.cim

4. Select Validate to test that the specified URL is correct.

5. Select Save, or to commit the schedule and also update the software immediately, select Save and Install Now.

Note

Before a scheduled software update is performed, only the first few bytes of the software file are downloaded to determine if the software is newer than the currently installed version. If it is not, the download stops and the software is not updated.
Licenses

Some controller features are optional, becoming active only when a license is installed. To view and manage licenses, select Controller >> Maintenance > Licenses.

Factory installed licenses

This table lists all licenses that were installed on the controller at the factory. These licenses are always active and cannot be removed or disabled.

User installed licenses

This table lists all user installed licenses. Work with these licenses as follows:

- Select Deactivate to temporarily deactivate all user installed licenses. Any features that depend on these licenses will become temporarily unavailable.
- Select Activate to re-activate user-installed licenses that have been deactivated.
- Select Remove to delete all user installed licenses. Before removing licenses, be sure to first backup the license file to your hard drive, by selecting Backup.
License management

Use these options to order, install, and backup license files.

- When you order a new feature license, you may be required to provide the information in the License ordering information box to your vendor.
- To install a license file, **Browse** to the file and then select **Install License**.
- Select **Backup** to save all user-defined licenses in a single file.

Once you receive your License Registration card for your purchased license, you will need the **MAC address** in the **License ordering information** box. See *Generating and installing a feature license*.

Factory reset considerations

After a controller has been reset to its factory defaults, factory-installed licenses are automatically re-activated, but user-installed licenses remain in a deactivated state until manually activated. This is done to ensure a true factory-default reset.

Generating and installing a feature license

When you purchase an optional feature license, a physical license registration card is shipped to you. License registration cards are not matched to your MSM7xx Controller until you go to the **My ProCurve portal** and generate a license file for a specific MSM7xx Controller.

Once you receive your license registration card, follow this procedure to generate and install a feature license on your MSM7xx Controller.

Note

When teaming is active, separate license files must be generated and individually installed on each controller that is a member of a team.

Generating a license

1. Go to the My ProCurve portal at https://my.procurve.com and log in. If you are a new user, you must follow a free registration process to set up an account.

2. Select the **My Licenses** tab at the top of the page.

3. In the list of links on the left side, under **My Licenses**, select **Generate licenses**.

4. In the **Registration ID** field, type the **License Registration ID** found on your registration card. Type the ID exactly as shown, including the dashes. Select **Next**.
5. If you do not have the MAC address of your MSM7xx Controller already on file, open its management tool in a separate Web browser window, and select **Controller >> Maintenance > Licenses.** Under **License ordering information,** copy the **MAC address** onto your clipboard. For example:

![License ordering information]

6. Back on the My ProCurve Web page, paste or type the MAC address of your MSM7xx Controller in the **MAC Address** field. For example:

![Generate license key for ProCurve device]

7. Optionally type a reminder for yourself in the **Customer Notes** field. Select **Next.**

8. Review and accept the License Agreement. Select **Next.**
The license key is generated and made available to you for saving or sending by email. For example:

```
The license key(s) have successfully been generated.
Select an option below to save the new license(s) information.
```

9. Use the **Save As** button to save the license key file on your system or use **Send Email** to send the license key file and information to an email address. The email will contain both the license file and the license key information displayed on this page.

10. When done, click **Generate license(s)** to return to the main licenses page.

Installing a license

If you are ready to install your new license on your MSM7xx Controller, go back to the MSM7xx Controller management tool and do the following:

1. Select **Controller >> Maintenance > Licenses.**

2. Under **Install license file,** select **Browse** and browse to your license file. Select the file and then select **Open.**

3. Select **Install license** to complete the license installation.
Contents

Safety Information .. A-2
Informations concernant la sécurité... A-2
Hinweise zur Sicherheit.. A-3
Considerazioni sulla sicurezza .. A-4
Consideraciones sobre seguridad ... A-5
Safety Information (Japan) .. A-6
Safety Information (China) .. A-7
EMC Regulatory Statements.. A-8
 U.S.A... A-8
 Japan .. A-8
Recycle Statements... A-10
 Waste Electrical and Electronic Equipment (WEEE) Statements................... A-10
Safety Information

Documentation reference symbol. If the product is marked with this symbol, see the product documentation to get more information about the product.

WARNING A **WARNING** in the manual denotes a hazard that can cause injury or death.

Caution A Caution in the manual denotes a hazard that can damage equipment.

Do not proceed beyond a **WARNING** or Caution notice until you have understood the hazardous conditions and have taken appropriate steps.

Grounding

These are safety class I products and have protective earthing terminals. There must be an uninterruptible safety earth ground from the main power source to the product’s input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, disconnect the power cord until the ground has been restored.

For LAN cable grounding

- If your LAN covers an area served by more than one power distribution system, be sure their safety grounds are securely interconnected.

- LAN cables may occasionally be subject to hazardous transient voltages (such as lightning or disturbances in the electrical utilities power grid). Handle exposed metal components of the network with caution.

Servicing

There are no user-serviceable parts inside these products. Any servicing, adjustment, maintenance, or repair must be performed only by service-trained personnel.

These products do not have a power switch; they are powered on when the power cord is plugged in.

Informations concernant la sécurité

Symbole de référence à la documentation. Si le produit est marqué de ce symbole, reportez-vous à la documentation du produit afin d’obtenir des informations plus détaillées.

WARNING Dans la documentation, un **WARNING** indique un danger susceptible d’entraîner des dommages corporels ou la mort.
Cet appareil est un produit de classe I et possède une borne de mise à la terre. La source d'alimentation principale doit être munie d'une prise de terre de sécurité installée aux bornes du câblage d'entrée, sur le cordon d'alimentation ou le cordon de raccordement fourni avec le produit. Lorsque cette protection semble avoir été endommagée, débrancher le cordon d'alimentation jusqu'à ce que la mise à la terre ait été réparée.

Mise à la terre du câble de réseau local:

- si votre réseau local s'étend sur une zone desservie par plus d'un système de distribution de puissance, assurez-vous que les prises de terre de sécurité soient convenablement interconnectées.

- Les câbles de réseaux locaux peuvent occasionnellement être soumis à des surtensions transitoires dangereuses (telles que la foudre ou des perturbations dans le réseau d'alimentation public). Manipulez les composants métalliques du réseau avec précautions.

Aucune pièce contenue à l'intérieur de ce produit ne peut être réparée par l'utilisateur. Tout dépannage, réglage, entretien ou réparation devra être confié exclusivement à un personnel qualifié.

Cet appareil ne comporte pas de commutateur principal ; la mise sous tension est effectuée par branchement du cordon d'alimentation.

Hinweise zur Sicherheit

⚠️ Symbol für Dokumentationsverweis. Wenn das Produkt mit diesem Symbol markiert ist, schlagen Sie bitte in der Produktdokumentation nach, um mehr Informationen über das Produkt zu erhalten.

WARNING Eine WARNING in der Dokumentation symbolisiert eine Gefahr, die Verletzungen oder sogar Todesfälle verursachen kann.

Caution Caution in der Dokumentation symbolisiert eine Gefahr, die das Gerät beschädigen kann.

Fahren Sie nach dem Hinweis WARNING oder Caution erst fort, nachdem Sie den Gefahrenzustand verstanden und die entsprechenden Maßnahmen ergriffen haben.

Für LAN-Kabelerdung:

- Wenn Ihr LAN ein Gebiet umfaßt, das von mehr als einem Stromverteilungssystem beliefert wird, müssen Sie sich vergewissern, daß die Sicherheitserdungen fest untereinander verbunden sind.

Dieses Gerät hat keinen Netzschalter; es wird beim Anschließen des Netzkabels eingeschaltet.

Considerazioni sulla sicurezza

Simbolo di riferimento alla documentazione. Se il prodotto è contrassegnato da questo simbolo, fare riferimento alla documentazione sul prodotto per ulteriori informazioni su di esso.

WARNING La dicitura **WARNING** denota un pericolo che può causare lesioni o morte.

Caution La dicitura **Caution** denota un pericolo che può danneggiare le attrezzature.

Non procedere oltre un avviso di **WARNING** o di **Caution** prima di aver compreso le condizioni di rischio e aver provveduto alle misure del caso.

Questo prodotto è omologato nella classe di sicurezza I ed ha un terminale protettivo di collegamento a terra. Dev'essere installato un collegamento a terra di sicurezza, non interrompibile che vada dalla fonte d'alimentazione principale ai terminali d'entrata, al cavo d'alimentazione oppure al set cavo d'alimentazione fornito con il prodotto. Ogniqualvolta vi sia probabilità di danneggiamento della protezione, disinserite il cavo d'alimentazione fino a quando il collegamento a terra non sia stato ripristinato.
Per la messa a terra dei cavi LAN:

- se la vostra LAN copre un'area servita da più di un sistema di distribuzione elettrica, accertatevi che i collegamenti a terra di sicurezza siano ben collegati fra loro;

- i cavi LAN possono occasionalmente andare soggetti a pericolose tensioni transitorie (ad esempio, provocate da lampi o disturbi nella griglia d'alimentazione della società elettrica); siate cauti nel toccare parti esposte in metallo della rete.

Nessun componente di questo prodotto può essere riparato dall'utente. Qualsiasi lavoro di riparazione, messa a punto, manutenzione o assistenza va effettuato esclusivamente da personale specializzato.

Questo apparato non possiede un commutatore principale; si mette scotto tensione all'inserirsi il cavo d'alimentazione.

Consideraciones sobre seguridad

Símbolo de referencia a la documentación. Si el producto va marcado con este símbolo, consultar la documentación del producto a fin de obtener mayor información sobre el producto.

WARNING Una **WARNING** en la documentación señala un riesgo que podría resultar en lesiones o la muerte.

Caution Una **Caution** en la documentación señala un riesgo que podría resultar en averías al equipo.

No proseguir después de un símbolo de **WARNING** o **Caution** hasta no haber entendido las condiciones peligrosas y haber tomado las medidas apropiadas.

Este aparato se enmarca dentro de la clase I de seguridad y se encuentra protegido por una borna de puesta a tierra. Es preciso que exista una puesta a tierra continua desde la toma de alimentación eléctrica hasta las bornas de los cables de entrada del aparato, el cable de alimentación o el juego de cable de alimentación suministrado. Si existe la probabilidad de que la protección a tierra haya sufrido desperfectos, desenchufar el cable de alimentación hasta haberse subsanado el problema.

Puesta a tierr

- Si la LAN abarca un área cuyo suministro eléctrico proviene de más de una red de distribución de electricidad, cerciorarse de que las puestas a tierra estén conectadas entre sí de modo seguro.

- Es posible que los cables de la LAN se vean sometidos de vez en cuando a voltajes momentáneos que entrañen peligro (rayos o alteraciones en la red de energía eléctrica). Manejar con precaución los componentes de metal de la LAN que estén al descubierto.
Este aparato no contiene pieza alguna susceptible de reparación por parte del usuario. Todas las reparaciones, ajustes o servicio de mantenimiento debe realizarlos solamente el técnico. Este producto no tiene interruptor de potencia; se activa cuando se enchufa el cable de alimentación.

Safety Information (Japan)

安全性的考慮

安全記号

⚠️ マニュアル参照記号。製品にこの記号がついている場合はマニュアルを参照し、注意事項等をご確認ください。

WARNING マニュアル中の「WARNING」は人身事故の原因となる危険を示します。

CAUTION マニュアル中の「CAUTION」は装置破損の原因となる危険を示します。

「WARNING」や「CAUTION」の項は飛ばさないで必ずお読みください。危険性に関する記載事項をよく読み、正しい手順に従った上で次の事項に進んでください。

これは安全性クラス１の製品で保護用接地端子を備えています。主電源から製品の入力配線端子、電源コード、または添付の電源コード・セットまでの間、切れ目のある安全接地が存在することが必要です。もしこの保護回路が損なわれたことが推測されるときは、接地が修復されるまで電源コードを外しておいてください。

LANケーブルの接地に関して:

- もし貴社のLANが複数の配電システムにより電力を受けている領域をカバーしている場合には、それらのシステムの安全接地が確実に相互に結合されていることを確認してください。
- LANケーブルは時として危険な過度電圧（例えば雷雨、配電設備の電力線での障害）にさらされることがあります。退出した金属部分の取扱いには十分な注意をはらってください。

本製品の内部にはユーザーが修理できる部品はありません。サービス、調整、保守および修理はサービス研修を受けた専門家におまかせください。

本製品には電源スイッチがありません。電源コードを接続したとき電源入となります。

Japan Power Cord Warning

製品には、同梱された電源コードをお使い下さい。
同梱された電源コードは、他の製品では使用出来ません。
Safety Information (China)

HP 网络产品使用安全手册

使用须知

欢迎使用惠普网络产品，为了您及仪器的安全，请您务必注意如下事项:

1. 仪器要和地线相接，要使用有正确接地插头的电源线，使用中国国家标准的220V电源。
2. 避免高温和尘土多的地方，否则易引起仪器内部部件的损坏。
3. 避免接近高温，避免接近直接热源，如直射太阳光，暖气或其它发热体。
4. 不要有异物或液体落入机内，以免部件短路。
5. 不要在雨或潮湿处放置。

警告

为防止火灾或触电事故，请不要将该机放置于淋雨或潮湿处。

安装

安装辅助管理模块，请参看安装指南。

保修及技术支持

如果您按照以上步骤操作时遇到了困难，或想了解其它产品性能，请按以下方式与我们联络。

如是硬件故障:

1. 与售前单位或当地维修机构联系。
2. 中国惠普有限公司维修中心地址:
 北京市海淀区知春路49号希格玛大厦
 联系电话: 010-62623888 转 6101
 邮政编码: 100081

如是软件问题:

1. 惠普用户响应中心热话: 010-66645959
2. 传真自动回复系统: 010-66645735
EMC Regulatory Statements

U.S.A.

FCC Class A (Applies to the MSM730/MSM750)
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause interference to radio communications. Operation of this equipment in a residential area may cause interference in which case the user will be required to correct the interference at his own expense.

FCC Class B (Applies to the MSM710)
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. Theses limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and the receiver
- Connect the equipment into an outlet that is on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

CAUTION
Any changes or modifications to this equipment not expressly approved by the Hewlett-Packard Company may cause harmful interference and void the FCC authorization to operate this equipment.

Japan

VCCI Class A (Applies to the MSM730/MSM750)

この装置は、情報処理装置等電波障害自主規制協議会（VCCI）の基準に基づくクラスA情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講じるよう要請されることがあります。
VCCI Class B (Applies to the MSM710)

![Safety and EMC regulatory statements](Image)

Korea

Class A (Applies to the MSM730/MSM750)

<table>
<thead>
<tr>
<th>사용자 안내문 : A 급기기</th>
</tr>
</thead>
<tbody>
<tr>
<td>이 기기는 업무용으로 전자파 적합등록을 받은 기기 이오니, 판매자 또는 사용자는 이 점을 주의하시기 바라며, 만약 잘못 구입하였을 때에는 구입한 곳에서 비업무용으로 교환하시기 바랍니다.</td>
</tr>
</tbody>
</table>

Class B (Applies to the MSM710)

<table>
<thead>
<tr>
<th>B급 기기</th>
</tr>
</thead>
<tbody>
<tr>
<td>(가정용 방송통신기기)</td>
</tr>
<tr>
<td>이 기기는 가정용(B급)으로 전자파적합등록을 한 기기로서 주로 가정에서 사용하는 것을 목적으로 하며, 모든 지역에서 사용할 수 있습니다.</td>
</tr>
</tbody>
</table>

Taiwan

Class A (Applies to the MSM730/MSM750)

<table>
<thead>
<tr>
<th>警告使用者：這是甲類的資訊產品，在居住的環境中使用時，可能會造成射頻干擾，在這種情況下，使用者會被要求採取某些適當的對策。</th>
</tr>
</thead>
<tbody>
<tr>
<td>警告使用者：這是乙類的資訊產品，在居住的-looping-環境中使用時，可能會造成射頻干擾，在這種情况下，使用者會被要求採取某些適當的對策。</td>
</tr>
</tbody>
</table>
Recycle Statements

Waste Electrical and Electronic Equipment (WEEE) Statements

Disposal of Waste Equipment by Users in Private Household in the European Union

This symbol on the product or on its packaging indicates that this product must not be disposed of with your other household waste. Instead, it is your responsibility to dispose of your waste equipment by handing it over to a designated collection point for the recycling of waste electrical and electronic equipment. The separate collection and recycling of your waste equipment at the time of disposal will help to conserve natural resources and ensure that it is recycled in a manner that protects human health and the environment. For more information about where you can drop off your waste equipment for recycling, please contact your local city office, your household waste disposal service or the shop where you purchased the product.

Likvidace zařízení soukromými domácími uživateli v Evropské unii

Tento symbol na produktu nebo balení označuje výrobek, který nesmí být vyhozen spolu s ostatním domácím odpadem. Povinnosti uživatele je předat takto označený odpad na předem určené sběrné místo pro recyklaci elektrických a elektronických zařízení. Okamžitě třídění a recyklace odpadu pomůže uchovat přírodní prostředí a zajistit takový způsob recyklace, který ochráni zdraví a životní prostředí člověka. Další informace o možnostech odevzdání odpadu k recyklaci získáte na příslušném obecním nebo městském úřadě, od firmy zabývající se sběrem a svozem odpadu nebo v obchodě, kde jste produkt zakoupili.

Bortskaffelse af affald fra husstande i den Europæiske Union

Seadmete jäätmete kõrvaldamine eramajapidamistes Euroopa Liidus

See tootel või selle pakendil olev sümbol näitab, et kõnealust toodet ei tohi koos teiste majapidamisjäätmetega kõrvaldada. Teie kohus on oma seadmete jäätmed kõrvaldada, viies need elektri- ja elektroonikaseadmete jäätmete ringlussevõtmiseks selleks ettenähtud kogumispunkti. Seadmete jäätmete eraaldi kogumine ja ringlussevõtmine kõrvaldamise ajal aitab kaitsa loodusvarasid ning tagada, et ringlussevõtmine toimub viisil, mis kaitseb inimeste tervist ning keskkonda. Lisateabe saamekses selle kohta, kuhu oma seadmete jäätmed ringlussevõtmiseks viia, võtke palun ühendust oma kohaliku linnakantele, majapidamisjäätmete kõrvaldamise teenistuse või kauplusega, kust Te toote ostsite.

Laitteiden hävittäminen kotitalouksissa Euroopan unionin alueella

Jos tuotetta tai sen pakauksessa on tämä merkki, tuotetta ei saa hävittää kotitalousjätteiden mukana. Tällöin hävitettävä laite on toimitettava sähkölaitteiden ja elektronisten laitteiden kierrätyspisteeseen. Hävitettävien laitteiden erillinen käsittely ja kierrätys auttavat sädeestään luonnonvaroja ja varmistamaan, että laite kierrättetään tavallalta, joka estää terveyshaitat ja suojee luontoa. Lisätietoja paikoista, joihin hävitettävät laitteet voi toimittaa kierrättäväksi, saa ottamalla yhteyttä jätehuoltotoon tai liikkeeseen, josta tuote on ostettu.
Élimination des appareils mis au rebut par les ménages dans l'Union européenne
Le symbole apposé sur ce produit ou sur son emballage indique que ce produit ne doit pas être jeté avec les déchets ménagers ordinaires. Il est de votre responsabilité de mettre au rebut vos appareils en les déposant dans les centres de collecte publique désignés pour le recyclage des équipements électriques et électroniques. La collecte et le recyclage de vos appareils mis au rebut indépendamment du reste des déchets contribue à la préservation des ressources naturelles et garantit que ces appareils seront recyclés dans le respect de la santé humaine et de l'environnement.
Pour obtenir plus d’informations sur les centres de collecte et de recyclage des appareils mis au rebut, veuillez contacter les autorités locales de votre région, les services de collecte des ordures ménagères ou le magasin dans lequel vous avez acheté ce produit.

Entsorgung von Altgeräten aus privaten Haushalten in der EU
Das Symbol auf dem Produkt oder seiner Verpackung weist darauf hin, dass das Produkt nicht über den normalen Hausmüll entsorgt werden darf. Benutzer sind verpflichtet, die Altgeräte an einer Rücknahmestelle für Elektro- und Elektronik-Altgeräte abzugeben. Die getrennte Sammlung und ordnungsgemäß Entsorgung Ihrer Altgeräte trägt zur Erhaltung der natürlichen Ressourcen bei und garantiert eine Wiederverwertung, die die Gesundheit des Menschen und die Umwelt schützt.
Informationen dazu, wo Sie Rücknahmestellen für Ihre Altgeräte finden, erhalten Sie bei Ihrer Stadtverwaltung, den örtlichen Müllentsorgungsbetrieben oder im Geschäft, in dem Sie das Gerät erworben haben.

Απόρριψη άχρηστου εξοπλισμού από χρήστες σε ιδιωτική νοικοκυριά στην Ευρωπαϊκή Ένωση
Το σύμβολο αυτό στο προϊόν ή τη συσκευασία του υποδεικνύει ότι το συγκεκριμένο προϊόν δεν πρέπει να διακινείται μαζί με τα άλλα οικιακά σας απορρίμματα. Αντίθετα, είναι δική σας ευθύνη να απορρίψετε τον άχρηστο εξοπλισμό σας παραλληλώς του σε καθορισμένο σημείο συλλογής για την ανακύκλωση άχρηστου ηλεκτρικού και ηλεκτρονικού εξοπλισμού. Η έξυπνη συλλογή και ανακύκλωση του άχρηστου εξοπλισμού σας κατά την απόρριψη θα συμβάλει στη διατήρηση των φυσικών πόρων και θα διασφαλίσει ότι η ανακύκλωση γίνεται με τρόπο που προστατεύει την ανθρώπινη υγεία και το περιβάλλον. Για περισσότερες πληροφορίες σχετικά με το πού μπορείτε να παραδώσετε τον άχρηστο εξοπλισμό σας για ανακύκλωση, επικοινωνήστε με το αρμόδιο τοπικό γραφείο, την τοπική υπηρεσία διάσφαλσης ικανοποιημένων ή το κατάστημα όπου αγοράσατε το προϊόν.

Készülékek magánháztartásban történő selejtezése az Európai Unió területén
A készülékre, illetve a készülék csomagolásán látható szimbólum jelzi, hogy a készülék selejtezése során az egyéb háztartási hulladéktől eltérő módon kezelendő. A választott hulladékká vált készüléket köteles a kijelölt gyűjtőhelyre szállítani az elektronos és elektronikai készülékek újrahasznosítása céljából. A hulladékká vált készülékek selejtezéskor begyűjtése és újrahasznosítása hozzájárul a természetek előroásításának megőrzéséhez, valamint biztosítja a selejtezett termékek környezetre és emberi egészségére nézve biztonságos feldolgozását.
A begyűjtés pontos helyéről bővebb tájékoztatást a lakhelye szerint illetékes önkormányzattól, az illetékes személyeket vagy a vállalatokatól, amikor a termékeket elárusító központot kínál.

Smaltimento delle apparecchiature da parte di privati nel territorio dell’Unione Europea
Questo simbolo presente sul prodotto o sulla sua confezione indica che il prodotto non può essere smaltito insieme ai rifiuti domestici. È responsabilità dell’utente smaltire le apparecchiature consegnandole presso un punto di raccolta designato al riciclo e allo smaltimento di apparecchiature elettriche ed elettroniche. La raccolta differenziata e il corretto riciclo delle apparecchiature da smaltire permette di proteggere la salute degli individui e l’ecosistema. Per ulteriori informazioni relative ai punti di raccolta delle apparecchiature, contattare l’ente locale per lo smaltimento dei rifiuti, oppure il negozio presso il quale è stato acquistato il prodotto.

Nolietotu iekārtu iznīcināšanas noteikumi Eiropas Savienības privātajās majāsainmierīgās
Šāds simbols uz izstrādājuma vai uz tā iespējama nav ierobežošana, ka šo izstrādājumu nedrikst izmest kopā ar citiem sadzīves aktu. Jūs atbild par to, lai nolietotās iekārtas tiktu nodotas speciālā iekārtotos punktos, kas paredzēti izmanto elektrisko un elektronisko iekārtu savākšanai otroreizējai pārstradei. Atsevišķa nolietoto iekārtu savākšana un otroreizējā pārstradei palīdzēs saglabāt dabas resursus un garantēs, ka šīs iekārtas tiek otroreizējā pārstrādātas tādā veidā, lai pasargātu vidi un cilvēku veselību. Lai uzzinātu, kur nolietotās iekārtas var izmest otroreizējai pārstrādei, jāievēro savas dzīves vietas pašvaldībās, sadzīves atkritumu savākšanas dienestā vai veikalu, kur izstrādājums tika nopirkt.
Vartotojų iš privačių namų ūkių įrangos atliekų šalinimas Europos Sąjungoje
Šis simbolis ant gaminio arba jo paketučio rodo, kad šio gaminio šalinimą kartu su kitomis ūkių atliekoms negalima. Šalinimas įrangos atliekas privalote pristatyti į specialią surinkimo vietą elektros ir elektroninių įrangos atliekoms perdirbti. Atskirai surenkamos ir perdirbamos šalininio įrangos atliekos padės saugoti gamininius išteklius ir užtikrinti, kad jos bus perdirbtos tokiu būdu, kuris nekenkia žmonių sveikatai ar aplinkai. Jeigu norite sužinoti daugiau apie tai, kur gali pristatyti perdirbomas įrangos atliekas, kreipkitės į savo seniūniją, namų ūkių šalinimo tarnybą arba parduotuvę, kurioje jsiigijote gaminį.

Verwijdering van afgedankte apparatuur door privé-gebruikers in de Europese Unie
 Dit symbool op het product of de verpakking geeft aan dat dit product niet mag worden gedeponeerd bij het normale huishoudelijke afval. U bent zelf verantwoordelijk voor het inleveren van uw afgedankte apparatuur bij een inzamelingspunt voor het recyclen van oude elektrische en elektronische apparatuur. Door uw oude apparatuur apart aan te bieden en te recyclen, kunnen natuurlijke bronnen worden behouden en kan het materiaal worden hergebruikt op een manier waarmee de volksgesondheid en het milieu worden beschermd. Neem contact op met uw gemeente, het afvalinzamelingbedrijf of de winkel waar u het product hebt gekocht voor meer informatie over inzamelingspunten waar u oude apparatuur kunt aanbieden voor recycling.

Pozbywanie się zużytego sprzętu przez użytkowników w prywatnych gospodarstwach domowych w Unii Europejskiej
Ten symbol na produkcie lub jego opakowaniu oznacza, że produktu nie wolno wyrzucać do zwykłych pojemników na śmieci. Obowiązkiem użytkownika jest przekazanie zużytego sprzętu do wyznaczonego punktu zbiórki w celu recyklingu odpadów powstałych ze sprzętu elektrycznego i elektronicznego. Osobna zbiórka oraz recykling zużytego sprzętu pomaga w ochronie zasobów naturalnych i zapewnia ponowne wprowadzenie go do obiegu w sposób chroniący zdrowie człowieka i środowisko. Aby uzyskać więcej informacji o tym, gdzie można przekazać zużyty sprzęt do recyklingu, należy się skontaktować z urzędem miasta, zakładem gospodarki odpadami lub sklepem, w którym zakupiono produkt.

Descarte de Lixo Elétrico na Comunidade Européia
Este símbolo encontrado no produto ou na embalagem indica que o produto não deve ser descartado no lixo doméstico comum. É responsabilidade do cliente descartar o material usado (lixo elétrico), encaminhando-o para um ponto de coleta para reciclagem. A coleta e a reciclagem seletivas desse tipo de lixo ajudarão a conservar as reservas naturais; sendo assim, a reciclagem será feita de uma forma segura, protegendo o ambiente e a saúde das pessoas. Para obter mais informações sobre locais que reciclam esse tipo de material, entre em contato com o escritório da HP em sua cidade, com o serviço de coleta de lixo ou com a loja em que o produto foi adquirido.

Likvidácia vyradených zariadení v domácnostiach v Európskej unii
Symbol na výrobku alebo jeho balení označuje, že výrobok sa nesmie likvidovať s domovým odpadom. Povinnosťou spotrebiteľa je odovzdať vyradené zariadenie v zbernom mieste, ktoré je určené na recykláciu vyradených elektrických a elektronických zariadení. Separovaný zber a recyklácia vyradených zariadení prispieva k ochrane prírodných zdrojov a zabezpečuje, že recyklácia sa vykonáva spôsobom chrániacim ľudské zdravie a životné prostredie. Informácie o zbieraných miestach na recykláciu vyradených zariadení vám poskytne miestne zastupiteľstvo, spoločnosť zabezpečujúca odvoz domového odpadu alebo obchod, v ktorom ste si výrobok zakúpili.

Odstranjevanje odslužene opreme uporabnikov v zasebnih gospodinjstvih v Evropski uniji
Ta znak na izdelku ali njegovi embalaži pomeni, da izdelka ne sme odvračati med gospodinjske odpadke. Nasprotno, odsluženo opremo morate predati na zbirališče, pooblaščeno za recikliranje odslužene električne in elektronske opreme. Ločeno zbiranje in recikliranje odslužene opreme prispева k ohranjanju naravnih virov in zagotavlja recikliranje te opreme na zdravju in okolju neškodljiv način. Za podrobnije informacije o tem, kam lahko odpeljete odsluženo opremo na recikliranje, se obrnite na pristojni organ, komunalno službo ali trgovino, kjer ste izdelek kupili.
Elminación de residuos de equipos eléctricos y electrónicos por parte de usuarios particulares en la Unión Europea

Este símbolo en el producto o en su envase indica que no debe eliminarse junto con los desperdicios generales de la casa. Es responsabilidad del usuario eliminar los residuos de este tipo depositándolos en un “punto limpio” para el reciclado de residuos eléctricos y electrónicos. La recogida y el reciclado selectivos de los residuos de aparatos eléctricos en el momento de su eliminación contribuirá a conservar los recursos naturales y a garantizar el reciclado de estos residuos de forma que se proteja el medio ambiente y la salud. Para obtener más información sobre los puntos de recogida de residuos eléctricos y electrónicos para reciclado, póngase en contacto con su ayuntamiento, con el servicio de eliminación de residuos domésticos o con el establecimiento en el que adquirió el producto.

Bortskaffande av avfallsprodukter från användare i privathushåll inom Europeiska Unionen

Console ports

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>B-2</td>
</tr>
<tr>
<td>MSM710 Console port</td>
<td>B-2</td>
</tr>
<tr>
<td>MSM730 Console port</td>
<td>B-2</td>
</tr>
<tr>
<td>MSM750 Console port</td>
<td>B-3</td>
</tr>
</tbody>
</table>
Overview

Console port and cable information for the MSM7xx controllers is provided as follows:

<table>
<thead>
<tr>
<th>Product</th>
<th>Information to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSM710, MSM730, MSM750</td>
<td>Relevant section below</td>
</tr>
<tr>
<td>MSM760, MSM765zl</td>
<td>The provided Installation and Getting Started Guide.</td>
</tr>
</tbody>
</table>

MSM710 Console port

The MSM710 provides a DB-9 (female) Console (serial) port connector. The DB-9 connector (DCE) has pin assignments as follows:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Direction</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>→ to PC</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
<td>→ to PC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>← from PC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>← from PC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>→ to PC</td>
<td>9 8 7 6</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>← from PC</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>→ to PC</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To connect to a computer, use a standard (straight through) serial cable (male-to-female).

MSM730 Console port

The MSM730 provides a DB-9 (male) Console (serial) port connector (DTE). The DB-9 connector has pin assignments as follows:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Direction</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>← from PC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
<td>← from PC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>→ to PC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>→ to PC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>← from PC</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>→ to PC</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>← from PC</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To connect to a computer, use the supplied null-modem serial cable.

MSM750 Console port

The MSM750 provides an RJ-45 Console (serial) port connector. Connect the supplied RJ-45 to DB-9 (female) adapter. The DB-9 connector (DCE) has pin assignments as follows:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Direction</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>→ to PC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
<td>→ to PC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>← from PC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>← from PC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>→ to PC</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>← from PC</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>→ to PC</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To connect to a computer, use a standard (straight through) serial cable (male-to-female).
Resetting to factory defaults

Contents

How it works.. C-2
Using the Reset button... C-2
Using the management tool... C-2
Using the Console (serial) port.. C-3
How it works

Depending on the controller model, there may be more than one way to reset the controller to its factory default settings. This appendix describes the methods available for each model type.

Caution

Resetting a controller to factory defaults deletes all configuration settings, resets the manager username and password to “admin,” disables the DHCP server on the LAN port, sets the LAN port IP address to 192.168.1.1 (MSM765zl LAN port has no factory-default IP address), and sets the Internet port to operate as a DHCP client.

Note

User-installed licenses are retained after a factory reset, but are deactivated. See Factory reset considerations on page 19-7.

Using the Reset button

(MSM710 only.)

Using a tool such as a paper clip, press and hold the reset button (back of MSM710) for a few seconds until the front status lights blink three times.

Using the management tool

Supported on models: MSM710, MSM730, MSM750, MSM765zl, MSM760

1. Launch the management tool (default https://192.168.1.1).

2. Select Controller >> Maintenance > Config file management, and in section Reset configuration, select Reset.
Using the Console (serial) port

Supported on models: MSM730, MSM750, MSM760

Note

It is recommended that you use the management tool as previously described to reset a controller to factory defaults. However, if you forgot the manager username or password, you can still force factory reset as described here:

1. Power off the controller.

2. Connect a serial cable to the controller console port as follows:
 - For the MSM730, and MSM750, see the relevant section in Appendix B: Console ports.
 - For the MSM760, see the MSM760 Controllers Installation and Getting Started Guide.

3. Configure a communications terminal program such as Microsoft Hyperterminal for Windows or Minicom for Linux as follows:
 - **Terminal**: VT-100 (ANSI)
 - **Speed**: Set speed according to the controller model:
 - For the MSM730 and MSM750, set speed to 115200 bps.
 - For the MSM760, set speed to 9600 bps.
 - **Data bits**: 8
 - **Stop bits**: 1
 - **Parity**: none
 - **Flow control**: none

4. Open an appropriately-configured terminal session.

6. **Do not press any keyboard keys.** Wait for the LILO prompt to appear. It looks like this:

 LILO 22.1 boot:

Important

As soon as the LILO prompt appears, tap the keyboard space bar to prevent the automatic (non-factory-default) boot from continuing. You must tap the space bar or other key within four seconds of the prompt appearing.

7. At the LILO prompt, type the command `linux factory` and press Enter. The boot with factory defaults begins.
NOC authentication

Contents

Main benefits .. D-2

How it works.. D-2

Activating a remote login page with NOC authentication ... D-4

Addressing security concerns... D-5
 Securing the remote login page .. D-5
 Authenticating with the login application ... D-6
 Authenticating the controller .. D-6
 NOC authentication list ... D-6

Setting up the certificates ... D-6
 Install certificates on the Web server .. D-7
 Define attributes ... D-7
 Install a certificate on controller ... D-7

Authenticating users .. D-8
 Returned values ... D-9
 Examples of returned HTML code ... D-11

Simple NOC authentication example ... D-12

Forcing user logouts ... D-13
Main benefits

Using a remote login page with NOC (network operations center) authentication provides you with the following benefits:

- The login page is completely customizable. You are not bound by the limits imposed by loading a login page onto the controller.

- Users can login to the public access interface without exposing their Web browsers to the SSL certificate on the controller. This eliminates warning messages caused by having an SSL certificate on the controller that is not signed by a well-known certificate authority.

- If you want to support secure login with SSL, but have multiple controllers, using a remote login page means you only need to purchase a single SSL certificate signed by a well-known certificate authority, instead of one for each access point.

How it works

The NOC authentication feature provides a secure way of authenticating public access users, with strong mutual authentication between the login application on the Web server hosting the remote login page and the controller used for authenticating user logins. This occurs via the two Colubris-AVPair value strings (ssl-noc-certificate and ssl-noc-ca-certificate), which define the locations of two certificates. These certificates enable the controller to validate that the user login information does indeed come from a trusted application. For example, from a login application on the Web server.
The following diagram shows the sequence of events for a typical user session when using the NOC-based authentication feature.

<table>
<thead>
<tr>
<th>User</th>
<th>Controller</th>
<th>RADIUS server</th>
<th>Web server hosting remote login page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unauthenticated user attempts to browse a Web site on the protected network.</td>
<td>Request is intercepted.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web browser is redirected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User logs in.</td>
<td></td>
<td>Login application sends login page.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Login application initiates an SSL connection with the controller.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The login application’s SSL certificate is verified. If valid, approves connection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Login info is sent to RADIUS server.</td>
<td>Login approved. User configuration settings are returned.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Login results message is returned to the login application.</td>
<td></td>
<td>Login application sends the Welcome page with URL of originally requested web site.</td>
</tr>
</tbody>
</table>
Activating a remote login page with NOC authentication

To activate a remote login page, you must define several controller attributes. These attributes can be defined in the RADIUS account for the controller (if you are using a RADIUS server) or they can be locally configured.

The following table summarizes the Colubris-AVPair value strings for the remote login page with NOC authentication.

<table>
<thead>
<tr>
<th>Item</th>
<th>Colubris-AVPair value string</th>
</tr>
</thead>
<tbody>
<tr>
<td>External login</td>
<td>login-url=URL_of_the_page [placeholder]</td>
</tr>
<tr>
<td></td>
<td>URL of the remote login page. Access to the Web server hosting</td>
</tr>
<tr>
<td></td>
<td>this page must be granted to all unauthenticated users. Do this</td>
</tr>
<tr>
<td></td>
<td>with an appropriate access list definition.</td>
</tr>
<tr>
<td>NOC certificate</td>
<td>ssl-noc-certificate=URL_of_the_Certificate</td>
</tr>
<tr>
<td></td>
<td>Certificate issued to the application on the Web server that</td>
</tr>
<tr>
<td></td>
<td>sends user info to the controller for authentication.</td>
</tr>
<tr>
<td>NOC CA certificate</td>
<td>ssl-noc-ca-certificate=URL_of_the_certificate</td>
</tr>
<tr>
<td></td>
<td>Certificate of the certificate authority (CA) that issued the NOC</td>
</tr>
<tr>
<td>Custom SSL certificate</td>
<td>ssl-certificate=URL_of_the_certificate</td>
</tr>
<tr>
<td></td>
<td>Custom certificate installed on the controller.</td>
</tr>
</tbody>
</table>

The following placeholders can be added to the login-url string.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%c</td>
<td>Returns the IP address of the user's computer.</td>
</tr>
<tr>
<td>%d</td>
<td>Returns the WISPr location-ID. Supported for login-url only.</td>
</tr>
<tr>
<td>%e</td>
<td>Returns the WISPr location-Name. Supported for login-url only.</td>
</tr>
<tr>
<td>%l</td>
<td>Returns the URL on the controller where user login information should be</td>
</tr>
<tr>
<td></td>
<td>posted for authentication. By default, this value is URL encoded. (To</td>
</tr>
<tr>
<td></td>
<td>enable/disable URL encoding, set the value of url-encode in the</td>
</tr>
<tr>
<td></td>
<td><code><ACCESS-CONTROLLER></code> section in the configuration file.)</td>
</tr>
<tr>
<td>%n</td>
<td>Returns the NAS ID assigned to the controller. By default, this is the unit's</td>
</tr>
<tr>
<td></td>
<td>serial number. Not supported in local mode.</td>
</tr>
<tr>
<td>%s</td>
<td>Returns the RADIUS login name assigned to the controller. By default, this</td>
</tr>
<tr>
<td></td>
<td>is the unit’s serial number. Not supported in local mode.</td>
</tr>
</tbody>
</table>
Addressing security concerns

It is important that the connection between the login application and the controller be secure to protect the exchange of user authentication traffic. The following strategy provides for complete connection security.

Securing the remote login page

HTTPS can be used on the Web server to secure the login page. To avoid warning messages on the user's browser, the SSL certificate installed on the Web server should be signed by a well-known CA.

<table>
<thead>
<tr>
<th>Placeholder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%o</td>
<td>Returns the original URL requested by the user. By default, this value is URL encoded. By default, this value is URL encoded. (To enable/disable URL encoding, set the value of <code>url-encode</code> in the <code><ACCESS-CONTROLLER></code> section in the configuration file.)</td>
</tr>
<tr>
<td>%i</td>
<td>Returns the domain name assigned to the controller's Internet port.</td>
</tr>
<tr>
<td>%p</td>
<td>Returns the port number on the controller where user login information should be posted to for authentication.</td>
</tr>
<tr>
<td>%a</td>
<td>Returns the IP address of the controller's interface that is sending the authentication request.</td>
</tr>
<tr>
<td>%E</td>
<td>When the location-aware feature is enabled, returns the ESSID of the wireless access point the user is associated with.</td>
</tr>
<tr>
<td>%P</td>
<td>When the location-aware feature is enabled, returns the wireless mode ("ieee802.11a", "ieee802.11b", "ieee802.11g") the user is using to communicate with the access point.</td>
</tr>
<tr>
<td>%G</td>
<td>When the location-aware feature is enabled, returns the group name of the wireless access point the user is associated with.</td>
</tr>
<tr>
<td>%C</td>
<td>When the location-aware feature is enabled, returns the Called-station-id content for the wireless access point the user is associated with.</td>
</tr>
<tr>
<td>%r</td>
<td>Returns the string sent by the RADIUS server when an authentication request fails. The RADIUS server must be configured to support this feature. The information contained in the returned string depends on the configuration of the RADIUS server.</td>
</tr>
<tr>
<td>%m</td>
<td>Returns the MAC address of the wireless/wired client station that is being authenticated.</td>
</tr>
<tr>
<td>%v</td>
<td>Returns the VLAN assigned to the client station at the controller's ingress (LAN port).</td>
</tr>
</tbody>
</table>
Authenticating with the login application

The connection between the login application and the controller is secured using SSL. When establishing the SSL connection with the controller, the login application must supply its SSL certificate. In a standard SSL setup, the controller uses the CA for this certificate to validate the certificate’s identity and authenticate the login application.

However, the controller does not want to accept SSL connections from just any remote entity with a valid certificate. Rather, it only wants to accept connections from a specific entity: the login application.

To uniquely identify the login application, the ssl-noc-certificate attribute is defined in the RADIUS profile for the controller. This attribute contains the URL of the login application’s SSL certificate. When the login application presents its SSL certificate, the controller retrieves ssl-noc-certificate and checks to make sure that they match.

For further authentication, a second attribute, ssl-noc-ca-certificate, is defined in the RADIUS profile for the controller. This attribute contains the URL of the public key of the certificate authority (CA) that signed the login application’s SSL certificate. The controller uses the public key to determine if the login application’s SSL certificate can be trusted.

Authenticating the controller

To identify itself, the controller uses the SSL certificate configured on the Security > Certificate Stores page or via the ssl-certificate attribute.

For added security, the login application could also check that this SSL certificate has been signed by the certificate authority for which the login application has the public key certificate. The default certificate installed on the controller is not signed by a well-known CA and cannot be used for this purpose. Instead, a new certificate must be installed on the controller. This certificate could be signed by a well-known certificate authority or your own CA.

NOC authentication list

Additional security is provided via the Security list on the Public access > Web server page. You use this list to define the set of remote IP addresses that the controller accepts authentication requests from. If a request is received from an address not in this list, it is discarded.

Setting up the certificates

This section presents an overview of the certificates you need to install to secure communication between the remote login page and the controller. For detailed discussion of the issues, see Addressing security concerns on page D-5.
Install certificates on the Web server

Install an SSL certificate and its matching CA certificate into a folder on the Web server hosting the remote login page. The login application and the controller access the certificates from this location.

The SSL certificate is used by the login application to secure communications with the controller.

Define attributes

Add the following attributes to the Configured attributes table on the Public access > Attributes page. (You can also define these attributes in the RADIUS profile for the controller if you are using a RADIUS server.) This enables it to retrieve the SSL and CA certificates from the Web server:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssl-noc-certificate</td>
<td>Certificate issued to the application on the Web server that sends user info to the controller for authentication.</td>
</tr>
<tr>
<td>ssl-noc-ca-certificate</td>
<td>Certificate of the certificate authority (CA) that issued the NOC certificate.</td>
</tr>
<tr>
<td>ssl-certificate</td>
<td>Custom certificate installed on the controller.</td>
</tr>
</tbody>
</table>

Install a certificate on controller

This step is optional, but recommended.

Install an SSL certificate on the controller to replace its default SSL certificate. This certificate is used to secure communications between the controller and the login application on the Web server.

If you do not change the default certificate on the controller, the login application may not be able to validate the controller certificate when establishing the SSL connection. The reason for this is because the default certificate is self-signed and is not trusted by any well-known CA.

This can be done by adding an additional attribute to the Configured attributes table on the Public access > Attributes page. (You can also define this attribute in the RADIUS profile for the controller if you are using a RADIUS server.)

ssl-certificate=URL_of_the_certificate
Authenticating users

After a user has supplied login information on the remote login page, the login application must submit an authentication request containing the user's login name, password, and IP address to the controller by establishing an SSL session to the following URL:

https://controller_ip:8090/goform/HtmlNocLoginRequest
?username=username&password=password&ipaddr=user_ip

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>controller_ip</td>
<td>Defines the IP address of the controller or you could use a domain name if you have defined one using the hosts file on the Web server. (By default, the secure Web server on the controller operates on port 8090. This can be changed on the Management > Management Tool page if required.) The controller requires that the contents of the Host HTTP header match the actual domain name/IP address and port the controller is operating on: Host: controller_domain_name:secure_web_server_port_number or Host: controller_IP_address:secure_web_server_port_number This is usually the case unless the controller is behind a device that provides network address translation (NAT). In this situation, the login application must manually forge the Host HTTP header. The easiest way to do this is to define login-url with the %i and %p placeholders. This returns the domain name of the controller and the port number of its secure Web server. The login application can then construct the appropriate Host HTTP header.</td>
</tr>
<tr>
<td>username</td>
<td>Username supplied by the user.</td>
</tr>
<tr>
<td>password</td>
<td>Password supplied by the user.</td>
</tr>
<tr>
<td>user_ip</td>
<td>IP address of the user's computer.</td>
</tr>
</tbody>
</table>

Example 1

Assume that the controller is not behind a NATing device, and that its IP address is 192.168.4.2. The subject DN in its SSL certificates is www.noc-cn3.com.
The Host HTTP header should be set to one of:

- Host: www.noc-cn3.com:8090
- Host: 192.168.4.2:8090

Example 2

Assume that the controller is behind a NATting device. The device has the address 192.168.30.173, and the controller has the address 192.168.4.2. A NAT mapping is defined on the NATting device that redirects traffic received on port 8090 to 192.168.4.2:8090.

The login application must send its requests to 192.168.30.173, which results in a HTTP Host header that contains one of the following:

- Host: natting.device.com:8090
- Host: 192.168.30.173:8090

When this request is forwarded to the controller, it is rejected. To solve the problem, the login application must forge the host HTTP header. This is easily done by plugging in the values returned by the %i, %a, and %p placeholders. For example:

```
Host: %i:%p
or
Host: %a,%p
```

The controller sends the username and password to the RADIUS server to authenticate the user. If authentication is successful, the user’s IP address is used to grant wireless network access to the user’s computer.

The controller returns a positive or negative answer for the user login, along with the relevant URLs that may be needed by the login application in order to redirect the user to either a Welcome page or a Login error page located on the Web server. This information is returned as standard HTML. The login application must parse this information to retrieve the response. All possible responses are described in the following section.

Returned values

The following examples show the information returned for various authentication conditions.

NOC authentication mode is not enabled

```
<HTML>
NOC_INFO_STATUS=NOC_STATUS_DISABLED
</HTML>
```

The controller did not receive the login application’s SSL certificate

The login application did not send its certificate. Therefore, the request was rejected.

```
<HTML>
NOC_INFO_STATUS=NOC_STATUS_FAILURE
NOC_INFO_INT_ERR_MESSAGE=NOC_CANNOT_GET_PEER_CERT
</HTML>
```
Certificate mismatch
The login application sent an SSL certificate that does not match the one defined by ssl-noc-certificate in the RADIUS profile for the controller.

<HTML>
NOC_INFO_STATUS=NOC_STATUS_FAILURE
NOC_INFO_INT_ERR_MESSAGE=NOC_CANNOT_GET_PEER_CERT
</HTML>

Certificate not valid yet
The login application sent an SSL certificate that matches the one defined by ssl-noc-certificate in the RADIUS profile for the controller. However, the certificate that was sent is not yet valid.

<HTML>
NOC_INFO_STATUS=NOC_STATUS_FAILURE
NOC_INFO_INT_ERR_MESSAGE=NOC_CERT_NOT_YET_VALID
</HTML>

Certificate not valid anymore
The login application sent an SSL certificate that matches the one defined by ssl-noc-certificate in the RADIUS profile for the controller. However, the certificate that was sent is not valid anymore.

<HTML>
NOC_INFO_STATUS=NOC_STATUS_FAILURE
NOC_INFO_INT_ERR_MESSAGE=NOC_CERT_EXPIRED
</HTML>

Certificate not signed by proper CA
The login application sent a valid SSL certificate that matches the one defined by ssl-noc-certificate in the RADIUS profile for the controller. However, the certificate is not signed by the CA defined by noc-ca-certificate in the RADIUS profile for the controller.

<HTML>
NOC_INFO_STATUS=NOC_STATUS_FAILURE
NOC_INFO_INT_ERR_MESSAGE=NOC_CERT_NOT_SIGNED_BY_AUTHORIZED_CA
</HTML>

Missing username and/or password
The user's username or password was not supplied.

<HTML>
NOC_INFO_STATUS=NOC_STATUS_FAILURE
NOC_INFO_INT_ERR_MESSAGE=NOC_MISSING_USERNAME_OR_PASSWORD
</HTML>

The specified IP address is already logged in

<HTML>
NOC_INFO_STATUS=NOC_STATUS_LOGGED_IN
</HTML>
Authentication was successful

<HTML>
NOC_INFO_STATUS=NOC_STATUS_SUCCESS
NOC_INFO_WELCOME_URL=<welcome url>
NOC_INFO_SESSION_URL=<session url>
</HTML>

Authentication failed

<HTML>
NOC_INFO_STATUS=NOC_STATUS_FAILURE
NOC_INFO_ERR_MESSAGE=<error message>
NOC_INFO_LOGIN_ERR_URL=<login error url>
</HTML>

Logout succeeded

<HTML>
NOC_INFO_STATUS=NOC_STATUS_SUCCESS
</HTML>

Logout failed

<HTML>
NOC_INFO_STATUS=NOC_STATUS_FAILURE
NOC_INFO_INT_ERR_MESSAGE=<error message>
</HTML>

Examples of returned HTML code

The following examples show the actual HTML code returned file for various authentication conditions.

User was successfully authenticated by the RADIUS server

<HTML>
status=success
welcome.php?site=www.noc-controller.com&user=user00&wantedurl=&nasipaddress=&nasid=L003-00069
</HTML>

User’s IP address is already in use by an active session

<HTML>
status=already-logged-in
</HTML>
User authentication was refused by the RADIUS server
This could be due to an unknown username, or invalid username or password.

<HTML>
status=failure
external-err-msg=Your login was refused.
</HTML>

User could not be authenticated
The controller could not contact a RADIUS server.

<HTML>
status=failure
external-err-msg=You cannot be logged in at this time. Please try again later.
</HTML>

Simple NOC authentication example
This is a simple example showing how to use the NOC authentication feature.

1. Create the following folder on your Web server: newlogin.

2. See Public access examples on page 13-4. Copy the following example files into the newlogin folder:
 - login.html
 - transport.html
 - session.html
 - fail.html
 - logo.gif

3. Customize login.html to accept username and password information from users and then send it to the controller. You could use code similar to the following PHP example to send login information back to the controller for authentication:

 https://ipaddress of CNx:8090/goform/HtmlNocLoginRequest?username=username&password=password&ipaddress=user_ip

 The variable loginurl contains the URL on the controller where user information is sent for authentication.

4. Start the management tool.

5. Click Public access > Web server.
6. Enable the **NOC-based authentication** feature.

7. Under **Security** add the IP address of the Web server to the **Allowed Addresses** box.

8. Under **Active interfaces** make sure that the interface on which the request will be received is enabled.

9. Click **Save**.

10. Add the following entries to the **Configured attributes** table on the **Public access > Attributes** page. (You can also define these attributes in the RADIUS profile for the controller if you are using a RADIUS server.)

    ```
    login-url=URL_of_page_on_remote_server
    access-list=loginserver,ACCEPT,tcp,web_server_IP_address,443
    ssl-noc-certificate=URL_of_the_certificate
    ssl-noc-ca-certificate=URL_of_the_certificate
    transport-page=web_server_URL/newlogin/transport.html
    session-page=web_server_URL/newlogin/session.html
    fail-page=web_server_URL/newlogin/fail.html
    logo=web_server_URL/newlogin/logo.gif
    use-access-list=loginserver
    ```

Forcing user logouts

Users can be logged out by calling the following URL:

```
https://controller_ip:8090/goform/HtmlNocLogoutRequest
?ipaddress=user_ip
```

Note

This request must come from the login application (or another other application that is using the same SSL certificate).

The controller returns a positive or negative answer for the user logout as standard HTML. The login application must parse this information to retrieve the response.

Logout success

```
<HTML>
NOC_INFO_STATUS=NOC_STATUS_SUCCESS
</HTML>
```
Logout failure

<HTML>
NOC_INFO_STATUS=NOC_STATUS_FAILURE
NOC_INFO_INT_ERR_MESSAGE=<error message>
</HTML>

These definitions are contained in noc.h.
DHCP servers and Colubris vendor classes

Contents

Overview .. E-2

Windows Server 2003 configuration ... E-2
 ISC DHCP server configuration .. E-7
Overview

This section shows you how to configure the following DHCP servers to use the vendor-specific class:

- ISC DHCP server configuration on page E-7.

A vendor class allows certain devices to request specific information from a Dynamic Host Configuration Protocol server. Specifically, the HP ProCurve vendor class enables you to define a list of available controllers to which APs operating in controlled mode can connect.

When DHCP clients send the Colubris vendor class identifier in a DHCP request, a properly configured DHCP server returns the Colubris-specific options defined on the server. These values are returned as DHCP option 43 (vendor-specific information) and can be interpreted only by a HP ProCurve device.

Windows Server 2003 configuration

This section describes how to configure a Windows 2003 DHCP server to use the HP ProCurve vendor class.

The following procedure assumes that you have a Windows 2003 Server that has a DHCP server configured and running.

For more information see “Configuring Options and Classes on Windows Server” at http://technet2.microsoft.com/WindowsServer/en/Library/d55609a5-2a1c-4f3f-ba8f-42b21828dc201033.mspx
Creating the vendor class

Use the following steps to create the Colubris vendor class on the DHCP server.

1. Select Start > Settings > Control Panel > Administrative Tools > DHCP. The DHCP administration page opens.

2. On the DHCP administration page in the navigation pane at left, select the name of the DHCP server to manage, and then select Action > Define Vendor Classes. The DHCP Vendor Classes page opens. Several default Microsoft vendor classes are preconfigured.

4. On the New Class page
 - Under Display name, specify Colubris.
 - Under Description, specify any desired descriptive information for this vendor class.
 - Select under ASCII and specify Colubris-AP.
 - Select OK.

5. The New Class page closes, and you return to the DHCP Vendor Classes page. To close the DHCP Vendor Classes page and return to the DHCP administration page, select Close.
Defining vendor class options

Use the following steps to define Colubris vendor class options on the DHCP server.

1. On the DHCP administration page, select Action > Set Predefined Options. From the Option class drop-down menu, select Colubris, and then select Add. The Option Type page opens.

![Option Type page](image)

2. On the Option Type page,
 - Under Name, specify MSC (for MSM controllers).
 - Under Data type, select IP Address and enable the Array checkbox.
 - Under Code, specify 1.
 - Under Description, specify List of MSC IP addresses (for MSM controller IP addresses).

3. Select OK to close the Option Type page, and then select OK again to return to the DHCP administration page.

Applying the vendor class

After you define the Colubris vendor class and its options, you can apply the class to specific Scopes or to the entire DHCP server. You must define the Colubris vendor class for every Scope from which an AP can get an address.

Use the following steps to add the Colubris vendor-specific option to one Scope on the DHCP server.

1. On the DHCP administration page, in the navigation pane, open the folder that corresponds to the desired Scope.
2. Right-click **Scope Options**, and from the resulting menu select **Configure Options**. The **Scope Options** page opens. Select the **Advanced** tab.

![Scope Options dialog box](image)

3. On the **Advanced** tab, configure the following:

- From the **Vendor class** drop-down menu, select **Colubris**.
- Under **Available options**, enable the **001 MSC** checkbox.
- Under **IP address**, specify the IP address of the primary controller in your network and select **Add**. Continue to build a list by specifying the IP addresses of all controllers in your network, in descending order of importance.
- Select **OK**.
4. The controller IP addresses now appear on the DHCP administration page under **Scope Options**. When an AP requests an IP address, these addresses are returned in a DHCP Ack message as option 43.

Note

For information on solving problems, see *Troubleshooting on page E-9.*

ISC DHCP server configuration

This section shows you how to configure a Linux machine running an Internet Systems Consortium (ISC) DHCP server to use the Colubris Networks vendor class. The procedure assumes that you have a Linux or Unix server that is running the ISC DHCP server.

You configure the ISC DHCP server by editing its configuration file; specifically, the main configuration file, `/etc/dhcpd.conf`.

Following is a simple example of the `/etc/dhcpd.conf` configuration file:

```plaintext
# dhcpd.conf
ddns-update-style ad-hoc;
option domain-name "colubris.com";
option domain-name-servers 172.25.1.3;
default-lease-time 3600;

subnet 172.25.1.0 netmask 255.255.255.0 {
    range 172.25.1.100 172.25.1.150;
    option routers 172.25.1.1;
    option subnet-mask 255.255.255.0;
    option broadcast-address 172.25.1.255;
}

subnet 172.25.2.0 netmask 255.255.255.0 {
    range 172.25.2.100 172.25.2.150;
    option routers 172.25.2.1;
    option subnet-mask 255.255.255.0;
    option broadcast-address 172.25.2.255;
}
```
DHCP servers and Colubris vendor classes
Windows Server 2003 configuration

This sample file defines some general options to apply to all clients, as well as two DHCP Scopes—172.25.1.x and 172.25.2.x. You must add lines to the dhcpd.conf file to define the following for the ISC server:

- What the Colubris vendor class identifier looks like
- What to return to the client when it sees that identifier.

The following explains the changes that you must make to this sample file and the function of each added line.

- Create an option space called Colubris and define a variable called msc-address within the space by adding the following lines.

```plaintext
option space Colubris;
option Colubris.msc-address code 1 = array of ip-address;
```

- Tell the server what to do when the client sends the vendor class identifier Colubris-AP by adding the following lines. In this case you want the server to return the options defined in the Colubris space that was created in the first step. Using the vendor-option-space command tells the server to return these values using DHCP option 43.

```plaintext
if option vendor-class-identifier = "Colubris-AP" {
    vendor-option-space Colubris;
}
```

- Specify the controller IP addresses to return to the client by adding the following lines, where 172.25.2.2 and 172.25.3.2 are the specific IP addresses that you want returned. You can define this option globally or in one or more Scopes. You must define this option on all subnets from which an AP can potentially get an IP address. In this example only clients on the 172.25.1.x subnet get this option.

```plaintext
option Colubris.msc-address 172.25.2.2, 172.25.3.2;
```

Following is a revised sample configuration file that contains these additions, which appear in bold:

```plaintext
# dhcpd.conf
ddns-update-style ad-hoc;
option domain-name "colubris.com";
option domain-name-servers 172.25.1.3;
default-lease-time 3600;

option space Colubris;
option Colubris.msc-address code 1 = array of ip-address;

if option vendor-class-identifier = "Colubris-AP" {
    vendor-option-space Colubris;
}

subnet 172.25.1.0 netmask 255.255.255.0 {
    range 172.25.1.100 172.25.1.150;
    option routers 172.25.1.1;
    option subnet-mask 255.255.255.0;
    option broadcast-address 172.25.1.255;
    option Colubris.msc-address 172.25.2.2, 172.25.3.2;
}
```
subnet 172.25.2.0 netmask 255.255.255.0 {
 range 172.25.2.100 172.25.2.150;
 option routers 172.25.2.1;
 option subnet-mask 255.255.255.0;
 option broadcast-address 172.25.2.255;
}

Troubleshooting

This section shows an Ethereal trace of a DHCP transaction, with the frames edited for readability. Four frames must be exchanged between the client and the server:

1. Client sends a DHCP-Discover.
2. Server sends a DHCP-Offer.
3. Client sends a DHCP-Request.
4. Server sends a DHCP-Ack.

The client sends its vendor class identifier in the DHCP-Request frame. The DHCP field of Frame 3 is expanded below.

The server sends the controller addresses encapsulated as option 43 in the DHCP-Ack frame. Unfortunately, the only way to decode these values is to look at the hexadecimal data. In this case the server returned the following 10 bytes:

2b 0a 01 08 ac 19 02 02 ac 19 03 02

which can be decoded as shown in the following table.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>2b</td>
<td>43</td>
<td>DHCP option 43</td>
</tr>
<tr>
<td>0a</td>
<td>10</td>
<td>Field is 10 bytes long</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>Colubris option code 1 as defined in the DHCP server</td>
</tr>
<tr>
<td>08</td>
<td>08</td>
<td>Option code 1 is 8 bytes long</td>
</tr>
<tr>
<td>ac 19 02 02</td>
<td>172.25.2.2</td>
<td>Controller IP addresses to return to the client</td>
</tr>
<tr>
<td>ac 19 03 02</td>
<td>172.25.3.2</td>
<td></td>
</tr>
</tbody>
</table>

Frame 1 - DHCP-Discover

Frame 1 (346 bytes on wire, 346 bytes captured)
Ethernet II, Src: Colubris_01:5f:05 (00:03:52:01:5f:05), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
802.1Q Virtual LAN
Internet Protocol, Src: 0.0.0.0 (0.0.0.0), Dst: 255.255.255.255 (255.255.255.255)
User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootstrap (67)
Bootstrap Protocol
Frame 2 - DHCP-Offer

Frame 2 (346 bytes on wire, 346 bytes captured)
Ethernet II, Src: Cisco_23:0e:80 (00:0d:bc:23:0e:80), Dst: Colubris_01:5f:05 (00:03:52:01:5f:05)
802.1Q Virtual LAN
Internet Protocol, Src: 172.25.1.1 (172.25.1.1), Dst: 172.25.1.201 (172.25.1.201)
User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)
Bootstrap Protocol

Frame 3 - DHCP-Request

Frame 3 (346 bytes on wire, 346 bytes captured)
Ethernet II, Src: Colubris_01:5f:05 (00:03:52:01:5f:05), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
802.1Q Virtual LAN
Internet Protocol, Src: 0.0.0.0 (0.0.0.0), Dst: 255.255.255.255 (255.255.255.255)
User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
Bootstrap Protocol
Message type: Boot Request (1)
Hardware type: Ethernet
Hardware address length: 6
Hops: 0
Transaction ID: 0x4262bc18
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 0.0.0.0 (0.0.0.0)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 0.0.0.0 (0.0.0.0)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Colubris_01:5f:05 (00:03:52:01:5f:05)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option 53: DHCP Message Type = DHCP Request
Option 54: Server Identifier = 172.24.50.4
Option 50: Requested IP Address = 172.25.1.201
Option 60: Vendor class identifier = "Colubris-AP"
Option 12: Host Name = "R054-00118"
Option 55: Parameter Request List
End Option
Padding

Frame 4 - DHCP-Ack

Frame 4 (358 bytes on wire, 358 bytes captured)
Ethernet II, Src: Cisco_23:0e:80 (00:0d:bc:23:0e:80), Dst: Colubris_01:5f:05 (00:03:52:01:5f:05)
802.1Q Virtual LAN
Internet Protocol, Src: 172.25.1.1 (172.25.1.1), Dst: 172.25.1.201 (172.25.1.201)
User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)
Bootstrap Protocol
Message type: Boot Reply (2)
Hardware type: Ethernet
Hardware address length: 6
Hops: 0
Transaction ID: 0x4262bc18
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 0.0.0.0 (0.0.0.0)
Your (client) IP address: 172.25.1.201 (172.25.1.201)
Next server IP address: 0.0.0.0 (0.0.0.0)
Relay agent IP address: 172.25.1.1 (172.25.1.1)
Client MAC address: Colubris_01:5f:05 (00:03:52:01:5f:05)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option 53: DHCP Message Type = DHCP ACK
Option 58: Renewal Time Value = 12 hours
Option 59: Rebinding Time Value = 21 hours
Option 51: IP Address Lease Time = 1 day
Option 54: Server Identifier = 172.24.50.4
Option 1: Subnet Mask = 255.255.255.0
Option 3: Router = 172.25.1.1
Option 15: Domain Name = "mgorr.local"
Option 6: Domain Name Server = 172.24.50.4
Option 43: Vendor-Specific Information (10 bytes)