Fabric OS

Command Reference Manual

Supporting Fabric OS 6.1.0
Document History

The table below lists all versions of the Fabric OS Command Reference.

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Publication Number</th>
<th>Summary of Changes</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric OS Reference v2.0</td>
<td>53-0001487-03</td>
<td></td>
<td>September 1999</td>
</tr>
<tr>
<td>Fabric OS Reference v2.2</td>
<td>53-0001558-02</td>
<td></td>
<td>May 2000</td>
</tr>
<tr>
<td>Fabric OS Reference v2.3</td>
<td>53-0000067-02</td>
<td></td>
<td>December 2000</td>
</tr>
<tr>
<td>Fabric OS Reference v3.0</td>
<td>53-0000127-03</td>
<td></td>
<td>July 2001</td>
</tr>
<tr>
<td>Fabric OS Reference v2.6</td>
<td>53-0000194-02</td>
<td></td>
<td>December 2001</td>
</tr>
<tr>
<td>Fabric OS Reference v3.0 / v4.0</td>
<td>53-0000182-02</td>
<td></td>
<td>March 2002</td>
</tr>
<tr>
<td>Fabric OS Reference v4.0.2</td>
<td>53-0000182-03</td>
<td></td>
<td>September 2002</td>
</tr>
<tr>
<td>Fabric OS Reference v3.1.0</td>
<td>53-0000500-02</td>
<td></td>
<td>April 2003</td>
</tr>
<tr>
<td>Fabric OS Reference v4.1.0</td>
<td>53-0000519-02</td>
<td></td>
<td>April 2003</td>
</tr>
<tr>
<td>Fabric OS Reference v4.1.2</td>
<td>53-0000519-03</td>
<td></td>
<td>May 2003</td>
</tr>
<tr>
<td>Fabric OS Reference v4.1.2</td>
<td>53-0000519-04</td>
<td></td>
<td>July 2003</td>
</tr>
<tr>
<td>Fabric OS Reference v4.1.2</td>
<td>53-0000519-05</td>
<td></td>
<td>August 2003</td>
</tr>
<tr>
<td>Fabric OS Reference v4.1.2</td>
<td>53-0000519-06</td>
<td></td>
<td>October 2003</td>
</tr>
<tr>
<td>Fabric OS Reference v4.2.0</td>
<td>53-0000519-07</td>
<td></td>
<td>December 2003</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-0000519-08</td>
<td></td>
<td>March 2004</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-0000519-08 Rev. A</td>
<td></td>
<td>April 2004</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-0000519-09</td>
<td></td>
<td>September 2004</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-0000519-10</td>
<td></td>
<td>April 2005</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-0000519-12</td>
<td></td>
<td>July 2005</td>
</tr>
<tr>
<td>Document Title</td>
<td>Publication Number</td>
<td>Summary of Changes</td>
<td>Publication Date</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Fabric OS Command Reference</td>
<td>53-1000599-02</td>
<td></td>
<td>12 March 2008</td>
</tr>
</tbody>
</table>
Contents

About This Document
- How this document is organized ... xvii
- Supported hardware and software xvii
- What is new in this document ... xviii
- Document conventions .. xx
- Additional information ... xxii
- Getting technical help .. xxiv
- Document feedback .. xxv

Chapter 1 Using Fabric OS Commands
- Understanding role-based access control 1
- Understanding admin domain restrictions 2
- Using the command line interface 2

Chapter 2 Fabric OS Commands
- aaaConfig ... 5
- ad ... 9
- ag ... 19
- agshow ... 30
- aliAdd ... 32
- aliCreate ... 33
- aliDelete .. 34
- aliRemove ... 35
- aliShow .. 36
- aptPolicy ... 37
- auditCfg .. 39
- authUtil .. 40
- bannerSet ... 44
- bannerShow .. 45
- bcastShow ... 46
- bladeBeacon .. 47
- bladeDisable ... 48
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bladeEnable</td>
<td>49</td>
</tr>
<tr>
<td>burninErrClear</td>
<td>51</td>
</tr>
<tr>
<td>burninErrShow</td>
<td>52</td>
</tr>
<tr>
<td>burninLevel</td>
<td>53</td>
</tr>
<tr>
<td>burninStatus</td>
<td>54</td>
</tr>
<tr>
<td>cfgActvShow</td>
<td>55</td>
</tr>
<tr>
<td>cfgAdd</td>
<td>56</td>
</tr>
<tr>
<td>cfgClear</td>
<td>57</td>
</tr>
<tr>
<td>cfgCreate</td>
<td>58</td>
</tr>
<tr>
<td>cfgDelete</td>
<td>59</td>
</tr>
<tr>
<td>cfgDisable</td>
<td>60</td>
</tr>
<tr>
<td>cfgEnable</td>
<td>61</td>
</tr>
<tr>
<td>cfgMcdtmode</td>
<td>62</td>
</tr>
<tr>
<td>cfgRemove</td>
<td>63</td>
</tr>
<tr>
<td>cfgSave</td>
<td>64</td>
</tr>
<tr>
<td>cfgSaveActiveToDefined</td>
<td>65</td>
</tr>
<tr>
<td>cfgShow</td>
<td>66</td>
</tr>
<tr>
<td>cfgSize</td>
<td>68</td>
</tr>
<tr>
<td>cfgTransAbort</td>
<td>70</td>
</tr>
<tr>
<td>cfgTransShow</td>
<td>71</td>
</tr>
<tr>
<td>chassisConfig</td>
<td>72</td>
</tr>
<tr>
<td>chassisName</td>
<td>74</td>
</tr>
<tr>
<td>chassisShow</td>
<td>75</td>
</tr>
<tr>
<td>cliHistory</td>
<td>77</td>
</tr>
<tr>
<td>configDefault</td>
<td>78</td>
</tr>
<tr>
<td>configDownload</td>
<td>80</td>
</tr>
<tr>
<td>configList</td>
<td>83</td>
</tr>
<tr>
<td>configRemove</td>
<td>84</td>
</tr>
<tr>
<td>configShow</td>
<td>85</td>
</tr>
<tr>
<td>configUpload</td>
<td>87</td>
</tr>
<tr>
<td>configure</td>
<td>90</td>
</tr>
<tr>
<td>dataTypeShow</td>
<td>97</td>
</tr>
<tr>
<td>date</td>
<td>98</td>
</tr>
<tr>
<td>dbgShow</td>
<td>99</td>
</tr>
<tr>
<td>defZone</td>
<td>100</td>
</tr>
<tr>
<td>diagClearError</td>
<td>102</td>
</tr>
<tr>
<td>diagDisablePost</td>
<td>103</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td>diagEnablePost</td>
<td>104</td>
</tr>
<tr>
<td>diagHelp</td>
<td>105</td>
</tr>
<tr>
<td>diagPost</td>
<td>106</td>
</tr>
<tr>
<td>diagRetry</td>
<td>107</td>
</tr>
<tr>
<td>diagSetBurnin</td>
<td>108</td>
</tr>
<tr>
<td>diagSetCycle</td>
<td>109</td>
</tr>
<tr>
<td>diagShow</td>
<td>110</td>
</tr>
<tr>
<td>diagSkipTests</td>
<td>111</td>
</tr>
<tr>
<td>diagStopBurnin</td>
<td>112</td>
</tr>
<tr>
<td>dbgShow</td>
<td>113</td>
</tr>
<tr>
<td>distribute</td>
<td>114</td>
</tr>
<tr>
<td>dlsReset</td>
<td>116</td>
</tr>
<tr>
<td>dlsSet</td>
<td>117</td>
</tr>
<tr>
<td>dlsShow</td>
<td>118</td>
</tr>
<tr>
<td>dnsConfig</td>
<td>119</td>
</tr>
<tr>
<td>enclosureShow</td>
<td>120</td>
</tr>
<tr>
<td>errClear</td>
<td>121</td>
</tr>
<tr>
<td>errDelimiterSet</td>
<td>122</td>
</tr>
<tr>
<td>errDump</td>
<td>123</td>
</tr>
<tr>
<td>errFilterSet</td>
<td>124</td>
</tr>
<tr>
<td>errModuleShow</td>
<td>125</td>
</tr>
<tr>
<td>errShow</td>
<td>126</td>
</tr>
<tr>
<td>exit</td>
<td>127</td>
</tr>
<tr>
<td>fabPortShow</td>
<td>128</td>
</tr>
<tr>
<td>fabRetryShow</td>
<td>131</td>
</tr>
<tr>
<td>fabricLog</td>
<td>132</td>
</tr>
<tr>
<td>fabricPrincipal</td>
<td>134</td>
</tr>
<tr>
<td>fabricShow</td>
<td>135</td>
</tr>
<tr>
<td>fabStatsShow</td>
<td>137</td>
</tr>
<tr>
<td>fabSwitchShow</td>
<td>139</td>
</tr>
<tr>
<td>fanDisable</td>
<td>140</td>
</tr>
<tr>
<td>fanEnable</td>
<td>141</td>
</tr>
<tr>
<td>fanShow</td>
<td>142</td>
</tr>
<tr>
<td>fastboot</td>
<td>143</td>
</tr>
<tr>
<td>fastwritecfg</td>
<td>144</td>
</tr>
<tr>
<td>fcipChipTest</td>
<td>146</td>
</tr>
<tr>
<td>fcipHelp</td>
<td>148</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>fcipPathTest</td>
<td>149</td>
</tr>
<tr>
<td>fcLunQuery</td>
<td>151</td>
</tr>
<tr>
<td>fcPing</td>
<td>152</td>
</tr>
<tr>
<td>fcLogClear</td>
<td>154</td>
</tr>
<tr>
<td>fcLogDisable</td>
<td>155</td>
</tr>
<tr>
<td>fcLogEnable</td>
<td>156</td>
</tr>
<tr>
<td>fcLogShow</td>
<td>157</td>
</tr>
<tr>
<td>fcProbeShow</td>
<td>158</td>
</tr>
<tr>
<td>fcRlsShow</td>
<td>159</td>
</tr>
<tr>
<td>fcrBcastConfig</td>
<td>160</td>
</tr>
<tr>
<td>fcrChipTest</td>
<td>162</td>
</tr>
<tr>
<td>fcrConfigure</td>
<td>164</td>
</tr>
<tr>
<td>fcrFabricShow</td>
<td>165</td>
</tr>
<tr>
<td>fcrLsanCount</td>
<td>166</td>
</tr>
<tr>
<td>fcrLsanMatrix</td>
<td>167</td>
</tr>
<tr>
<td>fcrPathTest</td>
<td>172</td>
</tr>
<tr>
<td>fcrPhyDevShow</td>
<td>174</td>
</tr>
<tr>
<td>fcrProxyConfig</td>
<td>176</td>
</tr>
<tr>
<td>fcrProxyDevShow</td>
<td>178</td>
</tr>
<tr>
<td>fcrResourceShow</td>
<td>180</td>
</tr>
<tr>
<td>fcrRouterPortCost</td>
<td>182</td>
</tr>
<tr>
<td>fcrRouteShow</td>
<td>184</td>
</tr>
<tr>
<td>fcrXlateConfig</td>
<td>185</td>
</tr>
<tr>
<td>fddCfg</td>
<td>187</td>
</tr>
<tr>
<td>fdmiCacheShow</td>
<td>189</td>
</tr>
<tr>
<td>fdmiShow</td>
<td>190</td>
</tr>
<tr>
<td>ficonClear</td>
<td>191</td>
</tr>
<tr>
<td>ficonCupSet</td>
<td>192</td>
</tr>
<tr>
<td>ficonCupShow</td>
<td>194</td>
</tr>
<tr>
<td>ficonHelp</td>
<td>196</td>
</tr>
<tr>
<td>ficonShow</td>
<td>197</td>
</tr>
<tr>
<td>fipsCfg</td>
<td>203</td>
</tr>
<tr>
<td>firmwareCommit</td>
<td>206</td>
</tr>
<tr>
<td>firmwareDownload</td>
<td>207</td>
</tr>
<tr>
<td>firmwareDownloadStatus</td>
<td>212</td>
</tr>
<tr>
<td>firmwareKeyShow</td>
<td>215</td>
</tr>
<tr>
<td>firmwareKeyUpdate</td>
<td>216</td>
</tr>
</tbody>
</table>
firmwareRestore .. 218
firmwareShow .. 219
fosConfig ... 220
fruReplace ... 222
fspfShow .. 223
fwAlarmsFilterSet ... 225
fwAlarmsFilterShow .. 226
fwClassInit ... 227
fwConfigReload .. 228
fwConfigure ... 229
fwFruCfg .. 234
fwHelp ... 235
fwMailCfg .. 236
fwPortDetailShow ... 238
fwSamShow ... 241
fwSet .. 243
fwSetToCustom ... 244
fwSetToDefault ... 247
fwShow ... 250
h ... 253
haDisable .. 254
haDump .. 255
haEnable ... 257
haFailover .. 258
haShow .. 259
haSyncStart .. 261
haSyncStop .. 262
help ... 263
historyLastShow .. 264
historyMode ... 265
historyShow ... 266
httpCfgShow ... 268
i ... 269
iclCfg .. 271
ifModeSet .. 272
ifModeShow .. 274
interfaceShow ... 275
interopMode .. 279
iodDelayReset ... 282
iodDelaySet .. 283
iodDelayShow ... 284
iodReset ... 285
iodSet ... 286
iodShow ... 287
ipAddrSet ... 288
ipAddrShow ... 291
ipfilter ... 292
iscsiCfg ... 297
iscsiChipTest ... 305
iscsiHelp .. 306
iscsiPathTest ... 307
iscsiPortCfg .. 308
iscsiSessionCfg .. 311
iscsiSwCfg .. 313
islShow ... 315
isnsCf g ... 316
itemList ... 318
killTelnet ... 320
ldapCfg ... 321
licenseAdd .. 323
licenseHelp ... 324
licenseIdShow ... 325
licensePort ... 326
licenseRemove ... 328
licenseShow .. 329
linkCost .. 330
login ... 332
logout ... 333
lsanZoneShow ... 334
lsDbShow ... 336
memShow ... 339
miniCycle .. 340
msCapabilityShow ... 345
msConfigure ... 346
msPlatShow .. 348
msPlatShowDBCB .. 349
msPlClearDB .. 350
msPlMgmtActivate ... 351
msPlMgmtDeactivate 352
msTdDisable .. 353
msTdEnable .. 354
msTdReadConfig .. 355
myId ... 356
nbrStateShow .. 357
nbrStatsClear ... 358
nodeFind .. 360
nsAliasShow ... 362
nsAllShow .. 365
nsCamShow ... 366
nsShow .. 368
nsZoneMember .. 371
passwd ... 374
passwdCfg ... 377
pathInfo ... 382
pdShow ... 387
perfAddEEMonitor 388
perfAddIPMonitor 390
perfAddReadMonitor 391
perfAddRWMonitor 392
perfAddSCSIMonitor 393
perfAddUserMonitor 394
perfAddWriteMonitor 396
perfCfgClear .. 397
perfCfgRestore ... 398
perfCfgSave .. 399
perfClearAlpaCrc 400
perfDelEEMonitor 401
perfDelFilterMonitor 402
perfHelp .. 403
perfMonitorClear 404
perfMonitorShow 406
null
secActiveSize ... 555
secAuthSecret .. 556
secCertUtil .. 558
secDefineSize ... 564
secGlobalShow ... 565
secHelp ... 567
secPolicyAbort 568
secPolicyActivate 569
secPolicyAdd .. 570
secPolicyCreate 572
secPolicyDelete 575
secPolicyDump ... 577
secPolicyFCSMove 579
secPolicyRemove 581
secPolicySave ... 583
secPolicyShow ... 584
secStatsReset ... 586
secStatsShow .. 588
sensorShow ... 590
setDbg .. 591
setModem ... 592
setVerbose ... 594
sfpShow ... 595
shellFlowControlDisable 599
shellFlowControlEnable 600
slotPowerOff ... 601
slotPowerOn ... 602
slotShow ... 603
snmpConfig .. 606
spinFab ... 613
sshUtil ... 616
statsClear ... 620
stopPortTest ... 621
supportFfdc .. 622
supportFtp .. 623
supportSave ... 625
supportShow .. 629
supportShowCfgDisable ... 631
supportShowCfgEnable ... 632
supportShowCfgShow ... 633
switchBeacon ... 634
switchCfgPersistentDisable .. 635
switchCfgPersistentEnable ... 636
switchCfgSpeed ... 637
switchCfgTrunk ... 638
switchDisable ... 639
switchEnable ... 640
switchName .. 641
switchShow .. 642
switchStatusPolicySet ... 647
switchStatusPolicyShow ... 649
switchStatusShow ... 651
switchUptime .. 653
switchViolation ... 654
syslogdFacility ... 655
syslogdIpAdd .. 656
syslogdIpRemove .. 658
syslogdIpShow ... 659
sysShutDown .. 660
systemVerification ... 662
tempShow ... 664
timeOut ... 665
topologyShow .. 666
traceDump .. 670
trackChangesHelp ... 671
trackChangesSet .. 672
trackChangesShow .. 673
trunkDebug ... 674
trunkShow ... 675
tsClockServer ... 677
tsTimeZone ... 679
turboRamTest .. 682
upTime ... 683
uRouteConfig ... 684
About This Document

This document is a command reference manual written to help system administrators and technicians operate, maintain, and troubleshoot Brocade storage area network (SAN) products.

“About this document” contains the following sections:

- “How this document is organized,” next
- “Supported hardware and software” on page xvii
- “What is new in this document” on page xviii
- “Document conventions” on page xx
- “Additional information” on page xxii
- “Getting technical help” on page xxiv
- “Document feedback” on page xxv

How this document is organized

This document is organized to help you find the particular information that you want as quickly and easily as possible.

The document contains the following components:

- “About This Document” provides information about this document.
- Chapter 1, “Using Fabric OS Commands” explains how to use the command line interface to manage a Brocade SAN and Brocade switches.
- Chapter 2, “Fabric OS Commands” provides command information.
- Chapter 3, “Primary FCS commands” summarizes the subset of commands available when FCS policy is enabled.
- Chapter 4, “Control Processor Commands” lists the subset of active and standby control processor (CP) commands on enterprise-class platforms (Brocade 48000 director and DCX backbone).
- Appendix A, “Command availability,” explains the Role-Based Access Control and Admin Domain restriction checks used to validate commands.
- The Index points you to the exact pages on which specific information is located.

Supported hardware and software

This document includes updated information specific to new functionality introduced in Fabric OS 6.1.0. The following hardware platforms are supported by this release:

- Brocade 200E switch
• Brocade 300 switch
• Brocade 4016 switch
• Brocade 4018 switch
• Brocade 4020 switch
• Brocade 4024 switch
• Brocade 4100 switch
• Brocade 4900 switch
• Brocade 5000 switch
• Brocade 5100 switch
• Brocade 5300 switch
• Brocade 7500 SAN router
• Brocade 7600 switch
• Brocade 48000 director
• Brocade DCX backbone

Procedures or parts of procedures documented here may apply to some hardware platforms, but not to others. For hardware specific implementation details and restrictions regarding the commands described in this document and corresponding help pages, refer to the Fabric OS Administrator’s Guide.

Although many different software and hardware configurations are tested and supported by Brocade Communications Systems, Inc. for Fabric OS 6.1.0, documenting all possible configurations and scenarios is beyond the scope of this document.

This document is specific to Fabric OS 6.1.0 To obtain information about an OS version other than 6.1.0, refer to the documentation specific to that OS version.

What is new in this document

New commands that were added since this document was last released for Fabric OS 6.0.0:

• iclCfg
• iodDelayReset
• iodDelaySet
• iodDelayShow
• ldapCfg
• portcfgCreditRecovery
• portTrunkArea
• sshUtil

Commands that were modified since this document was last released to support new features in Fabric OS 6.1.0:

• ag
• ficconCupSet
• ficconCupShow
- fcrresourceshow
- fcrlsanmatrix
- firmwareDownload
- licenseShow
- portCfgDefault
- portDisable
- portEnable
- portCfgAlpa
- portCfgExport
- portCfgEport
- portCfgGport
- portCfgISLMode
- portCfgLongDistance
- portCfgLport
- portCfgNPIVPort
- portCfgPersistentDisable
- portCfgPersistentEnable
- portCfgQos
- portCfgTrunkport
- portCfgShow
- portStatsClear
- secCertUtil
- secPolicyCreate
- secPolicyDelete
- zone

Additional edits to approximately 105 commands not included in this list include bug fixes, general edits, and hardware updates.

NOTE
Fabric OS versions v6.0.0 and later support the TCP/IP **netstat** command. Use this command to show network status, print information on active sockets, routing tables, interfaces, masquerade connections, or multicast memberships. By default, netstat lists open sockets. For a list of all **netstat** options, refer to the UNIX man pages.

Information that was deleted since this document was last released for Fabric OS v6.0.0. Help pages are removed from the manual when the associated commands are deprecated or no longer supported on v6.1.0 platforms.

- diagEnv (Not supported on v6.x platforms.)
- diagFailLimit (Not supported on v6.x platforms.)
- diagStatus (Not supported on v6.x platforms.)
- fabStateClear (Deprecated; use **fabricLog** -c.)
- fabStateResize (Deprecated; use **fabricLog** -r.)
- `fabStateShow` (Deprecated; use `fabricLog -s`.)
- `fazoneAdd` (Not supported on v6.x platforms.)
- `fazoneCreate` (Not supported on v6.x platforms.)
- `fazoneDelete` (Not supported on v6.x platforms.)
- `fazoneRemove` (Not supported on v6.x platforms.)
- `minisPropShow` (Internal use only.)
- `perfClrAlpaCrc` (Deprecated; use `perfClearAlpaCrc`.)
- `perfShowEEMonitor` (Deprecated; use `perfMonitorShow`.)
- `perfClearEEMonitor` (Deprecated; use `perfMonitorClear`.)
- `perfClearFilterMonitor` (Deprecated; use `perfMonitorClear`.)
- `setMediaMode` (Not supported on v6.x platforms.)
- `setGbicMode` (Not supported on v6.x platforms.)
- `setSfpMode` (Not supported on v6.x platforms.)
- `slTest` (Not supported on v6.x platforms.)
- `switchReboot` (Not supported on 6.x platforms)

NOTE

Automatic page breaks in CLI command output displays are being phased out. Use the “more” option to display command output with page breaks: `command | more`. Do not use the “more” option in conjunction with help pages. Executing `help command | more` will display a command “no manual entry for command” message.

Document conventions

This section describes text formatting conventions and important notices formats.

Text formatting

The narrative-text formatting conventions that are used in this document are as follows:

- **bold text** Identifies command names
- Identifies GUI elements
- Identifies keywords and operands
- Identifies text to enter at the GUI or CLI

- **italic text** Provides emphasis
- Identifies variables
- Identifies paths and Internet addresses
- Identifies document titles

- **code text** Identifies CLI output
- Identifies syntax examples

For readability, command names in the narrative portions of this guide are presented in mixed lettercase: for example, `switchShow`. In examples, command lettercase is all lowercase. If there are exceptions, this manual specifically notes those cases in which a command is case-sensitive.
Command syntax conventions

Command syntax in the synopsis section follows these conventions:

- `command` Commands are printed in bold.
- `--option, option` Command options are printed in bold.
- `-argument, arg` Arguments.
- `[]` Optional element.
- `variable` Variables are printed in italics. In the help pages, values are underlined or enclosed in angled brackets `< >`.
- `...` Repeat the previous element, for example “member[:member...]”
- `value` Fixed values following arguments are printed in plain font. For example, `--show WWN`
- `|` Boolean. Elements are exclusive. Example: `--show-mode egress | ingress`

Notes, cautions, and warnings

The following notices and statements are used in this manual. They are listed below in order of increasing severity of potential hazards.

NOTE

A note provides a tip, guidance or advice, emphasizes important information, or provides a reference to related information. Regular help page notes are included under the NOTES side heading.

WARNING

An Attention statement indicates potential damage to hardware or data.

CAUTION

A Caution statement alerts you to situations that can be potentially hazardous to you.

DANGER

A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these conditions or situations.

Key terms

For definitions of SAN-specific terms, visit the Storage Networking Industry Association online dictionary at http://www.snia.org/education/dictionary.
Additional information

This section lists additional Brocade and industry-specific documentation that you might find helpful.

Brocade resources

The following related documentation is provided on the Brocade Documentation CD-ROM and on the Brocade Web site, through Brocade Connect.

To get up-to-the-minute information, join Brocade Connect. It is free! Go to http://www.brocade.com and click Brocade Connect to register at no cost for a user ID and password.

For practical discussions about SAN design, implementation, and maintenance, you can obtain Building SANs with Brocade Fabric Switches through:

http://www.amazon.com

For additional Brocade documentation, visit the Brocade SAN Info Center and click the Resource Library location:

http://www.brocade.com

Release notes are available on the Brocade Connect Web site and are also bundled with the Fabric OS firmware.

Other industry resources

• White papers, online demos, and data sheets are available through the Brocade Web site at http://www.brocade.com/products/software.jhtml

• Best practice guides, white papers, data sheets, and other documentation is available through the Brocade Partner Web site.

For additional resource information, visit the Technical Committee T11 Web site. This Web site provides interface standards for high-performance and mass storage applications for Fibre Channel, storage management, and other applications:

http://www.t11.org

For information about the Fibre Channel industry, visit the Fibre Channel Industry Association Web site:

http://www.fibrechannel.org

Optional Brocade features

The Fabric OS 6.1.0 release includes all basic switch and fabric support software, as well as the following optionally licensed software that is enabled via license keys:

• Brocade Ports on Demand - Allows customers to instantly scale the fabric by provisioning additional ports via license key upgrade (applies to some models of switches.)

• Brocade Extended Fabrics - Provides up to 500 km of switched fabric connectivity at full bandwidth over long distances.
• **Brocade ISL Trunking** - Optimizes performance in multi-switch SAN fabrics. When two or more adjacent ISLs are used to connect two switches, the switches automatically group the ISLs into a single logical ISL, or “trunk.” Up to eight ISLs can be combined into a single logical ISL with a total bandwidth of 32 Gbit/sec that can support any number of devices.

• **Brocade Fabric Manager** - Enables administration, configuration, and maintenance of fabric switches and SANs with host-based software.

• **Brocade Advanced Performance Monitoring** - Enables performance monitoring of networked storage resources. This license includes the *TopTalkers* feature.

• **FC-IP Services** (For the FR4-18i and Brocade 7500) -- This license key includes the FC Fastwrite feature.

• **Brocade Fabric Watch** - Monitors mission-critical switch operations.

• **FICON Management Server** - Also known as "CUP" (Control Unit Port), enables host-control of switches in Mainframe environments. (Available only on FICON-qualified products)

• **ICLs, or Inter Chassis Links** - Provides dedicated high-bandwidth links between two Brocade DCX Data Center Directors without consuming valuable front-end 8G ports. Each DCX must have the ICL license installed in order to enable the ICL connections. (Available on the DCX only).

• **Adaptive Networking with QoS** - Ensures that high priority connections obtain the bandwidth necessary for optimum performance, even in congested environments. This feature is automatically enabled on all 4G-platforms when upgrading to Fabric OS 6.1.0. Optionally available on all new platforms. Ingress Rate Limiting and QoS available on new 8G-capable products.

• **FICON Acceleration** - Provides performance improvements for FICON Extension on the Brocade 7500 and FR4-18i.

• **Integrated Routing** - Available for the Brocade DCX, 5300, and 5100. Per-chassis license allows full use of EX_ports on any port in chassis

• **Temporary Licenses** - With Fabric OS 6.1.0, temporary licenses are supported for the following features:
 - Fabric (E_ports)
 - Extended Fabric
 - Trunking
 - FCIP
 - Performance Monitoring

The following licensed software is bundled with Brocade hardware. No additional purchase is necessary:

• **Brocade Web Tools** - Administration, configuration, and maintenance of fabric switches and SANs.

• **Brocade Zoning** - Division of a fabric into virtual private SANs.

• **IPSec** - IP Security (for the Brocade 7500 and FR4-18i blade in the Brocade 48000 and DCX backbone).

• **NPIV** - N-port ID Virtualization, allowing up to 256 virtual addresses per physical port. This feature is supported only on the Brocade 200E and Brocade 300 in Access Gateway mode.
NOTE
For more information about licensed features refer to the Fabric OS Administrator’s Guide.

Getting technical help

Contact your switch support supplier for hardware, firmware, and software support, including product repairs and part ordering. To expedite your call, have the following information available:

1. General Information
 - Switch model
 - Switch operating system version
 - Error numbers and messages received
 - supportSave command output
 - Detailed description of the problem, including the switch or fabric behavior immediately following the problem, and specific questions
 - Description of any troubleshooting steps already performed and the results
 - Serial console and Telnet session logs
 - syslog message logs

2. Switch Serial Number
 The switch serial number and corresponding bar code are provided on the serial number label, as shown here:

 The serial number label is located as follows:

 The serial number label is located as follows:
 - **Brocade 200E**, —On the nonport side of the chassis
 - **Brocade 4016**—On the top of the switch module
 - **Brocade 4018**—On the top of the blade
 - **Brocade 4020 and 4024**—On the bottom of the switch module
 - **Brocade 300, 4100, 4900, 5100, 5300 and 7500**—On the switch ID pull-out tab located inside the chassis on the port side on the left
 - **Brocade 5000**—On the switch ID pull-out tab located on the bottom of the port side of the switch
 - **Brocade 7600**—On the bottom of the chassis
 - **Brocade 48000**—Inside the chassis next to the power supply bays
 - **Brocade DCX**—On the bottom right on the port side of the chassis

3. World Wide Name (WWN)
 Use the **wwn** command to display the switch WWN.
If you cannot use the `wwn` command because the switch is inoperable, you can get the WWN from the same place as the serial number, except for the Brocade DCX. For the Brocade DCX, access the numbers on the WWN cards by removing the Brocade logo plate at the top of the nonport side of the chassis.

For the Brocade 4016, 4018, 4020, and 4024 embedded switches: Provide the license ID. Use the `licenseIdShow` command to display the WWN.

Document feedback

Quality is our first concern at Brocade, and we have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you. Forward your feedback to:

`documentation@brocade.com`

Provide the title and version number and as much detail as possible about your issue, including the topic heading and page number and your suggestions for improvement.
This chapter explains how to manage a Brocade SAN and Brocade switches and directors using the Fabric OS command line interface (CLI). The following topics discussed:

- “Understanding role-based access control” on page 1
- “Understanding admin domain restrictions” on page 2
- “Using the command line interface” on page 2

Refer to the Fabric OS Administrator’s Guide for information regarding optionally licensed features and configuration and management procedures.

Understanding role-based access control

Fabric OS implements Role-Based Access Control (RBAC) to control access to all Fabric OS operations.

Seven roles are supported, as defined in Table 1. Role definitions are guided by perceived common operational situations and the operations and effects a role is permitted to have on a fabric and individual fabric elements.

<table>
<thead>
<tr>
<th>Role Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Nonadministrative use, such as monitoring system activity</td>
</tr>
<tr>
<td>Operator</td>
<td>A subset of administrative tasks typically required for routine maintenance operations</td>
</tr>
<tr>
<td>SwitchAdmin</td>
<td>Administrative use excluding security, user management, and zoning</td>
</tr>
<tr>
<td>ZoneAdmin</td>
<td>Zone management only</td>
</tr>
<tr>
<td>FabricAdmin</td>
<td>Administrative use excluding user management and Admin Domain managment</td>
</tr>
<tr>
<td>BasicSwitchAdmin</td>
<td>A subset of administrative tasks, typically of a more limited scope and effect</td>
</tr>
<tr>
<td>Admin</td>
<td>May perform all administrative tasks</td>
</tr>
<tr>
<td>SecurityAdmin</td>
<td>Administrative use including admin, security, user management, and zoning</td>
</tr>
</tbody>
</table>

Appendix A, “Command availability” explains the Role-Based Access Control checks in place to validate command execution, and provides the RBAC permissions for the commands included in this manual.
Understanding admin domain restrictions

A subset of Fabric OS commands is subject to Admin Domain restrictions that may be in place. In order to execute an AD restricted command on a switch or device, the switch or device must be part of a given Admin domain, and the user must be logged into that Admin Domain.

Six Admin Domain types are supported, as defined in Table 2.

TABLE 2 AD types

<table>
<thead>
<tr>
<th>AD Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed</td>
<td>Allowed to execute in all ADs.</td>
</tr>
<tr>
<td>PhysFabricOnly</td>
<td>Allowed to execute only in AD255 context (and the user should own access to AD0-AD255 and have admin RBAC privilege).</td>
</tr>
<tr>
<td>Disallowed</td>
<td>Only allowed to execute in AD0 or AD255 context, not allowed in AD1-AD254 context.</td>
</tr>
<tr>
<td>PortMember</td>
<td>All control operation allowed only if the port or the local switch is part of the current AD. View access allowed if the device attached to the port is part of current AD.</td>
</tr>
<tr>
<td>AD0Disallowed</td>
<td>Allowed to execute only in AD255 and AD0 (if no ADs are configured).</td>
</tr>
<tr>
<td>AD0Only</td>
<td>Allowed to execute only in AD0 when ADs are not configured.</td>
</tr>
</tbody>
</table>

Refer to Appendix A, “Command availability” for a listing of Admin Domain restrictions that apply to the commands included in this manual.

Using the command line interface

The Fabric OS command line interface (accessed via Telnet, SSH, or serial console) provides full management capability on a Brocade switch. The Fabric OS CLI enables an administrator to monitor and manage individual switches, ports, and entire fabrics from a standard workstation. Selected commands must be issued from a secure Telnet or SSH session, as indicated in the command description in this manual.

Access is controlled by a switch-level password for each access level. The commands available through the CLI are based on the user’s login role and the license keys used to unlock certain features.

The Fabric OS CLI provides the following capabilities:

- Access to the full range of Fabric OS features, given the license keys installed.
- Assistance with configuration, monitoring, dynamic provisioning, and daily management of every aspect of storage area networks (SAN).
- A deeper view of the tasks involved in managing a Brocade SAN.
- Identification, isolation, and management of SAN events across every switch in the fabric.
- Management of Brocade licenses.
The documentation for each command includes a synopsis of its syntax, a description of command use, and a set of examples. The same information can be accessed by issuing `help command` on a Brocade switch or director. This command displays the help page for the specified command. For example, to display the help page for `ad`, type:

```
switch:admin> help ad
```
Using the command line interface
aaaConfig

Manages RADIUS and LDAP configuration information.

Synopsis

```
aaaconfig
aaaconfig --show
aaaconfig --add | --change server -conf radius|ldap [-p port] [-d domain][-t timeout] [-s secret] [-a chap | pap | peap-mschapv2]
aaaconfig --remove server -conf radius|ldap
aaaconfig --move server -conf radius|ldap to_position
aaaconfig --authspec aaa1;aaa2 [-backup]
aaaconfig --help
```

Description

Use this command to manage the RADIUS and LDAP server configuration for the authentication, authorization and accounting (AAA) services. Use this command to display, add, remove, change, enable or disable RADIUS/LDAP configuration.

Switches running Fabric OS v5.2 or later use a local as well as a remote authentication mechanism for validating a login name. Supported authentication protocols include Password Authentication Protocol (PAP), Challenge-Handshake Authentication Protocol (CHAP) and, for switches running Fabric OS v5.3.0 or later, Protected Extensible Authentication Protocol (PEAP). In addition, Fabric OS v6.0 provides support for Light-weight Directory Access Protocol (LDAP) authentication against Active Directory for user authentication and authorization.

RADIUS/LDAP servers are contacted in the order they appear in the configuration list. The first server returning authentication success or failure causes the authentication request to succeed or fail. If no response is received within the specified timeout, the next RADIUS/LDAP server in the list is contacted. An event entry logs if all RADIUS/LDAP servers fail to respond.

When the command succeeds, it triggers an event log (Fabric OS error log) to indicate a server is added, removed, or modified. Refer to the Fabric OS Message Reference manual for specific details.

Configuration changes are persistently saved and take effect with the next AAA request. The configuration applies to all switch instances in a platform supporting multiple switch domains.

Notes

Customers can use centralized RADIUS servers to manage AAA services for a switch, as defined in RFC 2865.

Fabric OS v6.1.0 or later is required to configure LDAP while in FIPS mode. Refer to the Fabric OS Administrator’s Guide for configuration procedures.

This command can be executed when logged in through the console, Telnet or SSH connection.
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command takes as input an action and its associated arguments. Without any specified action, the command prints out the usage.

The following operands are supported:

server
Specifies an IP address or a server name in dot notation. IPv6 addresses are supported. If a name is used, a DNS entry must be correctly configured for the server. The command fails and an error is returned if the specified server IP address or name already exists in the current configuration. However, the command does not validate the server name against the IP address in the configuration. Make sure to avoid duplicate configuration of the same server, one specified by the name, the other specified by the IP address.

--show
Displays the current AAA service configuration.

--add | --change server [options]

Adds or modifies a RADIUS or LDAP server. The --add option appends the specified server to the end of the current configuration list. A maximum of 5 servers are supported for each authentication type. The --change option modifies the specified server configuration to use the new arguments. The server must be one of the IP addresses or names shown in the current configuration.

The following options are supported:

-conf radius | ldap
Specifies the server configuration as either RADIUS or LDAP. This operand is required. Ensure that FIPS is disabled before configuring LDAP.

The following operands are optional:

-p port
Specifies the RADIUS or LDAP server port number. Supported range is 1 to 65535. The default port is 1812 for RADIUS authentication. The default port is 389 for LDAP authentication. This operand is optional. If no port is specified, the default is used.

-t timeout
Specifies the response timeout for the RADIUS or the LDAP server. Supported range is between 1 and 30 seconds. The default is 3 sec. This operand is optional. If no timeout is specified, the default is used.

-d domain
Specifies the Windows domain name for the LDAP server, e.g., brocade.com. This option is valid only with the -conf ldap option. This option is required.

-s secret
Specifies a common secret between the switch and the RADIUS server. The secret must be between 8 and 40 characters long. This option is valid only with the -conf radius option, and it is optional. The default value is "sharedsecret".

-a
Specifies the remote authentication protocol for the RADIUS server. This option is valid only with the -conf radius option, and it is optional. The default value for this operand is CHAP.
Valid protocols are one of the following:

- **pap** Password Authentication Protocol
- **chap** Challenge-Handshake Authentication Protocol
- **peap-mschapv2** Protected Extensible Authentication Protocol (requires Fabric OS v5.3.0 or later)

The distinction between protocols is only applicable to the packets between a system and the RADIUS server. Between the user and system, passwords are always used.

--remove server Removes the specified server from the configuration. The server must match one of the IP addresses or the names shown in the current configuration. The following operand is required:

- **-conf radius|ldap**

 Specifies the server configuration as either RADIUS or LDAP. If the server is enabled, the command does not allow the last server to be removed from the configuration list. RADIUS or LDAP must first be disabled before the last server of the specified type may be removed.

--move server option Moves the specified server from the current position in a RADIUS/LDAP configuration list to the specified position. If the specified position is the same as the current position, no change takes place. Valid options are:

- **-conf radius|ldap**

 Specifies the server configuration as either RADIUS or LDAP. This operand is required.

 - **to_position**

 Specifies the new position for the server. The value for **to_position** is an integer, and must be within the range of server positions in the current configuration. Use the **--show** option to determine current server positions.

--authspec "aaa1;aaa2" [-backup]

Replace the configuration with the specified AAA service. Each service can be specified only once in the list i.e. 'radius; local; radius' is invalid. No edit option is provided. The authspec option takes as an argument a semi-colon separated list of AAA services. Services must be enclosed in double quotation marks.

The following AAA services and service pairs are valid:

- **"local"** Default setting. Authenticates the user against the local database only. If the password does not match or the user is not defined, the login fails.

- **"radius"** When RADIUS is specified, the first RADIUS server is contacted. If the RADIUS server is not reachable, then the next RADIUS server is contacted. If the authentication fails, the authentication process does not check for the next server in the sequence.
aaaConfig

“ldap” When ldap is specified, the first ADir server is contacted. If the ADir server is not reachable, the next ADir server is contacted. If the authentication fails, the authentication process does not check for the next server in the sequence.

“radius;local” Enables the current RADIUS configuration as the primary AAA service and the switch-local database as the secondary AAA service. When “radius” and “local” are specified, if the RADIUS servers are reachable and the user credentials are correct, the user authentication succeeds. If the user provides credentials from the switch database, RADIUS authentication would fail but login would still succeed through the switch database.

“ldap;local” Enables the current LDAP configuration as the primary AAA service and the switch-local database as the secondary AAA service. When “ldap” and “local” are specified, if the ADir servers are reachable and the user credentials are correct, the user authentication succeeds. If the user provides credentials from the switch database, ADir authentication would fail but login would still succeed through the switch database.

-backup For use with “radius;local” and the “ldap;local” options only. The backup option states to try the secondary AAA service only if none of the primary AAA services are available.

--help Displays command usage.

Examples

To display the current RADIUS configuration: --

switch:admin> aaaconfig --show

RADIUS CONFIGURATIONS

<table>
<thead>
<tr>
<th>Position</th>
<th>Server</th>
<th>Port</th>
<th>Secret</th>
<th>Timeout(s)</th>
<th>Auth-Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.168.233.48</td>
<td>1812</td>
<td>sharedsecret</td>
<td>3</td>
<td>CHAP</td>
</tr>
<tr>
<td>2</td>
<td>192.168.233.44</td>
<td>1812</td>
<td>sharedsecret</td>
<td>3</td>
<td>CHAP</td>
</tr>
<tr>
<td>3</td>
<td>radserver</td>
<td>1812</td>
<td>private</td>
<td>5</td>
<td>CHAP</td>
</tr>
</tbody>
</table>

Primary AAA Service: Switch database
Secondary AAA Service: None

LDAP CONFIGURATIONS

LDAP configuration does not exist.

To move the RADIUS server "radserver" from position 3 to position 1:

switch:admin> aaaconfig --move radserver -conf radius 1

To change the configuration for RADIUS server 192.168.233.48:

switch:admin> aaaconfig --change 192.168.233.48 -conf ldap -p 3002 -s newsecret -t 1

To replace the AAA service with backup option:

switch:admin> aaaconfig --authspec "ldap;local" -backup

See Also none
ad

Manages Admin Domain operations.

Synopsis

ad --activate ad_id
ad --add ad_id [-d "dev_list"] [-s "switch_list"]
ad --apply
ad --clear
ad --create ad_id [-d "dev_list"] [-s "switch_list"]
ad --deactivate ad_id
ad --delete ad_id
ad --exec ad_id "command_list"
ad --remove ad_id [-d "dev_list"] [-s "switch_list"]
ad --rename ad_id new_ad_id
ad --save
ad --select ad_id
ad --show [-i | [ad_id [-m mode]]] (in AD255 context)
ad --show [-i] (in AD0 context)
ad --show (in AD1-254 context)
ad --validate [-i | [ad_id | [-m mode]]]
ad --transabort
ad --transshow

Description

Use this command to manage Admin Domain operations.

This command follows a batched-transaction model. When executed with the --activate, --add, --clear, --create, --deactivate, --delete, --remove, or --rename options, this command changes only the Defined Configuration in the transaction buffer. The --save option sends the changes made in the transaction buffer to all other switches and permanently saves the changes to the Defined configuration in persistent storage. The --apply option performs a save operation, sends a request to apply the Admin Domain configuration (as defined in the persistent storage), and then enforces the configuration locally.

The Admin Domain transaction buffer is linked to the current login shell and is lost on logout. Use the --transshow option to display the current Admin Domain transaction information.

Before creating Admin Domains, the default zone mode should be set to “No Access”. To set the default zone mode to “No Access” execute the following command sequence:

```
switch:admin> ad --select AD0
switch:admin> defzone --noaccess
switch:admin> cfgsave
```

Refer to defZone help for more information.
All switches, switch ports and devices in the fabric that are not specified in any other Admin Domain are treated as implicit members of AD0. Members added to AD0 are called explicit members.

When a new Admin Domain is created, the members included in the new Admin Domain are automatically removed from the implicit member list of AD0. If the devices included in the new Admin Domain are already zoned in AD0, and if you want to move these devices from AD0 without any traffic disruption, do the following:

1. Add the devices to AD0’s explicit member list using ad--add and ad--apply.
2. Create new ADs with the devices and execute ad--apply.
3. Select (or login to) the new Admin Domain and create a relevant zone configuration and zones (Refer to zone --copy help for details). Enable the new zone configuration under the Admin Domain.
4. (Optionally) remove explicit members from AD0 (using ad --remove and ad --apply). Remove the member references from the AD0 zone database.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands The generalized syntax for this command is “ad action arguments”. Command actions are described first. Argument details follow the description of actions.

The following actions are supported:

--activate arg Activates an Admin Domain. An Admin Domain is enforced only if it is in an activated state. AD0 is always in an activated state. By default, after the Admin Domain is enabled, the devices specified in the Admin Domain are not able to see each other until they are zoned together. The command prompts for confirmation. The activate operation remains in the transaction buffer until you issue ad --apply or ad --save.

--add arguments Adds new members to an existing Admin Domain. The add operation remains in the transaction buffer until you issue ad --apply or ad --save.

--apply Saves the current transaction buffer contents to the defined configuration and enforces the defined configuration on all switches in the fabric. ad --apply prompts for confirmation.

--clear Deletes all ADs and clears AD0’s explicit members. This command fails if AD1 through AD254’s zone databases are not empty. The command prompts for confirmation before deleting all Admin Domains. The clear operation remains in the transaction buffer until you issue ad --apply or ad --save.

--create arguments

Creates a new Admin Domain with optionally specified device or switch members. A newly created Admin Domain is in an activated state. It initially contains no zone database. The newly created Admin Domain remains in the transaction buffer until you issue ad --apply or ad --save. AD0 always exists. Use ad --add to add explicit members to AD0.
--deactivate arg Deactivates an Admin Domain. This operation fails if an effective zone configuration exists under the Admin Domain. This operation is not allowed on AD0. `ad --deactivate` does not disable any ports. Existing logins to a deactivated Admin Domain are not terminated; however, subsequent CLI execution is disallowed. A message is displayed to indicate that the current Admin Domain is not active. The command prompts for confirmation. The deactivate operation remains in the transaction buffer until you issue `ad --apply` or `ad --save`.

--delete arg Deletes an Admin Domain. This command succeeds regardless of whether the Admin Domain is in a deactivated or an activated state. AD0 always exists; using this operation on AD0 does not delete AD0, it only removes all explicit members from AD0. The AD0 zone database does not need to be empty for the delete operation to succeed. Not all existing user sessions to a deleted Admin Domain are terminated; however, subsequent CLI execution is disallowed. A message displays indicating that the current Admin Domain is not active. The command prompts for confirmation before executing the delete action. The delete operation remains in the transaction buffer until you issue `ad --apply` or `ad --save`.

--exec arguments This command performs the following tasks:

1. Create a new shell.
2. Executes `ad --select` to the specified Admin Domain.
3. Executes the specified commands.
4. Exits the shell.

--remove arguments Removes one or more members from an Admin Domain. Removing the last member from an Admin Domain deletes the Admin Domain. The remove operation remains in the transaction buffer until you issue `ad --apply` or `ad --save`.

--rename arguments Renames the specified Admin Domain. If a reserved name is used for `new_ad_id` (AD number format), the operation fails if the reserved name does not correspond to `ad_id`’s AD number. The rename operation remains in the transaction buffer until you issue `ad --apply` or `ad --save`.

--save Saves the outstanding Admin Domain transaction to the defined configuration on all switches in the fabric. The saved Admin Domain definition is enforced only when `ad --apply` is issued. Attempts to modify and save an Admin Domain that is currently enforced will fail. The command prompts for confirmation.

--select arg Selects an Admin Domain context. This command fails if the corresponding Admin Domain is not activated. This operation succeeds only if you have the specified Admin Domain. This command internally spawns off a new shell within the requested Admin Domain context. Type `logout` or `exit` to exit from the selected Admin Domain. The zone transaction is linked to the current shell; therefore, the zone transaction buffer is lost on logout. Use `cfgTransShow` to display the current zoning transaction information.
show arguments Displays the membership information of the specified Admin Domain or all Admin Domains.

When executed in an AD255 context and an Admin Domain name is not specified, all information about all existing Admin Domains is displayed. When executed in an AD0-AD254 context, the command, by default, displays the members of the current Admin Domain’s effective configuration, and therefore you cannot specify an ad_id or mode.

When executed in an AD255 context, all Admin Domain information from the transaction buffer, defined configuration and effective configuration is displayed.

--validate arguments

Checks whether Admin Domain members are from a non-Admin Domain aware switch or the members do not exist in the fabric. The output is similar to ad --show; however, all members that are from non-Admin Domain aware switches are marked with a plus sign (+). Members that are not online are marked with an asterisk (*).

FC Router Front Phantom Domain and FC Router Translate Phantom Domain are virtual entities without any exposed management interfaces; therefore, any FC Router phantom switch WWN specified in an AD switch member list is marked as a non-Admin Domain aware member. All D,PI members in the device list corresponding to an FC Router Phantom Domain are marked as non-Admin Domain aware members. All FC Router imported devices in the AD device list are marked as AD-aware members.

transabort Aborts the transaction buffer. The command prompts for confirmation before aborting the transaction.

transshow Displays the ID of the current Admin Domain transaction and indicates whether or not the transaction can be aborted. The transaction cannot be aborted if it is an internal Admin Domain transaction.

The following arguments are supported with selected AD actions:

ad_id Uniquely identifies an Admin Domain. An ad_id can be a name or a number:

name An Admin Domain name can be up to 63 bytes, must begin with a letter, and can consist of letters, digits, and underscore characters. The Admin Domain names with the format AD[0-255] are reserved for auto-assigning Admin Domain names to Admin Domains created with an Admin Domain number, and can be assigned only to the corresponding Admin Domain. Using ad --rename, for example, in an attempt to assign a name of AD5 to an Admin Domain with ID not equal to 5 fails. Admin Domain names are case-sensitive.

number An Admin Domain can be specified by a number. Valid values include 0 through 255. AD0 and AD255 are always active. AD0 cannot be specified with --activate, --deactivate or --delete actions. AD255 can be specified only with --exec, --show and --validate actions.

For all command iterations, with the exception of ad --create, the Admin Domain is specified either by a name or a number. For ad --create, both name and number can be specified: for example, ad --create test_ad/10 -d “100,5; 100,1”.
-d "dev_list" Specifies the list of devices in an Admin Domain, in quotation marks. Separate each entry in the device list with a semicolon (;). Valid formats include:

\(D,PI \) Uses existing zone \(D,PI \) member types. Benefits include:

- Grants port control and zoning on the switch port and the devices attached to that port.
- \(PI \) can be specified as a range; for example, \(D,[0-34] \). The port index range is expanded and stored internally.
- The same \(D,PI \) members can be specified in more than one Admin Domain.

Device WWN Uses traditional zone WWN member types. Benefits include:

- Supports node or port WWNs.
- End-device members, whose WWNs are used in an Admin Domain definition, need not be online when the Admin Domain is created (similar to a zoneCreate operation).
- Provides rights to zone the devices.
- Provides administrative view rights to the switch port the device is connected to.

-s "switch_list" Specifies the list of switches in an Admin Domain. The list must be enclosed in quotation marks. Separate each entry in the switch list with a semicolon (;). Specify the switch in one of the following formats:

Switch WWN World wide name of the switch.

Domain ID Any switch member specified in Domain ID format is converted into a switch WWN based on the current fabric information. Operations with switch list fail if the domain ID to switch WWN lookup fails.

Membership in an AD switch_list grants switch administrative operations such as switchDisable, switchEnable, reboot, ad, etc. on the switch. Ownership of a switch implicitly provides port control capability on all its ports, but no zoning control.

"command_list" Specifies one or more commands to execute in an Admin Domain context. This operand is valid only with the --exec option.

new_ad_id Specifies a new Admin Domain name or number. This operand is valid only with the --rename option. Format is the same as ad_id.

-i Displays the implicit members of AD0. This operand is valid only with the --show option.

-m mode Specifies the mode in which Admin Domain configuration information is displayed. This operand is valid only with --show and --validate. Valid values for mode include:

0 Displays the Admin Domain configuration in the current transaction buffer.

1 Displays the Admin Domain configuration stored in persistent memory (defined configuration).

2 Displays the currently enforced Admin Domain configuration currently enforced (effective configuration).
Examples

To enable AD5:

```
switch:admin> ad --activate 5
You are about to activate a new admin domain.
Do you want to activate '5' admin domain (yes, y, no, n): [no] y
```

To enable AD_13:

```
switch:admin> ad --activate AD_13
```

To add new device members to AD1:

```
switch:admin> ad --add AD1, -d "100,5; 4,1"
```

To apply all changes made to the Admin Domain configurations since --apply was last executed:

```
switch:admin> ad --apply
You are about to enforce the saved AD configuration.
This action will trigger ad --apply to all switches in the fabric.
Do you want to apply all admin domains (yes, y, no, n): [no] y
```

To clear all Admin Domain definitions:

```
switch:admin> ad --clear
You are about to delete all ADs definitions.
This operation will fail if zone configurations exists in AD1-AD254
Do you want to clear all admin domains (yes, y, no, n): [no] y
```

To create an Admin Domain with a mix of D,PI, WWNs, and zone alias device members (two different methods shown):

```
switch admin> ad --create "AD1", -d "100,5; 1,3; 20:00:00:e0:8b:05:4d:05"
switch admin> ad --create 1, -d "100,5; 1,3; 21:00:00:e0:8b:05:4d:05"
```

To create an Admin Domain with two switches identified by domain ID and switch WWN:

```
switch:admin> ad --create "AD1", -s "100; 10:00:00:60:69:80:59:13"
```

To create an Admin Domain with a device list and a switch list:

```
switch:admin> ad --create "AD1", -d "100,5; 1,3; 21:20:00:00:e0:8b:05:4d:05" -s "100; 10:00:00:60:69:80:59:13"
```

To deactivate Admin Domain 5:

```
switch:admin> ad --deactivate 5
You are about to deactivate an AD.
This operation will fail if an effective zone configuration exists in the AD
Do you want to deactivate '5' admin domain (yes, y, no, n): [no] y
```

To delete AD13:

```
switch:admin> ad --delete 13
You are about to delete an AD.
```
This operation will fail if an effective zone configuration exists in the AD.
Do you want to delete '13' admin domain (yes, y, no, n): [no] y

To execute `switchShow` in an AD7 context (using the current `user_id`):

```bash
switch:admin> ad --exec 7 "switchshow"
```

To rename Eng_AD to Eng_AD2:

```bash
switch:admin> ad --rename Eng_AD Eng_AD2
```

To rename AD 200 to Eng_AD200:

```bash
switch:admin> ad --rename 200 Eng_AD200
```

To rename a user-assigned Admin Domain name to a reserved Admin Domain name (this operation fails if AD_test's AD number is not 200):

```bash
switch:admin> ad --rename AD_test AD200
```

To remove the devices 100,5 and 1,3 from AD1:

```bash
switch:admin> ad --remove "AD1", -d "100,5; 1,3; 21:00:00:e0:8b:05:4d:05"
```

To remove the switch 100 from AD1:

```bash
switch:admin> ad --remove "AD1", -s "100"
```

To save any outstanding Admin Domain definition-related transaction buffer:

```bash
switch:admin> ad --save
```

You are about to save the outstanding AD membership.
This action will only save the changes to Defined configuration.
Any changes made will be enforced only on ad --apply.
Do you want to save admin domains (yes, y, no, n): [no] y

To select a new Admin Domain context by specifying the AD number:

```bash
switch:admin> ad --select 12
```

To display all ADs:

```bash
switch:admin> ad --show
Current AD: 255 : AD255

Transaction buffer configuration:  
---------------------------------  
no configuration

Defined configuration:  
----------------------  
AD: 1 :         AD1     Active

Device WWN members:  
21:00:00:80:e5:12:8b:37;
21:00:00:80:e5:12:8b:55;  
```
Switch port members: 1,0; 1,1; 1,2; 1,3; 1,4; 1,5;
1,6; 1,7; 1,8; 1,9; 1,10; 1,11;
1,12; 1,13; 1,14; 1,15;
Switch WWN members: 10:00:00:60:69:00:02:53;
Effective configuration:

AD: 1 : AD1 Active

Device WWN members: 21:00:00:80:e5:12:8b:37;
21:00:00:80:e5:12:8b:55;
Switch port members: 1,0; 1,1; 1,2; 1,3; 1,4; 1,5;
1,6; 1,7; 1,8; 1,9; 1,10; 1,11;
1,12; 1,13; 1,14; 1,15;
Switch WWN members: 10:00:00:60:69:00:02:53;

To display the AD1 configuration information in the transaction buffer:

switch:admin> ad --show 1 -m 0
Current AD: 255 : AD255
Transaction buffer configuration:

no configuration

To display the AD10 configuration information in persistent storage:

switch:admin> ad --show 10 -m 1
Current AD: 255 : AD255
Defined configuration:

AD: 1 : AD1 Active

Device WWN members: 21:00:00:80:e5:12:8b:37;
21:00:00:80:e5:12:8b:55;
Switch port members: 1,0; 1,1; 1,2; 1,3; 1,4; 1,5;
1,6; 1,7; 1,8; 1,9; 1,10; 1,11;
1,12; 1,13; 1,14; 1,15;
Switch WWN members: 10:00:00:60:69:00:02:53;

To display the Admin Domain effective configuration information:

switch:admin> ad --show -m 2
Current AD: 255 : AD255
Effective configuration:

AD: 1 : AD1 Active

Device WWN members: 21:00:00:80:e5:12:8b:37;
21:00:00:80:e5:12:8b:55;
Switch port members: 1,0; 1,1; 1,2; 1,3; 1,4; 1,5;
1,6; 1,7; 1,8; 1,9; 1,10; 1,11;
1,12; 1,13; 1,14; 1,15;
Switch WWN members: 10:00:00:60:69:00:02:53;
To display the configuration information in the transaction buffer:

 switch:admin> ad --validate
 Current AD Number: 255 AD Name: AD255

Transaction buffer configuration:

no configuration

Defined configuration:

AD Number: 1 AD Name: AD1 State: Inactive
 Device WWN members: 10:00:00:00:00:01:00:00;
 10:00:00:00:00:04:00:00;
 10:00:00:00:00:05:00:00;
 10:00:00:00:00:06:00:00;
 10:00:00:00:00:08:00:00;
 10:00:00:00:00:03:00:00;
 10:00:00:00:00:02:00:00;
 10:00:00:00:00:07:00:00;
 10:00:00:00:00:15:00:00;
 10:00:00:00:00:16:00:00;
 10:00:00:00:00:17:00:00;
 10:00:00:00:00:18:00:00;
 10:00:00:00:00:11:00:00;
 10:00:00:00:00:12:00:00;
 10:00:00:00:00:13:00:00;
 10:00:00:00:00:14:00:00;

AD Number: 2 AD Name: ad2 State: Inactive
 Device WWN members: 10:00:00:06:2b:12:68:2b;
 10:00:00:06:2b:12:68:3f;
 Switch port members: 1,8; 69,16;

AD Number: 3 AD Name: AD3 State: Inactive
 10:00:00:06:2b:12:64:54;
 Switch port members: 3,28; 3,29; 3,30; 3,31; 69,16;
 69,18; 69,19; 69,21; 1,115;
 1,118; 1,120; 1,121; 2,52;
 2,53; 2,54; 2,55; 1,221;

AD Number: 4 AD Name: roger_auto State: Inactive

AD Number: 5 AD Name: AD5 State: Inactive
 Device WWN members: 10:00:00:06:2b:12:69:ff*;
 10:00:00:06:2b:12:68:3f;
 Switch port members: 1,343;

AD Number: 50 AD Name: AD50 State: Active
Device WWN members: 10:00:00:00:00:17:00:00; 10:00:00:00:00:15:00:00;
Switch port members: 2,52; 2,53; 2,54; 2,55; 21,5; 3,28; 3,29; 98,72; 98,75; 69,16; 69,18; 69,21; 1,336; 1,337;

AD Number: 55 AD Name: AD55 State: Inactive
Device WWN members: 10:00:00:00:00:03:00:00; 10:00:00:00:00:04:00:00; 10:00:00:00:00:00:12:00:00; 10:00:00:00:00:11:00:00; 10:00:00:00:00:00:13:00:00; 10:00:00:00:00:14:00:00; 10:00:00:00:00:00:05:00:00; 10:00:00:00:00:00:06:00:00; 10:00:00:00:00:00:08:00:00; 10:00:00:00:00:00:01:00:00; 10:00:00:00:00:00:02:00:00; 10:00:00:00:00:00:00:18:00:00; 10:00:00:00:00:00:16:00:00; 10:00:00:00:00:00:17:00:00; 10:00:00:00:00:00:15:00:00; 10:00:00:00:00:00:07:00:00;

Effective configuration: --
AD Number: 50 AD Name: AD50 State: Active
Device WWN members: 10:00:00:00:00:17:00:00; 10:00:00:00:00:15:00:00;
Switch port members: 2,52; 2,53; 2,54; 2,55; 21,5; 3,28; 3,29; 98,72; 98,75; 69,16; 69,18; 69,21; 1,336; 1,337;

* - Member does not exist + - Member is AD Unaware

To abort the Admin Domain management transaction buffer:
```
switch:admin> ad --transabort
You are about to abort the outstanding AD transaction.
Do you want to abort the AD transaction (yes, y, no, n): [no] y
```

To display the current Admin Domain transaction:
```
switch:admin> ad --transshow
Current transaction token is 26816
It is abortable
switch:admin> ad --transshow
There is no outstanding zoning transaction
```

See Also cfgSave, cfgTransShow, defZone, logout.
ag

Enables Access Gateway (AG) and manages AG-specific operations.

Synopsis

ag --help
ag --show
ag --modeshow | --modeenable | --modedisable
ag [--policyenable | --policydisable] policy
ag --policyshow
ag --mapshow [N_Port]
ag [--mapset | --mapadd | --mapdel] N_Port [F_Port1; F_Port2;...]
ag --pgshow [pgid]
ag --pgcreate pgid "N_Port1 [:N_Port2;...]" [-n pgname]
ag [--pgadd | --pgdel] pgid "N_Port1 [: N_Port2;...]
ag --pgrename pgid newname
ag --pgremove pgid
ag [--failoverenable | --failoverdisable] N_Port
ag --failovershow [N_Port]
ag [--failbackenable | --failbackdisable] N_Port
ag --failovershow [N_Port]
ag [--prefset | --prefdel] "F_Port [:F_Port2;...]" N_Port
ag --prefshow
ag [--adsset | --adsadd | --adssdel] "F_Port [:F_Port2;...]""WWN [:WWN2;...]"
ag --adsshow

Description

Use this command to perform the following Access Gateway management functions:

- Enable or disable Access Gateway mode.
- Display current configuration and state of AG.
- Configure and display F_Port to N_Port mapping.
- Configure N_Port failover and failback policies.
- Configure and display Port Group policy.
- Create or remove a Port group.
- Display Port Groups and Member N_Ports.
- Add or delete N_Ports in Port group.
- Display all policies and their status.
- Enable or disable Auto Port configuration policy.
- Enable or disable preferred Secondary N_Port policy.
- Enable, disable, and manage Advanced Device Security (ADS) policy.
AG configuration changes are saved persistently as config keys. Use the `portCfgnPort` command to set a port as N_Port.

Notes
AG is supported only on selected Brocade hardware platforms. Refer to the Access Gateway Administrator’s Guide for Hardware support and AG configuration procedures.

In non-AG mode, the only two actions available are `--modeenable` and `--modeshow`.

Operands
The command takes as input an action and its associated arguments. Without any specified action, the command prints out the usage.

- `--help` Displays command usage.
- `--show` Displays the current configuration of the Access Gateway. This includes all N_Ports and F_Ports that are currently online, failover and failback settings as well as any online F_Ports that are currently mapped to N_Ports. Failover and failback policies are displayed as enabled (1) or disabled (0).
- `--modeshow` Displays the current Access Gateway operating mode of the switch as either enabled or disabled.
- `--modeenable` Enables Access Gateway mode on a switch. Long distance mode settings should be cleared for all ports on the NPIV edge switch to which the AG is connected. Otherwise, the NPIV switch port displays the long distance port type along with the F_Port.
- `--modedisable` Disables Access Gateway mode on a switch. After AG mode is disabled, the switch reboots automatically and will come online with default zone access set to "No Access". In order to merge the switch to a fabric, set the default zone to "All Access" and disable/enable the E_Port.
- `--policyshow` Displays the supported AG Port policies and their status as either enabled or disabled. AG supports three types of policies:
 - **Port Grouping (pg) policy**: This policy manages failover of an F_Port to a set of related N_Ports in a port group.
 - **Auto Port Configuration (auto)**: When this policy is enabled, the AG enabled switch automatically detects available ports and map F_Ports to N_Ports. Auto Port Configuration is disabled by default.
 - **Advanced Device Security (ADS) policy**: This policy restricts access to the Fabric at the AG level to a set of authorized devices. Unauthorized access is rejected and a message is logged in RASLOG. You can configure the list of allowed devices for each F_Port by specifying their Port WWN. Refer to the `ag --ads*` commands for information on managing advanced device security. ADS policy is disabled by default, which means that all devices can connect to the switch.
- `--policyenable policy` Enables the specified port policy for the Access Gateway. When a new policy is enabled, all port related configuration settings are lost. Use the `configUpload` command to save the current port configuration. Valid policies are:
 - `pg` Enables the port grouping policy. A default port group "pg0" is created, which includes all configured N_Ports assigned to the policy. Enabling port grouping policy disables the Get Fabric Name policy.
auto Enables the automatic port configuration policy. When enabled, this policy applies to all ports on the switch. All F_Port to N_Port mapping and port group configurations are ignored.

ads Enables the advanced device security (ADS) policy. When enabled, this policy applies to all the ports on the switch. By default all devices have access to the fabric on all ports.

```
--policydisable policy
```

Disables the specified policy for the Access Gateway. When a policy is disabled, all port-related configuration settings are lost. Use the `configUpload` command to save the current port configuration. Valid policies are:

```
pg Disables the port grouping policy. All port group configurations are deleted. Disabling port grouping policy enables the Get Fabric Name policy.
```

```
auto Disables the automatic port configuration policy and deletes all associated configuration settings.
```

```
ads Disables the advanced device security (ADS) policy and deletes all lists of allowed device WWNs.
```

```
--mapshow [N_Port]
```

Displays the F_Ports that are configured and currently mapped to a given “primary” N_Port. Optionally specify an N_Port to display the F_Ports that are mapped to this specified N_Port only. Failover and failback policies are displayed as enabled (1) or disabled (0).

```
--mapset N_Port [F_Port1; F_Port2;...]
```

Maps a set of F_Ports to a specified “primary” N_Port forcing all traffic from the F_Ports to be routed through this N_Port to the attached fabric. An F_Port cannot be mapped to more than one primary N_Port at any given time. F_Ports are enabled only if the N_Port is online. This command overwrites existing port mappings. Use a blank list ("") to clear current mappings.

```
--mapadd N_Port F_Port11 [: F_Port21;...]
```

Adds one or more specified F_Ports to the mapping of an existing “primary” N_Port. The traffic for the configured F_Ports are routed to the fabric through the specified N_Port when the F_Ports come online. An F_Port cannot be mapped to more than one primary N_Port at the same time.

```
--mapdel N_Port F_Port11 [: F_Port21;...]
```

Deletes one or more specified F_Ports from the “primary” N_Port mapping.

```
--pgshow [pgid]
```

Displays Port Group configuration. The port grouping feature supports specifying a set of N_Ports to be included in the Port Group (PG) Policy. The factory default PG is "pg0", which includes all N_Ports. It cannot be removed or renamed.

```
--pgcreate- pgid “N_Port11 [: N_Port21;...]” [-n pgname]
```

Creates a port group with the ID pgid and a specified list of N_Ports to be included in the policy. The list must be enclosed in quotation marks. Ports must be separated by semicolons. Maximum numbers of ports allowed in a port group is MAX_PORT. Port Group ID must not exceed 64 characters.

```
--pgadd pgid "N_Port1 ; N_Port2;..."
```

Adds one or more N_Ports to the specified port group. The port list must be enclosed in quotation marks. Ports must be separated by semicolons.

```
--pgdel pgid "N_Port1 ; N_Port2;..."
```

Deletes one or more N_Ports from the specified port group. Deleted ports are added to the default port group "pg0". The port list must be enclosed in quotation marks. Ports must be separated by semicolons.

```
--pgrename pgid newname
```

Replaces the name of an existing port group with the specified new name. Port Group ID must not exceed 64 characters.

```
--pgremove pgid
```

Deletes the specified port group. The N_Ports in the Port Group that was deleted are moved to the default Port Group, which is pgid 0.

```
--failoverenable N_Port
```

Enables the failover policy for a given N_Port. When failover policy is enabled for a given N_Port, F_Ports behave as follows:

- If only primary F_Port to N_Port mapping is in place, all currently mapped F_Ports will fail over to another available N_Port in the event the original N_Port becomes disabled. If multiple N_Ports are available for failover, F_Ports are evenly balanced across all available N_Ports. If no other N_Port is available, failover does not occur.
- If preferred Secondary F_Port to N_Port Mapping is in place, the F_Ports are be routed through the preferred Secondary N_Port. If the preferred Secondary N_Port is offline, the F_Ports are be disabled.

```
--failoverdisable N_Port
```

Disables the failover policy for a given N_Port.

```
--failovershow [N_Port]
```

If N_Port is specified (optional), the command displays the failover policy for this N_Port. Otherwise, the failover policy for all the N_Ports is displayed. Failover is displayed as enabled (1) or disabled (0).

```
--failbackenable N_Port
```

Enables the failback policy for a specified N_Port. When failback policy is enabled, ports behave as follows:

- If only primary F_Port to N_Port mapping is in place, all F_Ports are automatically rerouted back to the N_Ports to which they were originally mapped as those N_Ports come back online. Only the originally mapped F_Ports fail back. In the case of multiple N_Port failures, only F_Ports that were mapped to the recovered N_Port experience failback. The remaining F_Ports are not redistributed among the online N_Ports during the failback.
If preferred Secondary F_Port to N_Port Mapping is in place, and the primary N_Port comes back online, then the F_Ports are re-routed through the primary N_Port. If the secondary N_Port comes online, while the primary N_Port is still offline, F_Ports are re-routed through the Secondary N_Port.

--failbackdisable N_Port
Disables the failback policy for the specified N_Port

--failbackshow [N_Port]
If N_Port is specified (optional), the command displays the failback policy for this N_Port. Otherwise, the failover policy for all the N_Ports is displayed. The failback policy is displayed as disabled (0) or enabled (1).

--prefset "F_Port [;F_Port2;...]":" N_Port
Sets the preferred Secondary N_Port for one or more F_Ports. Preferred mapping is optional. Preferred F_Port to N_Port Mapping provides an alternate N_Port for F_Ports to come online for predictable failover and failback. An F_Port must have primary N_Port mapping before a secondary N_Port can be configured. The list of F_Ports to be mapped must be enclosed in quotation marks. Port numbers must be separated by semicolons.

--prefdel "F_Port [;F_Port2;...]":" N_Port
Deletes the preferred Secondary N_Port for the specified F_Ports. The list of F_Ports to be deleted from the secondary mapping must be enclosed in quotation marks. Port numbers must be separated by semicolons.

--prefshow
Displays the preferred Secondary N_Port for all F_Ports.

--adsset "F_Port [;F_Port2;...]":"WWN [;WWN2;...]
Sets the list of devices that are allowed to login to a specified set of F_Ports. Devices are specified by their world wide names. Lists must be enclosed in double quotation marks. List members must be separated by semicolons. The maximum number of entries in the allowed device list is twice the per port maximum login count. Replace the WWN list with an asterisk (*) to indicate all access on the specified F_Port list. Replace the F_Port list with an asterisk (*) to add the specified WWNs to all the F_Ports' allow lists. A blank WWN list (**) indicates no access. ADS policy must be enabled for this command to succeed.

--adsadd "F_Port [;F_Port2;...]":"WWN [;WWN2;...]
Adds the specified WWNs to the list of devices allowed to login to the specified F_Ports. Lists must be enclosed in double quotation marks. List members must be separated by semicolons. Replace the F_Port list with an asterisk (*) to add the specified WWNs to all the F_Ports' allow lists. ADS policy must be enabled for this command to succeed.

--adsdel "F_Port [;F_Port2;...]":"WWN [;WWN2;...]"
ag

Deletes the specified WWNs from the list of devices allowed to login to the specified F_Ports. Lists must be enclosed in double quotation marks. List members must be separated by semicolons. Replace the F_Port list with an asterisk (*) to remove the specified WWNs from all the F_Ports' allow lists. ADS policy must be enabled for this command to succeed.

--adsshow

Displays the lists of allowed device WWNs for all F_Ports.

Examples AG show commands

1. To displays the current state of the Access Gateway with Failover (FO) and Failback (FB) enabled on N_Ports 9 and 12:

 switch:admin> ag --show
 Name : switch_ST1
 NodeName : 10:00:00:05:1e:35:9b:e7
 Number of Ports : 16
 IP Address(es) : 10.115.74.53
 Firmware Version : v6.0.0
 N_Ports : 4
 F_Ports : 10
 Policies enabled : pg
 Port Group information :
 PG_ID PG_Members PG_Name
 --
 0 1;3 pg0
 2 0;2 SecondFabric
 --
 Fabric Information :
 Attached Fabric Name N_Ports

 10:00:00:05:1e:34:01:d7 0;1;2;3

 N_Port information :
 Port PortID Attached PWWN FO FB IP_Addr F_Ports

 0 0x6d0a00 20:0a:00:05:1e:37:11:aa 1 0 10.32.74.109 4;5;6;
 1 0x6d0b00 20:0b:00:05:1e:37:11:aa 0 1 10.32.74.109 7;8;9;
 2 0x6d0c00 20:0c:00:05:1e:37:11:aa 1 0 10.32.74.109 10;11;
 3 0x6d0d00 20:0d:00:05:1e:37:11:aa 0 1 10.32.74.109 12;13;

 F_Port information :
 Port PortID Attached PWWN N_Port Preferred N_port

 4 0x6d0a01 21:00:00:e0:8b:83:e3:cd 0 2
 5 0x6d0a02 21:01:00:e0:8b:a3:3e:cd 0 2
 6 0x6d0a03 21:01:00:e0:8b:83:3e:ce 0 2
 7 0x6d0b01 21:01:00:e0:8b:a3:3e:ce 1 3
 8 0x6d0b02 21:00:00:e0:8b:83:5c:cd 1 3
 9 0x6d0b03 21:01:00:e0:8b:a3:5c:cd 1 3
 10 0x6d0c02 10:00:00:06:2b:0a:a3:93 2 0
 11 0x6d0c01 10:00:00:06:2b:0a:a3:92 2 0
 12 0x6d0d02 10:00:00:06:2b:0a:a3:91 3 1
 13 0x6d0d01 10:00:00:06:2b:0a:a3:90 3 1

2. To display the current Access Gateway mode:

 switch:admin> ag --modeshow
 Access Gateway mode is enabled.
switch:admin> **ag --modeshow**
Access Gateway mode is NOT enabled.

AG group policy commands

1. To show current policies:
 switch:admin> **ag --policyshow**
 Policy_Description Policy_Name State
 --
 Port Grouping pg Enabled
 Auto Port Configuration auto Disabled
 Advanced Device Security ads Disabled
 --
 switch:admin> **ag --policyshow**
 Policy_Description Policy_Name State
 --
 Port Grouping pg Disabled
 Auto Port Configuration auto Enabled
 Advanced Device Security ads Enabled
 --

2. To enable a port grouping policy:
 switch:admin> **ag --policyenable pg**

3. To disable a port grouping policy
 switch:admin> **ag --policydisable pg**

4. To enable auto policy when both policies are disabled and the switch is already disabled:
 switch:admin> **ag --policyenable auto**
 All Port related configurations will be lost.
 Please save the current configuration using configupload.
 Do you want to continue? (yes, y, no, n): [no] y

5. To disable auto policy when the switch is disabled:
 switch:admin> **ag --policydisable auto**
 Default factory settings will be restored.
 Default mappings will come into effect.
 Please save the current configuration using configupload.
 Do you want to continue? (yes, y, no, n): [no] y
 Access Gateway configuration has been restored to factory default

6. To enable ADS policy:
 switch:admin> **ag-policynable ads**
 The policy ADS is enabled

7. To disable ADS policy:
 switch:admin> **ag-policydisable ads**
 The policy ADS is disabled
AG port mapping commands

1. To display current port mappings and port grouping policies:

 switch:admin> ag --mapshow
 N_Port Configured_F_Ports Current_F_Ports Failover Failback PG_ID PG_Name
 0 | 4;5;6 | 4;5;6 | 1 | 0 | 2 | SecondFabric
 1 | 7;8;9 | 7;8;9 | 0 | 1 | 0 | pg0
 2 | 10;11 | 10;11 | 1 | 0 | 0 | SecondFabric
 3 | 12;13 | 12;13 | 0 | 1 | 0 | pg0

 Explanation of fields in --mapshow output:
 - Current F_Ports are the F_Ports that are currently online and mapped to a given N_Port either because they are mapped to that N_Port or as a result of N_Port failover.
 - Configured F_Ports are the F_Ports that are explicitly mapped to this N_Port (saved in config).
 - Failover and Failback indicate whether or not N_Port policy is enabled (1) or disabled (0).
 - PG_ID is the Port Group ID and PG_Name is the Port Group Name.

2. To clear all F_Ports mapped to the configured primary N_Port 0:

 switch:admin> ag --mapset 0 ""
 F_Port to N_Port mapping has been updated successfully

3. To add F_Ports 4 and 6 to N_Port 0 (observe that Port 0 has no configured F_Ports):

 switch:admin> ag --mapset 0 "4;6"
 F_Port to N_Port mapping has been updated successfully

4. To add F_Port 5 to N_Port 2 (observe that N_Port 2 already has mapped F_Ports):

 switch:admin> ag --mapadd 2 "5"

5. To display the new mappings:

 switch:admin> ag --mapshow
 N_Port Configured_F_Ports Current_F_Ports Failover Failback PG_ID PG_Name
 0 | 4;6 | 4;6 | 1 | 0 | 2 | SecondFabric
 1 | 7;8;9 | 7;8;9 | 0 | 1 | 0 | pg0
 2 | 5;10;11 | 5;10;11 | 1 | 0 | 0 | SecondFabric
 3 | 12;13 | 12;13 | 0 | 1 | 0 | pg0

6. To delete F_Port 5 that was mapped to N_Port 2:

 switch:admin> ag --mapdel 2 "5"
 Preferred N_port is set for F_Port[s]
 Please delete it before removing primary N_Port
 ERROR:Unable to remove F_Port[s] from mapping, retry the command

 switch:admin> ag --prefshow
 F_Ports Preferred N_Port
 --
 10;11 | 0
 4;5;6 | 2
 7;8;9 | 3
 --
NOTE: Preferred Port commands are discussed in detail below.

AG failover policy commands

1. To display failover policy settings for all N_Ports:
 switch:admin> ag --failovershow
 N_Port failover_bit

 0 1
 1 0
 2 1
 3 0

2. To set and display failover and failback policies on a single port:
 switch:admin> ag --failoverenable 1
 Failover policy is enabled for port 1
 switch:admin> ag --failoverdisable 0
 Failover policy is disabled for port 0
 switch:admin> ag --failovershow 0
 Failover on N_Port 0 is not supported
 switch:admin> ag --failbackdisable 2
 Failback policy is disabled for port 2
 admin> ag --failbackshow 2
 Failback on N_Port 2 is not supported
 switch:admin> ag --failbackenable 2
 Failback policy is enabled for port 2

3. To display failback policy settings for all the N_Ports:
 switch:admin> ag --failbackshow
 N_Port failback_bit

 0 0
 1 1
 2 0
 3 1

4. To set and display failback policy settings on a single port:
 switch:admin> ag --failbackenable 0
 Failback policy cannot be enabled since failover policy is disabled for port 0
 switch:admin> ag --failbackenable 2
 Failback policy is enabled for port 2
 switch:admin> ag --failbackenable 3
 Failback on N_Port 3 is not supported
Port Group commands

1. To display Port Group information:

 switch:admin> ag --pgshow
 PG_ID N_Ports PG_Name

 0 1;3 pg0
 2 0;2 SecondFabric

2. To create a port group “FirstFabric” that includes N_Ports 1 and 3:

 switch:admin> ag --pgcreate 3 "1;3" -n FirstFabric
 Port Group 3 created successfully

 switch:admin> ag --pgshow
 Port Group ID Port Group Name

 0 None pg0
 2 0;2 SecondFabric
 3 1;3 FirstFabric

3. To rename port group with pgid 2 to "MyEvenFabric"

 switch:admin> ag --pgrename 2 MyEvenFabric
 Port Group 2 has been renamed as MyEvenFabric successfully

 switch:admin> ag --pgshow
 PG_ID N_Ports PG_Name

 0 None pg0
 2 0;2 MyEvenFabric
 3 1;3 FirstFabric

4. To remove port group with pgid 2:

 switch:admin> ag --pgremove 2
 Port Group 2 has been removed successfully

 switch:admin> ag --pgshow
 PG_ID N_Ports PG_Name

 0 0;2 pg0
 3 1;3 FirstFabric

AG Preferred port information commands

1. To display preferred port settings for F_Ports:

 switch:admin> ag --prefshow
 F_Ports Preferred N_Port

 10;11 0
 12;13 1
 4;6 2

2. To delete secondary port mapping for F_Ports 7, 8 and 9:
 switch:admin> ag --prefdel "7;8;9" 3
 Preferred N_Port is deleted successfully for the F_Port[s]

3. To set secondary port mapping for F_Ports 7, 8 and 9:
 switch:admin> ag --prefset "7;8;9" 3
 Preferred N_Port is set successfully for the F_Port[s]

ADS Policy commands
1. To set the list of allowed devices for Ports 11 and 12 to ‘no access’:
 switch:admin> ag--adsset "11;12"
 WWN list set successfully as the Allow Lists of the F_Port[s]

1. To set the list of allowed devices for Ports 1, 10 and 13 to ‘all access’:
 switch:admin> ag--adsset "1;10;13" *
 WWN list set successfully as the Allow Lists of the F_Port[s]

2. To remove two devices from the lists of allowed devices for ports 1 and 9:
 switch:admin> ag--adsdelf "3;9" "22:03:08:00:88:35:a0:12;22:00:00:e0:8b:88:01:8b"
 WWNs removed successfully from Allow Lists of the F_Port[s]

3. To add a two new device to the lists of allowed devices for ports 1 and 9:
 switch:admin> ag--adsadd "3;9" "20:03:08:00:88:35:a0:12;21:00:00:e0:8b:88:01:8b"
 WWNs added successfully to Allow Lists of the F_Port[s]

4. To display the lists of allowed devices on the switch:
 switch:admin> ag--adsshow
<table>
<thead>
<tr>
<th>F_Port</th>
<th>WWNs Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ALL ACCESS</td>
</tr>
<tr>
<td>3</td>
<td>20:03:08:00:88:35:a0:12</td>
</tr>
<tr>
<td></td>
<td>21:00:00:e0:8b:88:01:8b</td>
</tr>
<tr>
<td>9</td>
<td>20:03:08:00:88:35:a0:12</td>
</tr>
<tr>
<td></td>
<td>21:00:00:e0:8b:88:01:8b</td>
</tr>
<tr>
<td>10</td>
<td>ALL ACCESS</td>
</tr>
<tr>
<td>11</td>
<td>NO ACCESS</td>
</tr>
<tr>
<td>12</td>
<td>NO ACCESS</td>
</tr>
<tr>
<td>13</td>
<td>ALL ACCESS</td>
</tr>
</tbody>
</table>

See Also | portCfgNPNI, portCfgNPPIVPort
agshow

Displays the Access Gateway information registered with the fabric.

Synopsis agshow --name [ag_name] | [--local]

Description This command displays the details of the F_Ports and the configured N_Ports in the Access
Gateway attached to the fabric shows the following information.

Name The name of the Access Gateway.

Ports The number of ports in the Access Gateway.

Enet IP Addr The IP address of the Access Gateway.

Firmware Current firmware running on the Access Gateway.

Local/Remote Indicates whether the Access Gateway is locally or remotely registered to this switch.

World Wide Name The World Wide Name (WWN) of the given Access Gateway.

N-Port ID(s) The port ids of the N_Ports configured in the given Access Gateway.

N-Ports The number of configured N_Ports that are online.

F-Ports The number of F_Ports that are online.

Attached F-Port information Displays the PortID and the Port WWN of each F_Port that is online on the
Access Gateway.

Note NPIV capability should be enabled on the ports connected to the Access Gateway. Use
portCfgNPIVPort to enable NPIV capability on the specific port.

Operands This command has the following optional operands:

ag_name Use this option to display the information regarding a specific Access Gateway
that is registered with this fabric.

--local Use this option to display the information of all Access Gateways that are
locally registered to this switch

Examples To display the Access Gateway information registered with the fabric:

switch:admin> agshow --name WT_Stealth

Name : WT_Stealth
World Wide Name : 10:00:00:05:1e:34:e4:bd
N-Port ID(s) : 0x010200
Number of Ports : 16
IP Address(es) : 10.202.90.231
Firmware Version : v1.0.0
N-Ports : 1
F-Ports : 2
Attached F-Port information:
 PortID Port WWN

0x01020a 10:00:00:0:0:c9:3f:7c:86
0x01020a 10:00:00:0:0:c9:3f:7c:86
To display the locally registered Access Gateways:

```
switch:admin> agshow --local
```

<table>
<thead>
<tr>
<th>Worldwide Name</th>
<th>Ports</th>
<th>Enet IP Addr</th>
<th>Firmware</th>
<th>Local/Remote</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00:00:05:1e:04:06:ae</td>
<td>24</td>
<td>10.32.173.64</td>
<td>v6.0.0</td>
<td>local</td>
<td>L5D2_B14_4024_1</td>
</tr>
</tbody>
</table>

To display all Access Gateways attached to the fabric:

```
switch:admin> agshow
```

<table>
<thead>
<tr>
<th>Worldwide Name</th>
<th>Ports</th>
<th>Enet IP Addr</th>
<th>Firmware</th>
<th>Local/Remote</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00:00:05:1e:02:b7:2c</td>
<td>16</td>
<td>10.32.173.62</td>
<td>v6.0.0</td>
<td>remote</td>
<td>L5D2_B10_4016_1</td>
</tr>
<tr>
<td>10:00:00:05:1e:04:06:ae</td>
<td>24</td>
<td>10.32.173.64</td>
<td>v6.0.0</td>
<td>local</td>
<td>L5D2_B14_4024_1</td>
</tr>
<tr>
<td>10:00:00:05:1e:35:10:69</td>
<td>16</td>
<td>10.32.173.51</td>
<td>v6.0.0</td>
<td>remote</td>
<td>L5D2_B13_200_AG</td>
</tr>
</tbody>
</table>

See Also portCfgNPIVPort
aliAdd

Add a member to a zone alias.

Synopsis

 aliadd "aliName", "member[; member...]"

Description

Use this command to add one or more members to an existing zone alias. The alias member list cannot contain another zone alias.

This command changes the defined configuration. For the change to become effective, enable the zone configuration with the cfgEnable command. For the change to be preserved across switch reboots, save the zone configuration to nonvolatile memory with cfgSave.

Note

When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands

The following operands are required:

 "aliName" Specify the name of a zone alias, enclosed in quotation marks.

 "member" Specify a member or list of members to be added to the alias, enclosed in quotation marks. Members must be separated by semicolons. An alias member can be specified by one or more of the following methods:

 • A switch domain and port area or index number pair. Use switchShow for a list of valid port area or index numbers.
 • WWN

Examples

To add members to zone aliases array1, array2, and loop1:

 switch:admin> aliadd "array1", "1,2"
 switch:admin> aliadd "array2", "21:00:00:20:37:0c:72:51"
 switch:admin> aliadd "loop1", "4,5[0x02]; 6,7[0xEF]"

See Also

 aliDelete, aliRemove, aliShow
aliCreate

Creates a zone alias.

Synopsis

`alicreate "aliName", "member[; member...]"

Description

Use this command to create a new zone alias. The zone alias member list must have at least one member (empty lists are not allowed). The alias member list cannot contain another zone alias. Refer to the `zoneCreate` command for more information on name and member specifications.

This command changes the defined configuration. For the change to become effective, enable the zone configuration with the `cfgEnable` command. For the change to be preserved across switch reboots, save the zone configuration to nonvolatile memory with the `cfgSave` command.

Note

When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands

The following operands are required:

```
"aliName"
```

Specify a name for the zone alias, in quotation marks. A zone alias name must begin with a letter and can be followed by any number of letters, digits and underscore characters. Names are case-sensitive. For example, “Ali_1” and “ali_1” are different zone aliases. Spaces are ignored.

```
"member"
```

Specify a member or list of members to be added to the alias, enclosed in quotation marks. Members must be separated by semicolons. An alias member can be specified by one or more of the following methods:

- A switch domain and port area or index number pair. Use `switchShow` for a list of valid port area or index numbers.
- WWN

Examples

To create a zone alias:

```bash
switch:admin> alicreate "array1", "2,32; 2,33; 2,34"
switch:admin> alicreate "array2", "21:00:00:20:37:0c:66:23"
switch:admin> alicreate "loop1", "4,5[0x02]; 6,7[0xEF]; 5,4"
```

See Also

`aliAdd`, `aliDelete`, `aliRemove`, `aliShow`
aliDelete

Deletes a zone alias.

Synopsis

aliDelete "aliName"

Description

Use this command to delete a zone alias. This command changes the defined configuration. For the change to become effective, enable the zone configuration with the cfgEnable command. For the change to be preserved across switch reboots, save the zone configuration to nonvolatile memory with the cfgSave command.

Note

When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands

The following operand is required:

"aliName" Specify the name of the zone alias to be deleted. This operand must be enclosed in quotation marks.

Examples

To delete the zone alias array2:

switch:admin> aliDelete "array2"

See Also

aliAdd, aliCreate, aliRemove, aliShow
aliRemove

Removes a member from a zone alias.

Synopsis aliRemove "aliName", "member[; member...]"

Description Use this command to remove one or more members from an existing zone alias.

If all members are removed, the zone alias is deleted.

This command changes the defined configuration. For the change to become effective, enable the
zone configuration with the cfgEnable command. For the change to be preserved across switch
reboots, save the zone configuration to nonvolatile memory with the cfgSave command.

Note When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands This command has the following operands:

"aliName" Specify the name of the zone alias from which members are to be removed in
quotation marks. This operand is required.

"member" Specify a member or list of members to be removed from the alias. The list
must be enclosed in quotation marks. Members must be separated by
semicolons. An alias member can be specified by one or more of the following
methods:

• A switch domain and port area or index number pair. Use switchShow for
a list of valid port area or index numbers.
• WWN

The member list is located by an exact string match; therefore, it is important
to maintain the order when removing multiple members. For example, if a
zone alias contains “1,2; 1,3; 1,4”, then removing“1,3; 1,4” succeeds but
removing “1,4; 1,3” fails.

Examples To remove a World Wide Name from “array1”:

switch:admin> aliRemove "array1", "3,5"
switch:admin> aliRemove "array1", "21:00:00:20:37:0c:76:8c"
switch:admin> aliRemove "array1", "0xEF"

See Also aliAdd, aliCreate, aliDelete, aliShow
aliShow

Displays zone alias information.

Synopsis

aliShow ["pattern"][, mode]

Description

Use this command to display zone configuration information.

Use the pattern operand to display only matching zone alias names in the defined configuration.

Note

When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands

When invoked without operand, this command displays all zone configuration information (defined and effective). Refer to cfgShow for a description of this display. The following operands are optional:

"pattern" A POSIX-style regular expression that matches zone alias names. This operand must be enclosed in quotation marks. Patterns may contain:

• Question mark (?) - matches any single character.
• Asterisk (*) - matches any string of characters.
• Range - matches any character within the range. Ranges must be enclosed in brackets: for example, [0-9] or [a-f].

mode Specify 0 to display the contents of the transaction buffer (the contents of the current transaction), or specify 1 to display the contents of the nonvolatile memory. The default value is 0.

If no parameters are specified, all zone configuration information (both defined and effective) is displayed. Refer to cfgShow for a description of this display.

Examples

To display all zone aliases beginning with “arr”:

 switch:admin> alishow *arr*
 alias: array1 21:00:00:20:37:0c:76:8c
 alias: array2 21:00:00:20:37:0c:66:23

See Also

aliAdd, aliCreate, aliDelete, aliRemove
aptPolicy

Changes or displays the Advanced Performance Tuning (APT) policy.

Synopsis

aptPolicy [ap_policy]

aptPolicy -ap <ap_policy>

Description

Use this command to manage advanced performance tuning (APT) policies on a switch or chassis. Several internal performance tuning parameters can be modified with this command. The default parameters (AP shared Link Policy) are optimized for most SAN applications; in most environments, there is no need to modify the default policy.

Notes

The switch must be disabled before using this command to change the current policy. Changes take effect immediately for all EX/VEX_Ports after the switch is re-enabled.

For details on performance-tuning, refer to the Fabric OS Administrator’s Guide.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

When invoked without arguments, this command displays the current list of advanced performance tuning (APT) policies supported on this switch, as well as the current policy.

This command has the following operand:

ap_policy

Specifies the APT policy. The following polices are supported:

1 Port-based routing policy. With this policy, the path chosen for an ingress frame is based on:
- Ingress port on which the frame was received
- Destination domain for the frame

The chosen path remains the same if Dynamic Load Sharing (DLS) is not enabled. If DLS is enabled, then a different path might be chosen on a fabric event. Refer to dlsSet for the definition of a fabric event.

This policy may provide better ISL utilization when there is little or no oversubscription of the ISLs.

Note that static routes are supported only with this policy.

3 Exchange-based routing policy (default). With this policy, the path chosen for an ingress frame is based on:
- Ingress port on which the frame was received
- FC address of the source fabric device (SID) for this frame
- FC address of the destination fabric device (DID) for this frame
- FC Originator Exchange ID (OXID) for this frame

This policy allows for optimal utilization of the available paths as I/O traffic between different (SID, DID, OXID) pairs can use different paths. All frames received on an ingress port with the same (SID, DID, OXID) parameters takes the same path unless there is a fabric event. Refer to disSet for the definition of a fabric event.
This policy does not support static routes. DLS is always enabled and the DLS setting cannot change with this policy.

-ap

Specifies an additional AP policy supported under exchange based policy (3). The following policies are supported:

0 AP Shared Link Policy (default).
1 AP Dedicated Link Policy. This policy dedicates some links to the ingress traffic and some links to the egress traffic.

Examples

To change the current APT policy:

 switch:admin> switchdisable
 switch:admin> aptpolicy -ap 1
 Policy updated successfully.
 switch:admin> switchenable
 switch:admin> aptpolicy
 Current Policy: 3 1(ap)
 3 0(ap): Default Policy
 1: Port Based Routing Policy
 3: Exchange Based Routing Policy
 0: AP Shared Link Policy
 1: AP Dedicated Link Policy

See Also dlsReset, dlsSet, dlsShow, switchDisable
auditCfg

Modifies and displays the audit log filter configuration.

Synopsis auditcfg --class audit_class
auditcfg --enable | --disable
auditcfg --show

Description Use this command to configure and display the audit log configuration. This command allows you to set filters by configuring certain classes, to add or remove any of the classes in the filter list, and to enable or disabled the filters. Based on the configuration, certain classes are logged to syslog for auditing. Systlog configuration is required for logging audit messages. Use the syslogdIpAdd command to add the syslogd server IP address.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

--class Configures filters for a specified audit class. To add or remove any of the classes in the filter list, re-issue the --class option.

audit_class Specifies the filters to be configured. Valid values are: 1-ZONE, 2-SECURITY, 3-CONFIGURATION, 4-FIRMWARE and 5-FABRIC filters. This operand is required.

--show Displays the current configuration. This operand is optional.

--enable Enables all filters.

--disable Disables all filters.

Examples To configure the audit log filter, disable audit logging, and show the configuration:

switch:admin> auditcfg --class 2,3
Audit filter is configured.

switch:admin> auditcfg --disable
Audit filter is disabled.

switch:admin> auditcfg --show
Audit filter is disabled.
2-SECURITY
3-CONFIGURATION

See Also none
authUtil

Displays and sets the authentication configuration.

Synopsis

authutil
authutil --show
authutil --set option value
authutil --policy -sw option | -dev option
authutil --authinit [slotnumber]/portnumber[, [slotnumber]/portnumber...] | all

Description

Use this command to display and set local switch authentication parameters.

Use --set to change authentication parameters such as protocol, Diffie-Hellman group (DH group),
or hash type. When no protocol is set, the default setting of “FCAP, DH-CHAP” is used. When no
group is set, the default setting of “*” (meaning “0,1,2,3,4”) is used. Configuration settings are
saved persistently across reboots. Configuration changes take effect during the next authentication
request.

Use --show to display the current authentication configuration. Use portShow to display the
authentication type and associated parameters, if applicable, used on the port.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands

When invoked without operands, this command displays the usage. The following operands are
supported:

--show
Displays local authentication configuration.

--set value
Modifies the authentication configuration. Valid options and their values are:

-a fcap | dhchap | all
Sets the authentication protocol. Specify “fcap” to set only FCAP
authentication, “dhchap” to set only DH-CHAP authentication. Specify “all” to
set both FCAP and DH-CHAP, which is the default setting. When
authentication is set to “all”, the implicit order is FCAP followed by DH-CHAP.
This means that in authentication negotiation, FCAP is given priority over
DH-CHAP on the local switch.

-g 0|1|2|3|4|*
Sets the Diffie-Hellman (DH) group. Valid values are 0 to 4 and “*”. The DH
group 0 is called NULL DH. Each DH group implicitly specifies a key size and
associated parameters. Higher group value provides stronger cryptography
and a higher level of security. When DH group is set to a specified value, only
that DH group is enabled. Specifying “*” enables all DH groups 0, 1, 2, 3, and
4, in that order. This means that in authentication negotiation, the NULL DH
group s given priority over all other groups.

-h sha1 | md5 | all
Sets the hash type. Valid values are “sha1”, “md5” or “all”, which sets both hash types. Use this option to disable md5 authentication access by setting the hash type to sha1 only. Disabling md5 access is required when configuring the system for FIPS. Refer to the Fabric OS Administrator’s Guide for details on FIPS configuration.

--policy

Sets the switch authentication policy or device authentication policy. The following options are supported:

-sw on | off | active | passive

Sets the switch authentication policy. Specify one of the following modes. Operands are exclusive.

on

Sets the switch authentication policy to ON mode. Strict authentication is enforced on all E_Ports. The inter-switch link (ISL) goes down (port disable), if the connecting switch does not support the authentication or the authentication policy is switched off.

off

Turns the authentication policy off, and the switch rejects any authentication requests.

active

Sets the authentication policy to active mode. During switch initialization, authentication is initiated on all E_Ports, but the port is not disabled if the connecting switch does not support authentication or the authentication policy is turned off.

passive (default)

Sets the authentication policy to passive mode. The switch does not initiate authentication but participates in authentication if the connecting switch initiates authentication.

-dev off | passive

Sets the device authentication policy. Two modes are supported. Device authentication policy is off by default.

off

Turns off the device authentication policy. Authentication is not required. The switch ignores any authentication requests and continues with the FC probing without authentication.

passive

Sets the authentication policy to passive mode. Authentication is optional. If the attached device is capable of doing the authentication then the switch participates in authentication; otherwise it forms an F_Port without authentication. In this mode the device accepts authentication on all F_Ports.

authinit [slotnumber/]portnumber [, [slotnumber]/portnumber...] | allE

Re-initiates authentication on selected ports after changing the DH-CHAP group, hash type, and shared secret between a pair of switches. This command does not work on Private, Loop, NPIV and FICON devices. The command can re-initiate authentication only if the device was previously authenticated. This command may bring down the E_Ports if the DH-CHAP shared secrets are not installed correctly. Valid options include:

slotnumber

Specify the slot number, if applicable, followed by a slash (/).

portnumber

Specify the port number. On enterprise-class platforms, use the slotnumber/portnumber format for specifying the port number.
authUtil

allE Specify all E_Ports in the switch.

Examples

To display authentication configuration on the switch:

```
switch:admin> authutil --show
AUTH TYPE     HASH TYPE     GROUP TYPE
--------------------------------------
fcap,dhchap    sha1,md5     0,1,2,3,4
```

Switch Authentication Policy: PASSIVE
Device Authentication Policy: OFF

To set DH-CHAP as the authentication protocol:

```
switch:admin> authutil --set-a dhchap
Authentication is set to dhchap.
```

To set both protocols in order of FCAP and then DH-CHAP:

```
switch:admin> authutil --set-a all
Authentication is set to fcap,dhchap.
```

To set DH group 3:

```
switch:admin> authutil --set-g 3
DH Group was set to 3.
```

To set all DH groups to be specified in the authentication negotiation in the order of 0, 1, 2, 3, and 4:

```
switch:admin> authutil --set-g "*"
DH Group is set to 0,1,2,3,4
```

To set the Switch policy to active mode:

```
switch:admin> authutil --policy-sw active
Warning: Activating the authentication policy requires either DH-CHAP secrets or PKI certificates depending on the protocol selected. Otherwise, ISLs will be segmented during next E-port bring-up. ARE YOU SURE (yes, y, no, n): [no] y
Auth Policy is set to ACTIVE
```

To set the Device policy to passive mode:

```
switch:admin> authutil --policy-dev passive
Warning: Activating the authentication policy requires DH-CHAP secrets on both switch and device. Otherwise, the F-port will be disabled during next F-port bring-up. ARE YOU SURE (yes, y, no, n): [no] y
Device authentication is set to PASSIVE
```

To start authentication on E/F_Ports 2, 3, and 4:

```
switch:admin> authutil --authinit 2,3,4
```

To disable md5 hash type for FIPS configuration:

```
switch:admin> authutil --show
AUTH TYPE     HASH TYPE     GROUP TYPE
--------------------------------------
```
authUtil 2

```plaintext
cap, dhchap  sha1,md5  1

Switch Authentication Policy: PASSIVE
Device Authentication Policy: OFF

switch:admin> authutil --set -h sha1
Hash is set to sha1.

switch:admin> authutil --show
AUTH TYPE     HASH TYPE     GROUP TYPE
--------------------------------------
cap, dhchap     sha1         1

Switch Authentication Policy: PASSIVE
Device Authentication Policy: OFF
```

See Also portShow, secAuthSecret
bannerSet

Sets the banner on the local switch.

Synopsis

bannerset [banner]

Description

Use this command to set the banner on the local switch.

The banner is a string of alphanumeric characters. It is displayed whenever you log in to a switch.

The banner can be created using the banner operand or by entering the bannerset command without an operand, making the session interactive.

If you enter the banner text using the interactive method, the valid length is 1022 characters. If the banner text length exceeds the maximum allowed, the software truncates the input. To close the banner text string, enter a period at the beginning of a new line.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following optional operand:

 banner Specify a text string to be displayed upon login. If you enter the banner text using the banner operand, the valid length is 116 characters.

Examples

To set a new banner for a switch:

switch:admin> bannerset "My banner"

switch:admin> bannerset

Please input context of security banner (press "." RETURN at the beginning of a newline to finish input): Do not log into this switch if you are not an authorized administrator.
.

See Also

bannerShow
bannerShow

Displays the banner text.

Synopsis bannershow

Description Use this command to display the contents of the banner.

Operands none

Examples To display the banner for a switch:

 switch:admin> bannershow
 Banner:
 Do not log into this switch if you are not an authorized administrator.

See Also bannerSet
bcastShow

Displays broadcast routing information.

Synopsis

bcastshow

Description

Use this command to display the broadcast routing information for all ports in the switch. The broadcast routing information indicates all ports that are members of the broadcast distribution tree: ports that are able to send and receive broadcast frames.

Normally, all F_Ports and FL_Ports are members of the broadcast distribution tree. The broadcast path selection protocol selects the E_Port members of this tree in a manner designed to prevent broadcast routing loops.

The following fields are displayed:

- **Group**: The multicast group ID of the broadcast group (always 256).
- **Member Ports**: A map of all ports in the broadcast tree.
- **Member ISL Ports**: A map of all E_Ports in the broadcast tree.

The broadcast routing information for the ports is displayed as a set of hexadecimal bit maps. Each bit in a bit map represents a port, with the least significant bit in each row representing port 0, 32, 64, and so on.

Note

The output from this command may vary, depending on the hardware platform.

Operands

none

Examples

To display the broadcastshow routing information for all ports in the switch:

```
switch:admin> bcastShow

Group  Member Ports    Member ISL Ports
----------------------------------------
256     0x00012083        0x00002080
         0x00000440        0x00000400
         0x00770000        0x00700000
         0x00008200        0x00000000
         0x00000001        0x00000000
```

In this example, from a switch with 128 ports, the member ports consist of ports 7, 13, 42, 84, 85, and 86. The final Member Ports bit set represents the embedded port (frames sent to be handled by firmware) and is typically set.

See Also

portRouteShow
bladeBeacon

Enables or disables blade beaconing, or displays the current mode.

Synopsis

```
bladebeacon slotnumber [mode]
```

Description

Use this command to enable or disable blade beaconing or to display the current beaconing mode for one blade.

When beaconing is enabled, the port LEDs flash amber in a running pattern from bottom to top and top to bottom. The pattern continues until you turn it off. This can be used to locate a physical unit or blade.

Beaconing mode only takes over the port LEDs; it does not change the switch's functional behavior. The normal flashing LED pattern (associated with an active, faulty, or disabled port, for example) is suppressed and only the beaconing pattern is displayed. If a diagnostic frame-based test (such as `portLoopbackTest`) is executed, the two LED patterns are interwoven. The diagnostic test flickers the LEDs green and the beaconing mode runs the LEDs amber.

The `switchShow` command can be used to see if the status of blade beaconing mode is on or off.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- `slotnumber` Specify the slot number for which beaconing is to be enabled or disabled, or whose beaconing mode is to be displayed.
- `mode` Specify a value of 1 to enable beaconing. Specify a value of 0 to disable beaconing. This operand is optional; if omitted, the current mode of blade beaconing for the specified slot is displayed.

Examples

To enable beaconing on slot 2, display the beaconing mode, then disable it:

```
switch:admin> bladebeacon 2 1
switch:admin> bladebeacon 2
value = 1
switch:admin> bladebeacon 2 0
```

See Also

`switchShow`
bladeDisable

Disables all user ports on a blade.

Synopsis bladedisable slotnumber

Description Use this command to disable all user ports on a blade. All ports on the blade are taken offline. If
the switch was connected to a fabric through this blade, the remaining switches reconfigure, and
this switch will configure based on the other blade ports.

The blade must be disabled before making configuration changes or before running many of the
diagnostic tests.

The blade does not need to be disabled before rebooting or powering off.

Observe and verify the disable process by watching the front panel LEDs change to slow flashing
yellow as each port of the blade disables.

A blade cannot be disabled or enabled when the switch is disabled or when the blade itself is
faulted, powered off, or running diagnostics.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands This command has the following operand:

slotnumber Specify the slot number on which the ports are to be disabled.

Examples To disable blade 2 and then verify:

switch:admin> bladedisable 2
Blade 2 is being disabled...Done
switch:admin> slotshow

<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade Type</th>
<th>ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
<tr>
<td>2</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED (User Ports Disabled)</td>
</tr>
<tr>
<td>3</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
<tr>
<td>4</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
<tr>
<td>5</td>
<td>CP BLADE</td>
<td>1</td>
<td>ENABLED</td>
</tr>
<tr>
<td>6</td>
<td>CP BLADE</td>
<td>1</td>
<td>ENABLED</td>
</tr>
<tr>
<td>7</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
<tr>
<td>8</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
<tr>
<td>9</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
<tr>
<td>10</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
</tbody>
</table>

See Also bladeEnable, portDisable, portEnable, switchShow
bladeEnable

Enables all user ports on a blade.

Synopsis bladeenable slotnumber

Description Use this command to enable all user ports on a blade. All ports within the blade that did not fail the power-on self-test (POST) are enabled (except for persistently disabled ports); they might come online if connected to a device or remain offline if disconnected.

If the switch is connected to a fabric through previously disabled ports, it rejoins the fabric. If this switch remains the principal switch at the end of the fabric countdown, then it assigns itself a domain ID. If another switch assumes the principal role, then this switch becomes a subordinate switch and accepts a domain ID from the principal. Refer to the FC-SW specification for a complete description of this process.

Observe and verify the enable process by watching the front-panel LEDs change from slow flashing amber as each port enables. The LEDs change to green for online ports, unlighted for disconnected ports, or amber for ports that do not initialize.

Notes A blade cannot be disabled or enabled when the switch is disabled or when the blade itself is faulted, powered off, or running diagnostics.

Persistently disabled ports are not enabled by this command.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands This command has the following operand:

slotnumber Specify the slot number to be enabled.

Examples To display the slot status, enable the user ports in slot 4, and verify the setting:

```bash
switch:admin> slotshow
Slot  Blade Type  ID    Status
-----------------------------
 1     SW BLADE   2     ENABLED
 2     UNKNOWN    VACANT
 3     UNKNOWN    VACANT
 4     SW BLADE   2     ENABLED (User Ports Disabled)
 5     CP BLADE   1     ENABLED
 6     CP BLADE   1     ENABLED
 7     SW BLADE   2     ENABLED
 8     UNKNOWN    VACANT
 9     UNKNOWN    VACANT
10    UNKNOWN    VACANT

switch:admin> bladeenable 4
slBlade 4 is being enabled...Done

switch:admin> slotshow
Slot  Blade Type  ID    Status
-----------------------------
 1     SW BLADE   2     ENABLED
```

Fabric OS Command Reference
53-1000599-02
bladeEnable

<table>
<thead>
<tr>
<th>Blade</th>
<th>Type</th>
<th>Slot</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>UNKNOWN</td>
<td>VACANT</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>UNKNOWN</td>
<td>VACANT</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
<tr>
<td>5</td>
<td>CP BLADE</td>
<td>1</td>
<td>ENABLED</td>
</tr>
<tr>
<td>6</td>
<td>CP BLADE</td>
<td>1</td>
<td>ENABLED</td>
</tr>
<tr>
<td>7</td>
<td>SW BLADE</td>
<td>2</td>
<td>ENABLED</td>
</tr>
<tr>
<td>8</td>
<td>UNKNOWN</td>
<td>VACANT</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>UNKNOWN</td>
<td>VACANT</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>UNKNOWN</td>
<td>VACANT</td>
<td></td>
</tr>
</tbody>
</table>

See Also
bladeDisable, portDisable, portEnable, switchShow
burninErrClear

Clears errors stored in nonvolatile memory during burn-in.

Synopsis

```
burninerrclear slotnumber
```

Description

Use this command to clear errors that were stored during burn-in in the nonvolatile memory of a specified slot.

It is advisable to run the `burninErrClear` command prior to running `diagSetBurnin` and `diagSetCycle`.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

The following operand is required:

- `slotnumber` Specify a nonzero value for the slot number from which to clear burn-in errors.

Examples

To clear burn-in errors from slot 2:

```
switch:admin> burninerrclear 2
```

See Also

`burninErrShow`
burninErrShow

Displays errors stored in nonvolatile memory on a slot during burn-in.

Synopsis burninerrshow slotnumber

Description Use this command to display errors generated during burn-in and stored in nonvolatile memory on
a specified slot.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands The following operand is required:

slotnumber A nonzero value that specifies the slot number from which to display burn-in errors.

Examples To display burn-in errors from slot 2:

switch:admin> burninerrshow 2

See Also burninErrClear
burninLevel

Sets the diagnostics burn-in level.

Synopsis

burninlevel [level | -show]

Description

Use this command to select or display the burn-in level. When you set the burn-in level to a value other than 0, this command behaves as follows:

1. The diagnostic daemon program performs burn-in testing in place of the power-on self-test (POST) phase II each time a switch blade is powered on.

2. The burn-in test stores errors on the local persistent error storage on which the error occurs. For multi-bladed products, this is the independent blade, and for fixed-port-count products, this is the chassis-persistent storage.

The behavior of this command is determined by the manner in which the diagnostics daemon is configured and which burn-in scripts are run. Changes made by this command are effective immediately; a reboot is not required. Use burninErrShow to view the error logs.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

The following operands are optional:

level

The burn-in level sets to this value.

-show

If specified, or if level is not specified, the current burn-in level setting displays.

Examples

To set the diagnostic burn-in level:

switch:admin> burninlevel -show
Burnin level is 0.

See Also

burninErrShow, diagDisablePost, diagEnablePost, diagSetBurnin
burninStatus

Displays the diagnostics burn-in status.

Synopsis burninstatus [[--slot slotnumber]]

Description Use this command to display the burn-in status of blade in a specified slot. Command output includes the slot number, state, current run number, current command in the run, total commands in a run, and the burn-in script name.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands The following operands are optional:

--slot slotnumber Specify a slot number to get the burn-in status of a single slot. If no slot is specified, the burn-in status for all slots are displayed.

Examples To display the burn-in status for all slots:

```
switch:admin> burninstatus
Slot    State    Status  Run     Cmd   TotCmds PID     Script
1       ABORT    PASS    3       18    41      916     burnin
2       ABORT    PASS    3       18    41      920     burnin
3       ABORT    PASS    3       18    41      923     burnin
4       ABORT    FAIL    3       11    34      926     burnin
```

To display the burn-in status for slot 3:

```
switch:admin> burninstatus --slot 3
Slot    State    Status  Run     Cmd   TotCmds PID     Script
3       ABORT    PASS    3       18    41      923     burnin
```

See Also diagSetBurnin
cfgActvShow

Displays effective zone configuration information.

Synopsis
cfgactvshow

Description
Use this command to display the effective zone configuration information.

The current configuration is a single zone configuration that is currently in effect. The devices that an initiator sees are based on this configuration. The effective configuration is built when a specified zone configuration is enabled.

Operands
none

Examples
To display the effective zone configuration information:

 switch:admin> cfgactvshow
 Effective configuration:
 cfg: c4
 zone: z3 33:07:06:05:04:03:02:01
 zone: z4 44:01:23:45:67:89:a0:bc
 40:01:23:45:67:89:a0:bc

See Also
cfgClear, cfgDelete, cfgRemove, cfgSave, cfgShow
cfgAdd

Adds a member to a zone configuration.

Synopsis cfgadd "cfgName", "member[;member...]"

Description Use this command to add one or more members to an existing zone configuration.
This command changes the Defined Configuration. For the change to be preserved across switch
reboots, save the configuration to nonvolatile memory with the cfgSave command. For the change
to take effect, enable the configuration with the cfgEnable command.

Note When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands The following operands are required:
"cfgName" Specify a name for the zone configuration, in quotation marks.
"member" Specify a zone member or list of zone members to be added to the
configuration. The list must be enclosed in quotation marks. Members must
be separated by a semicolons.

Examples To add two new zones to the configuration “Test_cfg”:

switch:admin> cfgadd "Test_cfg", "greenzone; bluezone"

See Also cfgClear, cfgCreate, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow
cfgClear

Clears all zone configurations.

Synopsis

cfgclear

Description

Use this command to clear all zone information in the transaction buffer. All defined zone objects in the transaction buffer are deleted. If an attempt is made to commit the empty transaction buffer while a zone configuration is enabled, you are warned to first disable the enabled zone configuration or to provide a valid configuration with the same name.

After clearing the transaction buffer using the `cfgClear` command, use the `cfgDisable` command to commit the transaction and then disable and clear the zone configuration in nonvolatile memory for all the switches in the fabric.

If no current zoning configuration exists, use the `cfgSave` command.

If the default zone access mode is “No Access”, then this command re-creates the default zoning objects.

Note

When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands

none

Examples

To clear all zones and then clear nonvolatile memory:

```
switch:admin> cfgclear
The Clear All action will clear all Aliases, Zones, FA Zones and configurations in the Defined configuration.
cfgSave may be run to close the transaction or cfgTransAbort may be run to cancel the transaction.
Do you really want to clear all configurations?  (yes, y, no, n): [no] n
```

```
switch:admin> cfgsave
You are about to save the Defined zoning configuration. This action will only save the changes on Defined configuration.
Any changes made on the Effective configuration will not take effect until it is re-enabled.
Do you want to save Defined zoning configuration only?  (yes, y, no, n): [no] n
```
cfgCreate

Creates a zone configuration.

Synopsis cfgcreate "cfgName", "member[;member...]

Description Use this command to create a new zone configuration.

This command changes the Defined Configuration (see cfgShow). For the change to become effective, enable the configuration with the cfgEnable command. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the cfgSave command.

Notes When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Refer to the zoneCreate command for more information on name and member specifications.

Operands The following operands are required:

"cfgName" Specify a name for the zone configuration in quotation marks. A zone configuration name must begin with a letter followed by any number of letters, numbers, and underscores. Names are case-sensitive. For example, "Cfg_1" and "cfg_1" are different zone configurations. Blank spaces are ignored.

"member" Specify a zone member or list of zone members to be added to the configuration. The list must be enclosed in quotation marks. Members must be separated by a semicolons. The zone configuration member list must have at least one member. Empty member lists are not allowed.

Examples To create a configuration containing three zones:

switch:admin> cfgcreate "USA_cfg", "Red_zone;Blue_zone;Green_zone"

See Also cfgAdd, cfgClear, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow
cfgDelete

Deletes a zone configuration.

Synopsis

 cfgdelete "cfgName"

Description

Use this command to delete a zone configuration. This command changes the Defined Configuration (see cfgShow). For the change to become effective, enable the configuration with the cfgEnable command. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the cfgSave command.

Note

When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands

The following operand is required:

"cfgName"

Specify a name for the zone configuration to be deleted, in quotation marks.

Examples

To delete a zone configuration:

 switch:admin> cfgdelete "USA_cfg"

See Also

cfgAdd, cfgClear, cfgCreate, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow
cfgDisable

Disables a zone configuration.

Synopsis cfgdisable

Description Use this command to disable the current zone configuration. The fabric returns to non-zoning mode, in which all devices see each other.

This command ends and commits the current zoning transaction buffer to both volatile and nonvolatile memory. If a transaction is open on a different switch in the fabric when this command is run, the transaction on the other switch is automatically aborted. A message displays on the other switches to indicate that the transaction was aborted.

If the default zone access mode is “No Access”, then this command becomes cfgEnable “d_efault_Cfg”. Refer to defZone help for zone access configuration.

Note When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands none

Examples To disable the current zone configuration:

switch:admin> cfgdisable
You are about to disable zoning configuration. This action will disable any previous zoning configuration enabled.
Do you want to disable zoning configuration? (yes, y, no, n): [no] y

See Also cfgClear, cfgEnable, cfgSave
cfgEnable

Enables a zone configuration.

Synopsis
 cfgenable "cfgName"

Description
Use this command to enable a zone configuration. The command builds the specified zone configuration by checking for undefined zone names, zone alias names, or other inconsistencies, by expanding zone aliases, removing duplicate entries, and then installing the effective configuration.

If the build fails, the previous state is preserved (zoning remains disabled, or the previous effective configuration remains in effect). If the build succeeds, the new configuration replaces the previous configuration. Refer to the cfgShow command for a description of defined and effective configurations.

Note
When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands
The following operand is required:

"cfgName"
Specifies the name of the zone configuration. The name must be enclosed in quotation marks.

Examples
To enable the zone configuration "USA_cfg":

switch:admin> cfgenable "USA_cfg"
You are about to enable a new zoning configuration.
This action will replace the old zoning configuration with the current configuration selected.
Do you want to enable 'USA_cfg' configuration (yes, y, no, n): [no] y
zone config "USA_cfg" is in effect
Updating flash ...

See Also
 cfgClear, cfgDisable, cfgSave, cfgShow
cfgMcdtMode

Configures zoning features in McDATA Fabric mode.

Synopsis

cfgMcdtMode [--enable | --disable | --help] [safezoning | defaultzoning]

Description

Use this command to enable or disable either the McDATA safe zoning feature or the McDATA default zoning feature. Enabling or disabling safe zoning or default zoning on one switch in the fabric enables or disables the specific feature fabric-wide, meaning that the feature is disabled or enabled on all switches in the fabric.

Note

This command is effective only when the Brocade switch or director is in McDATA fabric mode.

Operands

This command has the following operands:

--enable Enables McDATA zoning features.

--disable Disables McDATA zoning feature.

safezoning If safezoning is disabled, and if the zone database does not match, a zone merge occurs when the E_Port comes online. The E_Port will segment only if the zone merge fails. If safezoning is enabled, there is no zone merge as part of the E_Port coming online, and the E_Port will segment only if the zone database does not match.

defaultzoning If defaultzoning is disabled, and if there is no zone database, devices in the fabric will not be able to see each other. If there is a zone database, devices NOT part of the Zone DB will not be able to see each other. If defaultzoning is enabled, and if there is no zone database, all devices in the fabric will be able to see each other. If there is a zone database, all devices NOT part of the Zone DB will be able to see each other.

--help Displays command help.

Examples

To enable fabric-wide McDATA safe zoning:

switch:admin> cfgmcdatamode --enable safezoning

To disable fabric-wide McDATA safe zoning:

switch:admin> cfgmcdatamode --disable safezoning

To enable fabric-wide McDATA default zoning:

switch:admin> cfgmcdatamode --enable defaultzoning

To disable fabric-wide McDATA default zoning:

switch:admin> cfgmcdatamode --disable defaultzoning

See Also

interopMode, cfgSaveActiveToDefined
cfgRemove

Removes a member from a zone configuration.

Synopsis cfgremove "cfgName", "member[; member...]"

Description Use this command to remove one or more members from an existing zone configuration.

If all members are removed, the zone configuration is deleted.

This command changes the Defined Configuration (see cfgShow). For the change to become effective, enable the configuration with the cfgEnable command. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the cfgSave command.

Note When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands The following operands are required:

"cfgName" Specify a name for the zone configuration, enclosed in quotation marks.

"member" Specify a zone member or list of zone members to be removed from the configuration. The list must be enclosed in quotation marks. Members must be separated by a semicolons.

Examples To remove a zone from a configuration:

switch:admin> cfgremove "Test_cfg", "redzone"

See Also cfgAdd, cfgClear, cfgCreate, cfgDelete, cfgDisable, cfgEnable, cfgSave, cfgShow, cfgTransAbort, cfgTransShow
cfgSave

Saves zone configuration to nonvolatile memory.

Synopsis
cfgsave

Description
Use this command to save the current zone configuration. This command writes the defined configuration and the name of the effective configuration to nonvolatile memory in all switches in the fabric.

The saved configuration is automatically reloaded at power on, and, if a configuration was in effect at the time it was saved, the same configuration is reinstalled with an automatic cfgEnable command.

Because the saved configuration is reloaded at power on, only valid configurations are saved. cfgSave validates the effective configuration by performing the same tests as cfgEnable. If the tests fail, an error displays and the configuration is not saved.

This command ends and commits the current transaction. If a transaction is open on a different switch in the fabric when this command is run, the transaction on the other switch is automatically aborted. A message displays on the other switches to indicate that the transaction was aborted.

Note
When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands
none

Examples
To save a zone configuration:

switch:admin> cfgsave
You are about to save the Defined zoning configuration. This action will only save the changes on Defined configuration. Any changes made on the Effective configuration will not take effect until it is re-enabled.
Do you want to save Defined zoning configuration only? (yes, y, no, n): [no] y
Updating flash ...
cfgSaveActiveToDefined

Saves the active (effective) zoning configuration to the defined configuration in McDATA Fabric mode.

Synopsis cfgSaveActiveToDefined

Description Use this command in McData Fabric mode to move the effective zoning configuration to the defined configuration database. If the Defined Database contains a configuration with the same name, it is replaced. Any non-duplicate zone sets or zones remain unchanged.

Note This command is only effective when the Brocade switch/director is in McDATA fabric mode.

Operands The cfgSaveActiveToDefined command has no operands.

Examples Execute the cfgShow command to view defined and effective zoning configurations.

```
switch:admin> cfgShow
Default Zone: OFF
Safe Zone: OFF
Defined configuration:
cfg: switch set
    switch1; sqitch2; switch3; switch4
zone: switch1
zone: switch2 23:34:87:23:50:35:07; 12,64
    [output truncated]
... Effective configuration:
cfg: switch set
zone: switch1
    [output truncated]
```

Run cfgSaveActiveToDefined to save the active (effective) zoning configuration to the defined configuration.

```
switch:admin> cfgSaveActiveToDefined
You are about to save the Defined zoning configuration. This action will save the effective configuration to the defined configuration.
Do you want the Effective zoning to become the Defined zoning? [yes, y, no, n]: [no] yes
Attempting to save new config to the defined config...
2sw0 Updating flash ... [output truncated]
... Attempting to save config to the defined config...
2sw0 Updating flash ...
Updating flash ...
```

See Also cfgShow, cfgSave
cfgShow

Displays zone configuration information.

Synopsis
cfgshow ['pattern'] [, mode]

Description Use this command to display zone configuration information.

If no operand is specified, all zone configuration information (both defined and effective) displays.
If the local switch has an outstanding transaction, this command displays the most recently edited zone configuration that has not yet been saved. If the local switch has no outstanding transaction, this command displays the committed zone configuration.

If a pattern is specified, only matching configurations are displayed.

The defined configuration is the complete set of all zone objects that have been defined in the fabric. There can be multiple zone configurations defined, but only one can be enabled at a time. There might be inconsistencies in the definitions, zones, or aliases that are referenced but not defined, or there might be duplicate members. The defined configuration is the current state of the administrator input.

The effective configuration is the single zone configuration that is currently enabled. The devices that an initiator sees in the fabric are based on this configuration. The effective configuration is built when a specific zone configuration is enabled and all error checking has been completed successfully.

Notes When this command is executed after a zoning transaction was aborted on the local switch, it displays a warning message:

Warning: Current Zoning Transaction was aborted.
Reason code = Zone Config update received.

When default zoning is enabled with “No Access” mode, “No Effective configuration: (No Access)” is displayed.

Operands The following operands are optional:

"pattern" A POSIX-style regular expression used to match zone configuration names.
The pattern must be enclosed in quotation marks and may contain the following:
• Question mark (?) - matches any single character
• Asterisk (*) - matches any string of characters.
• Range - matches any character within the range. Ranges must be enclosed in brackets: for example, [0-9] or [a-f].

mode Specify 0 to display the contents of the transaction buffer (the contents of the current transaction) or specify 1 to display the contents of nonvolatile memory. The default value is 0.

Examples To display all zone configurations that start with "Test":

switch:admin> cfgshow "Test**"
cfg: Test1 Blue_zone
cfg: Test_cfg Red_zone; Blue_zone
To display all zone configuration information:

switch:admin> cfgshow
Defined configuration:
 cfg: USA1 Blue_zone
 cfg: USA_cfg Red_zone; Blue_zone
 zone: Blue_zone
 1,1; array1; 1,2; array2
 zone: Red_zone
 1,0; loop1
 alias: array1 21:00:00:20:37:0c:76:8c; 21:00:00:20:37:0c:71:02
 alias: array2 21:00:00:20:37:0c:76:22; 21:00:00:20:37:0c:76:28
 alias: loop1 21:00:00:20:37:0c:76:85; 21:00:00:20:37:0c:71:df

Effective configuration:
 cfg: USA_cfg
 zone: Blue_zone
 1,1
 21:00:00:20:37:0c:76:8c
 21:00:00:20:37:0c:71:02
 1,2
 21:00:00:20:37:0c:76:22
 21:00:00:20:37:0c:76:28
 zone: Red_zone
 1,0
 21:00:00:20:37:0c:76:85
 21:00:00:20:37:0c:71:df

To display only configuration names:

switch:admin> cfgshow**
 cfg: USA1 Blue_zone
 cfg: USA_cfg Red_zone; Blue_zone

See Also cfgAdd, cfgClear, cfgCreate, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgTransAbort, cfgTransShow
cfgSize

Displays zone and Admin Domain database size details.

Synopsis cfgsize [integer]

Description Use this command to display the size details of the zone database and the Admin Domain database.

When executed in non-AD255 context, the size details include the Zone DB maximum size, the committed size, and the transaction size. All sizes are in bytes.

When executed in AD255 context, this command displays Admin Domain and Zone DB maximum size, Admin Domain header size, and the zone database sizes for each Admin Domain:

Zone DB maximum size

Defines the upper limit for both zone and Admin Domain defined configuration, determined by the amount of nonvolatile memory available for storing the defined configuration. The Zone DB maximum size is further reduced due to a message header that is propagated with the zone configuration to all switches in the fabric.

Committed size

Displays the size of the defined configuration currently stored in nonvolatile memory.

Transaction size

Displays the size of the uncommitted defined configuration. This value will be nonzero if the defined configuration is being modified by Telnet, API, and so forth; otherwise it is 0.

Refer to cfgShow for a description of defined and effective zone configurations. Refer to ad for a description of defined and effective Admin Domain configurations.

Note When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands The following operand is optional:

integer If a nonzero integer is specified, the size of the nonvolatile memory allocated for the zone database is displayed. The zone database includes both the defined and effective configurations. This size is displayed in bytes.

Examples To display zone database information in non-AD255 context:

switch:admin> cfgsize
Zone DB max size - 1045274 bytes
committed - 244
transaction - 0

To display Admin Domain and zone database information in AD255 context:

switch:admin> cfgsize

Maximum AD and Zone DB size - 1045274 bytes
Total Committed AD and Zone DB size - 3390 bytes

AD and Zone DB uncommitted space available - 1041884 bytes
Total AD and Zone Transaction buffer size - 0 bytes

AD Database Size:
committed - 3124 bytes
transaction - 0 bytes

Number of ADs in Effective Configuration - 4

Each AD's Zone Database Size:

cfgsize Info for AD Number:0 (AD Name: AD0, State=Active):
committed - 242 bytes
transaction - 0 bytes
cfgsize Info for AD Number:1 (AD Name: AD1, State=Active):
committed - 16 bytes
transaction - 0 bytes
cfgsize Info for AD Number:2 (AD Name: AD2, State=Active):
committed - 4 bytes
transaction - 0 bytes
cfgsize Info for AD Number:3 (AD Name: AD3, State=Active):
committed - 4 bytes
transaction - 0 bytes

See Also ad, cfgShow, zoneHelp
cfgTransAbort

Aborts the current zoning transaction.

Synopsis cfgtransabort [token]

Description Use this command to abort the current zoning transaction without committing it. All changes made
since the transaction was started are removed and the zone configuration database is restored to
the state before the transaction was started.

If a transaction is open on a different switch in the fabric when this command is run, the
transaction on the other switch remains open and unaffected.

Note When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands When invoked without operand, this command aborts the current transaction. The following
operand is optional:

token Specify the token ID of the transaction to be aborted. Use the cfgTransShow
command to obtain the token ID of a transaction.

Examples To abort the current transaction:

switch:admin> cfgtransabort

See Also cfgAdd, cfgClear, cfgCreate, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow,
cfgTransShow
cfgTransShow

Displays information about the current zoning transaction.

Synopsis cfgtransshow

Description Use this command to display the ID of the current zoning transaction. In addition, the command
provides information on whether or not the transaction can be aborted. The transaction cannot be
aborted if it is an internal zoning transaction.

Note When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands none

Examples To display the current transaction:

switch:admin> cfgtransshow
There is no outstanding zone transaction

switch:admin> cfgclear
Do you really want to clear all configurations? (yes, y, no, n): [no] y
Clearing All zoning configurations...

switch:admin> cfgtransshow
Current transaction token is 271010736
It is abortable

See Also cfgAdd, cfgClear, cfgCreate, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow, cfgTransAbort
chassisConfig

Displays or sets the configuration of the chassis.

Synopsis

chassisconfig [-f][option]

Description

Use this command to set the chassis configuration for products that support both single-switch and dual-switch operation. Each configuration specifies whether the chassis runs as one logical switch or two, and the port blade ID that is permitted on each logical switch. Any port blade ID that does not match the current configuration is considered incompatible, and does not power up.

When no arguments are provided, this command displays the current configuration of the chassis as well as a list of supported configurations. When a specific option is provided to this command, all CPs currently in the system are immediately rebooted, returning to the specified mode. This can result in some blades being faulted as incompatible, based on the new configuration option. This command rejects without causing a reboot, if an option is not supported by the platform.

1 (obsolete) One 128-port switch (blade ID 4, 17 on slots 1 - 4 and 7 - 10; blade ID 5, 16 on slots 5 - 6).

2 (obsolete) Two 64-port switches (blade ID 4 on slots 1 - 4 and 7 - 10; blade ID 5 on slots 5 - 6).

5 One 384-port switch (Blade ID 17, 18, 24, 31, 33, 36, 39 in slots 1-4, 7-10, Blade ID 16 in slots 5-6).

Use the slotShow command to display the current set of blades in the system.

When the system changes from single to multiple domains and vice versa, configuration parameters that are not compatible are restored to factory defaults. The configuration data includes, but is not limited to, routing, port swap, fabric, zoning, port configuration, passwords, security, Brocade Fabric Watch, management server, time server, SNMP, performance monitoring, and general Brocade Fabric OS configuration values. It is recommended that the current configuration be saved using configUpload as a guide for adjustments after the configuration change.

Certain configuration values that are not considered switch based and determined not to cause adverse effects are left untouched. These include SSL certificates, PKI certificates, licenses, and IP address.

When the -f (force) option is omitted, this command prompts for your consent to proceed further with the configuration change. It also prompts you to upload the configuration data to a host so it can be used as a guide to re-establishing the configuration data in the new mode. Use the -f option to proceed without the interactive step.

Unless the chassis is currently configured as Option 1 (a single 128-port switch with Brocade blade IDs 4 and 17 and CP blade IDs 5 and 16), both CP blades should always contain firmware that supports this command. Use of earlier versions adversely affects switch operation.

Because this is a disruptive operation and has profound effect on the behavior of the chassis, it must be used selectively.

User account data and passwords might not be saved using configUpload. User accounts created using the userConfig command are deleted and user accounts are reset to the factory default user accounts and passwords.
Notes

This command is retained for legacy reasons only. There are no separate chassis configuration options on the Brocade DCX backbone. By default the switch supports 384 ports in a single Fibre Channel domain. The `chassisConfig` command is not available on this platform. Brocade 48000 directors support only option 5.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- `-f`
 If specified, forces configuration changes without asking for confirmation or requesting a configuration upload.

- `option`
 Specify the new configuration option to apply to the chassis. This operand is optional; if omitted, this command displays the current configuration option and a list of all valid options.

Examples

To display the current configuration option on a Brocade 48000 director and to change the option:

```
switch:admin> chassisconfig
Current Option: 5

All Supported Options
----------------------------------------------------
Option 5: One 384-port switch
  Blade ID's 17, 18, 24, 31, 33, 36, 39, 37, 51, 55 in slots 1-4, 7-10
  Blade ID 16 in slots 5-6
```

See Also

`configDownload`, `configUpload`, `slotShow`
chassisName

Displays or sets the chassis name.

Synopsis chassisname [name]

Description Use this command to display or change the name associated with the chassis. Operands

This command has the following operand:

name Specify a new name for the chassis, optionally in quotation marks. Chassis names can be up to 15 characters long, must begin with a letter, and can consist of letters, digits, underscore or hyphen characters. This operand is optional; if omitted, the current chassis name displays.

Examples To change the chassis name to “dilbert”:

 switch:admin> chassisname dilbert
 switch:admin> chassisname
 dilbert

See Also switchName
chassisShow

Displays all field replaceable units (FRUs).

Synopsis chassisshow

Description Use this command to inventory and display the FRU header content for each object in the chassis
and chassis backplane version.

Refer to the Table 1 for more information about the lines and their meaning.

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>If applicable, the first line displays the chassis backplane version number, in hexadecimal.</td>
</tr>
<tr>
<td>2</td>
<td>Object type: CHASSIS, FAN, POWER SUPPLY, SW BLADE (switch), CP BLADE (control processor), WWN (World Wide Name), or UNKNOWN. Object number: Slot nn (for blades), Unit nn (for everything else). If the FRU is part of an assembly, a brief description, in parentheses, displays.</td>
</tr>
<tr>
<td>3</td>
<td>FRU header version number: Header Version: x</td>
</tr>
<tr>
<td>4</td>
<td>Value to calculate the object's power consumption: positive for power supplies and negative for consumers. Power Consume Factor: -xxx</td>
</tr>
<tr>
<td>5</td>
<td>Part number (up to 14 characters): Factory Part Num: xx-xxxxxx-xx</td>
</tr>
<tr>
<td>6</td>
<td>Serial number (up to 12 characters): Factory Serial Num: xxxxxxxxxx</td>
</tr>
<tr>
<td>7</td>
<td>FRU manufacture date: Manufacture: Day: dd Month: mm Year: yyyy</td>
</tr>
<tr>
<td>8</td>
<td>Date of the last FRU header update: Update: Day: dd Month: mm Year: yyyy</td>
</tr>
<tr>
<td>9</td>
<td>Cumulative time, in days, that the FRU has been powered on: Time Alive:dddd days</td>
</tr>
<tr>
<td>10</td>
<td>Current time, in days, since the FRU was last powered on: Time Awake:ddd days</td>
</tr>
<tr>
<td>11</td>
<td>Externally supplied ID (up to 10 characters): ID: xxxxxxxxxx</td>
</tr>
<tr>
<td>12</td>
<td>Externally supplied part number (up to 20 characters): Part Num: xxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>13</td>
<td>Externally supplied serial number (up to 20 characters): Serial Num: xxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>14</td>
<td>Externally supplied revision number (up to 4 characters): Revision Num: xxxx</td>
</tr>
</tbody>
</table>

On some platforms, for certain FRU types, a few items might not be available. In these cases, the lines are suppressed. Possibly affected lines are 1, 3 through 7, 9, and 11 through 14. In addition, for lines 11 through 14, if there is no data set, these lines are suppressed.

Notes The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To display all FRUs for a switch:

```
switch:user> chassisshow
```
Chassis Backplane Revision: 1C

SW BLADE Slot: 3
Header Version: 1
Power Consume Factor: -180
Factory Part Num: 60-0001532-03
Factory Serial Num: 1013456800
Manufacture: Day: 12 Month: 6 Year: 2001
Update: Day: 15 Month: 7 Year: 2001
Time Alive: 28 days
Time Awake: 16 days
ID: 555-374757
Part Num: 234-294-12345
Serial Num: 2734658
Revision Num: A.00

CP BLADE Slot: 6
Header Version: 1
Power Consume Factor: -40
Factory Part Num: 60-0001604-02
Factory Serial Num: FP00X600128
Manufacture: Day: 12 Month: 6 Year: 2001
Update: Day: 15 Month: 7 Year: 2001
Time Alive: 61 days
Time Awake: 16 days
ID: 555-374757
Part Num: 236-296-12350
Serial Num: 2836542
Revision Num: A.00

POWER SUPPLY Unit: 2
Header Version: 1
Power Consume Factor: 1000
Factory Part Num: 60-0001536-02
Factory Serial Num: A013450700
Manufacture: Day: 14 Month: 6 Year: 2001
Update: Day: 15 Month: 7 Year: 2001
Time Alive: 50 days
Time Awake: 16 days
ID: 555-374757
Part Num: 238-298-12360
Serial Num: 1234567

FAN Unit: 1
Header Version: 1
Power Consume Factor: -50
Factory Part Num: 20-123456-12
Factory Serial Num: B014934500
Manufacture: Day: 6 Month: 7 Year: 2001
Update: Day: 15 Month: 7 Year: 2001
Time Alive: 88 days
Time Awake: 16 days
ID: 456-777888
Part Num: 230-290-12370

(output truncated)

See Also slotShow
cliHistory

Name Displays switch command history.

Synopsis clihistory

Description This command saves the following information whenever a command is executed on the switch:
- Timestamp
- Username
- IP address of the Telnet session
- Options
- Arguments

This command displays the local CLI command history. This command cannot be executed on the standby CP.

The information is saved as part of supportSave as the CH file. It is also saved persistently to compact flash if the switch panics.

The maximum number of saved entries for this command is 512.

Operands none

Examples To display the command history on a switch:

```
switch:admin> clihistory
Command History:
09:14:17.6924  1  admin, 192.168.163.233, version
10:25:36.8875  1  admin, 192.168.100.19, clihistory
12:05:40.3492  1  admin, 192.168.100.19, help | more
12:05:46.2940  1  admin, 192.168.100.19, switchshow
12:06:05.4138  1  admin, 192.168.100.19, help - switchshow
12:06:17.7643  1  admin, 192.168.100.19, slotshow
12:06:27.6852  1  admin, 192.168.100.19, clihistory
12:06:56.3138  1  admin, 192.168.100.19, aaaconfig --show
12:07:17.8312  1  admin, 192.168.100.19, clihistory
12:09:28.7144  1  admin, 192.168.100.19, aaaconfig \ --add 194.72.68.335 -conf ldap
12:09:35.0275  1  admin, 192.168.100.19, clihistory
12:10:05.6848  1  admin, 192.168.100.19, aaaconfig \ --move radserver -conf radius 1
```

See also none
configDefault

Restores system configuration parameters to default values.

Synopsis configdefault

Description Use this command to reset a subset of configuration settings to their factory defaults. All configuration parameters are reset to their default values with the exception of the following:

- Ethernet MAC address, IP address, subnetmask, and boot ROM parameters
- IP gateway address
- License keys
- OEM customization
- Product ID and Vendor ID
- SNMP configuration
- iSCSI configuration
- System name
- Chassis name
- World Wide Name
- Zoning configuration (includes aliases, zones, and configurations)
- Security parameters and policies
- User account passwords (includes all user config and all built-in accounts)
- Switch PID format
- Ethernet Link Mode

Refer to the configure command for more information on default values for configuration parameters.

Notes This command cannot be executed on an enabled switch. You must first disable the switch using switchDisable.

Some configuration parameters are cached by the system. To avoid unexpected system behavior, reboot the system after executing configDefault.

Note that configDefault does not completely remove all FCIP tunnels and GigE IP addresses information. This may be an issue when attempting to use the same information to create new tunnels or modify the existing ones.

When issuing configDefault on the Brocade 7500, it persistently disables the ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To restore the system configuration to default values:

switch:admin> configdefault
Committing Configuration ...done.
See Also snmpConfig, configure, switchDisable, switchEnable
configDownload

Downloads switch configuration and other parameters from a host file.

Synopsis

configdownload

configdownload -p ftp | -ftp ["host", "user", "path", ["passwd"]]

configdownload -p scp | -scp ["host", "user", "path", ["passwd"]]

configdownload --local | USB | -U ["file"]

Description

This command downloads the switch configuration and other parameters from a host file. The configuration file may have been generated previously by configUpload, or it may have been created by a user to download only specific changes. Refer to configUpload for a description of the configuration file format. The configDownload command supports DNS names, IPv4, and IPv6 addresses.

The first form of the configDownload command uses FTP (File Transfer Protocol). The FTP server must be running on the host before a download can occur.

The second form of this command uses SCP, which is a secure file copy tunneled through an SSH connection. When this form of the command is used, no password should be provided on the command line. Instead, SCP prompts for the password if necessary. The SSH service is available on Unix and Windows hosts.

The third form of the configDownload command retrieves the configuration file from a predetermined directory on the local chassis or from an attached USB device.

For Admin Domain users, refer to the Fabric OS Administrator's Guide for details regarding upload and download behavior.

The download might fail for some of the following reasons:

- The switch has not been disabled. As of v5.2.0, configDownload can be invoked without disabling the switch for configuration files containing only certain SNMP, Fabric Watch, or ACL parameters. You may wish to attempt configDownload first without disabling the switch, and if there is at least one changed parameter outside of Fabric Watch/SNMP/ACL, you are be prompted to disable the switch before proceeding.
- The host name is not known to the switch.
- The host IP address cannot be contacted.
- You do not have permission on the host.
- You are running a script that prints something at login.
- The file does not exist on the host.
- The file is not a switch configuration file.
- The FTP server is not running on the host.
- The configuration file contains errors.

If FCS policy is enabled, the following rules and restrictions apply:

- Both [Defined Security Policies] and [Active Security Policies] sections must exist and contain the FCS_POLICY.
- In the [Defined Security Policies] section, at least one member of the FCS_POLICY must be the same as a member in the previous FCS_POLICY.
In the [Active Security Policies] section, the FCS_POLICY must be exactly the same as the previous FCS_POLICY. Order of members must be maintained.

If either security policies section has an RSNMP_POLICY, then that section must have a WSNMP_POLICY.

After the switch is enabled, if the switch is the primary FCS, then its security and zoning information is propagated to all other switches in the fabric.

After the switch is enabled, if the switch is a non-FCS or a backup FCS, then its security and zoning information will be overwritten by the primary FCS.

Security parameters and the switch’s identity cannot be changed by configDownload. Parameters such as the switch name and IP address are ignored; they are lines in the configuration file that begin with “boot”. Security parameters and version stamp are ignored; they are the lines in the configuration file that begin with “sec” [License] is only accepted if the boot.mac parameter matches the license ID (WWN) of the switch performing the download; otherwise, it is ignored.

The download process is additive. The lines read from the file are added to the current switch configuration. It is therefore possible to change a single configuration variable by downloading a file with a single line. All other variables remain unchanged.

The configuration parameters R_A_TOV, E_D_TOV, WAN_TOV, and MAX_HOPS are interrelated. Assigning a specific value to one or more of these parameters might change the range of allowed values that can be assigned to the other parameters. As a result, you may not be able to set all the values within the range displayed against each parameter. This command validates the modified values of these four parameters and terminates the download operation, if the validation check fails.

This is particularly important when downloading a zoning configuration. Since the new zoning information is added to the current configuration, there might not be any conflicts. If the current zoning configuration is to be replaced, the keyword “clear:” should be inserted into the configuration file immediately before the zoning lines (starting at the line “[Zoning]”).

If the configuration file contains the keyword “enable:” followed by a <zone_configuration>, that zoning configuration is enabled in the fabric. If there is no “enable:” keyword in the configuration file or no zoning configuration by that name exists, or if enable fails for any reason (such as dangling aliases), then the following conditions apply:

1. The effective configuration remains as it was prior to configDownload; that is, all the “enable:” information is discarded.
2. The Defined Configuration changes to reflect the new zoning configuration.

Notes

It is not required to change a configuration if one of the CPs is running a version of Fabric OS that does not support IPv6.

Once a configuration file has been uploaded to an external system, it must NOT be manually edited before being downloaded, either to the same or another switch. Such an operation bypasses sanity checks for some configuration datapoints, resulting in unpredictable behavior.

Operands

This command has the following operands:

-\(p\) ftp | -ftp or -\(p\) scp | -scp

Specifies the data transmission protocol as either File Transfer Protocol (FTP) or Secure Copy Protocol (SCP). If no protocol is specified, it defaults to FTP.
“host”
A host name or IP address in quotation marks: for example, “citadel” or “192.168.1.48”. The configuration file is downloaded from this host. To be able to mention the FTP server by name, you need to set up two DNS servers with `dnsConfig`.

“user”
A user name, in quotation marks: for example, “jdoe”. This user name is used to gain access to the host system.

“path”
A file name and path in quotation marks: for example, “config.txt”. Absolute path names may be specified using a forward slash (/). Relative path names search for the file in the user’s home directory on UNIX hosts and in the directory on which the FTP server is running on Windows hosts.

“passwd”
Password for login when using the FTP protocol.

- **-local**
 Downloads from a predetermined directory on the local chassis.

- **-USB | -U**
 Downloads from a predetermined directory on an attached USB device.

“file”
A file name in quotation marks, for example, "config.txt". This parameter can be used only with the -local or -USB option, each of which retrieves files from a predetermined directory on the local chassis or on an attached USB device. Therefore, subdirectories and absolute path names are not permitted.

When invoked without operands or without “host” or “file” parameters, `configDownload` runs in interactive mode. Note that "host" is not required when -local or -USB is specified.

Examples
To download a configuration file interactively from a local chassis that has been disabled prior to downloading the configuration file:

```
switch:admin> switchdisable
switch:admin> configdownload
Protocol (scp, ftp, local, or usb) [ftp]: local
File Name [config.txt]: config.txt

*** CAUTION ***
This command is used to download a backed-up configuration for a specific switch. If using a file from a different switch, this file's configuration settings will override any current switch settings. Downloading a configuration file, which was uploaded from a different type of switch, may cause this switch to fail. A switch reboot might be required for some parameter changes to take effect.

configDownload operation may take several minutes to complete for large files.

Do you want to continue [y/n]: y

Activating configDownload: Switch is disabled

configDownload complete: All config parameters are downloaded
```

See Also
`configDefault`, `configList`, `configShow`, `configUpload`, `configure`, `configRemove`
configList

Lists uploaded configuration files.

Synopsis

configList -local|-USB|-U

Description

This command displays a list of names, sizes, and creation dates of configuration files saved on the local chassis or on an attached USB device. These files are created when the configUpload command is executed with the -local or the -USB option.

Operands

This command has the following operands:

- **-local**
 Displays the list of configuration files on the local chassis.

- **-USB | -U**
 Displays the list of configuration files on the attached USB device. (The options -U and -USB are equivalent.)

Examples

To display a list of configuration files stored on the local chassis:

```
switch:admin> configlist -local
config.txt                         25679        2007 Jan 02 15:16
config2.txt                        25679        2007 Jan 06 15:16
next_cfg.txt                       20977        2007 Jan 18 15:16
```

See Also

configDownload, configUpload, configShow, configRemove
configRemove

Deletes a saved configuration file.

Synopsis configremove -local | -USB | -U [file]

Description This command deletes a configuration file that was previously saved to the local chassis or to an
attached USB device by using the configUpload command.

Operands This command has the following operands:

- -local Removes a configuration file that was previously created by configUpload
- -local from the local chassis.

- -USB | -U Removes a configuration file that was previously created by configUpload
- -USB from an attached USB device. The options -USB and -U are equivalent.

- [file] Specify the configuration file to be removed. If the -file option is omitted, the
command prompts you to specify a file name.

Examples To remove a configuration file from the local chassis:

switch:admin> configremove -local first_config.txt

To remove a configuration file from an attached USB device without specifying a filename:

switch:admin> configremove -USB
File Name [config.txt]: second_config.txt

See Also configDownload, configUpload, configList, configShow
configShow

Displays system configuration settings.

Synopsis

```
configshow ["pattern"] | -pattern ["pattern"]
configshow -local | -USB | -U [file] [-pattern "pattern"]
```

Description

Use this command to display some system configuration settings in addition to the parameters set by the `configure` command. When executed without operands, this command displays all system configuration settings.

Notes

Not all values displayed are applicable to all system models and configurations.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

The following operands are optional:

- `"pattern"` | `-pattern ["pattern"]`
 Specify a text string in quotation marks that limits the output of the command to only those entries that contain the pattern. Use of wildcards and other common regular expression operators is not supported. Some configuration settings do not display when filtered. If in doubt, use the command without operands.

- `-local [file]`
 Displays the entire contents of a configuration file that was previously created by `configUpload` and stored on the chassis. The output can be optionally filtered by `-pattern "pattern"`. If `file` is omitted, the command prompts you to specify a file name. The output format when `-local` is specified matches that of `configUpload` and contains a superset of the information provided when `-local` is not specified.

- `-USB | -U [file]`
 Displays the entire contents of a configuration file that was previously created by `configUpload` and stored on an attached USB device. The output can be optionally filtered by `-pattern "pattern"`. If `file` is omitted, the command prompts you to specify a file name. The output format when `-local` is specified matches that of `configUpload` and contains a superset of the information provided when `-local` is not specified.

Examples

To list the configuration file:

```
switch:admin> configlist -local
config.txt              92067   2007 Aug 07 03:59
```

To display the contents of the configuration file:

```
switch:admin> configshow -local
File Name [config.txt]: config.txt

[Switch cp7 Configuration uploaded on Aug 07 03:59:55]
[FOS-Version: 6.0.0.0]
```
[Boot Parameters]
boot.name: cp7
boot.ipa: 10.33.36.41
boot.licid: 10:00:00:05:1e:38:b0:db
boot.mac: 10:00:00:05:1e:38:b0:db
boot.device: eth0
boot.gateway.ipa: 10.33.32.1

[LicensesDB]
6122B8EE0FBB440F46E124E97B16277D6122B8EE0FBB440F0073B7A57B16277D6F61

[DMM_WWN]

[Licenses]

[Chassis Configuration]

[Configuration]
 acl.clear: 0
 ag.port.nfportfailback: 0x0
 ag.port.nfportfailover: 0x0
 ag.port.nfporttopo.0: 0x0
 ag.port.nfporttopo.1: 0x0
 ag.port.nfporttopo.10: 0x0
 [output truncated]

To display selected content of the local configuration file:

```
switch:admin> configshow -local config.txt -pattern "passwdcfg"
```

passwdcfg.adminlockout: 0
passwdcfg.digits: 0
passwdcfg.history: 1
passwdcfg.lockoutduration: 30
passwdcfg.lockoutthreshold: 0
passwdcfg.lowercase: 0
passwdcfg.maxpasswordage: 0
passwdcfg.minlength: 8
passwdcfg.minpasswordage: 0
passwdcfg.punctuation: 0
passwdcfg.repeat: 1
passwdcfg.sequence: 1
passwdcfg.status: 0
passwdcfg.uppercase: 0

See Also
agtCfgShow, configure, configDownload, configUpload, configList, configRemove, diagDisablePost, diagEnablePost, ipAddrShow, licenseShow, syslogdIpShow
configUpload

Uploads switch configuration and other parameters to a host file.

Synopsis

configupload

configupload -p ftp | -ftp ["host", "user", "path", ["passwd"]]

configupload -p scp | -scp ["host", "user", "path", ["passwd"]]

configupload [-force] -local | USB |-U ["file"]

Description

This command uploads the switch configuration to a host file.

The first form of the configupload command uses FTP (File Transfer Protocol). The FTP Server must be running in the host before an upload can occur. The configUpload command supports DNS names, and also IPv4, and IPv6 addresses.

The second form of the configUpload command uses SCP, which is a secure file copy tunneled through an SSH connection. When this form of the command is used, no password should be provided on the command line. Instead, SCP prompts for the password if necessary. The SSH service is available on both Unix and Windows hosts.

The third form of the configUpload command places the output file in a predetermined directory on the local chassis or on an attached USB device. If the specified file already exists, this command prompts you to permit overwrite unless -force has been specified.

When the local chassis is chosen as the destination, the resulting file is written to both primary and secondary partitions, and on enterprise-class platforms, to both Active and Standby Control Processors (CPs).

The upload might fail for some of the following reasons:

• The host name is not known to the switch.
• The host IP address cannot be contacted.
• The user does not have permission on the host.
• The FTP server is not running on the host.

The configuration file contains three types of lines: licenses, section headers, and name:value pairs.

License keys are encrypted ASCII strings and are listed one key per line. Section headers begin with a square bracket ([) as the first character of the line. It is important to note that keys should not be moved from one section to another.

The syntax of a name:value pair is as follows:

line whitespace name whitespace ":" whitespace value
name component ["." component]
whitespace ["" | t"]
component ["a" - "z" | "A" - "Z" | "0" - "9" | "_" | "."]
value <any character not including n">

Elements enclosed in braces ({...}) indicate zero or more occurrences of the enclosed elements.

The configuration file is written as a number of sections:
The first section contains the version of the Fabric OS from which this configuration was uploaded and the time stamp for the uploaded file creation.

The [Boot Parameters] section contains the switch boot parameters, also known as the switch’s identity. It has variables such as the switch’s name and IP address.

The [License] section contains license strings.

The [Chassis Configuration] and [Configuration] sections contain general switch configuration variables, such as diagnostic settings, fabric configuration settings, and SNMP settings.

The [Zoning] section contains the zoning configuration.

The [AD-Headers] section contains the Admin Domain headers configuration.

The [FICU Saved Files] section contains the FICON CUP related configuration parameters.

The [fcRouting] section contains the Fibre Channel Router configuration.

The [iSCSI] section contains the iSCSI configuration.

The [Banner] section contains the banner header information.

Notes
It is not required to change the configuration if one of the CPs is running a version of Fabric OS that does not support IPv6.

For Admin Domain users, refer to the Fabric OS Administrator’s Guide for details regarding configUpload and configDownload behavior.

No spaces are allowed between operands, nor can any of the operands contain the double-quote character ("). This applies to command-line mode and to the interactive mode.

Once a configuration file has been uploaded to an external system, it must NOT be manually edited before being downloaded, either to the same or another switch. Such an operation bypasses sanity checks for some configuration datapoints, resulting in unpredictable behavior.

Operands
The following operands are optional:

-p ftp | -ftp or -p scp | -scp
Specifies the data transmission protocol. If no protocol is specified, it defaults to FTP.

“host”
A host name or IP address in quotation marks, for example, “citadel” or “192.168.1.48”. The configuration file is uploaded from this host. To evoke the FTP server by name, you must setup one or more DNS servers beforehand with the dnsConfig command.

“user”
A user name in quotation marks, for example, “jdoe”. The user name is used to gain access to the host.

“path”
A file name and path in quotation marks, for example, "config.txt". An absolute path name may be specified using forward slash "/". A relative path name creates the file in the user's home directory on Unix hosts, and in the directory where the FTP server is running on Windows hosts.

“passwd”
The password for login when using the FTP protocol.

-local
Uploads to a predetermined directory on the local chassis.

-USB | -U
Uploads to a predetermined directory on an attached USB device.
configUpload

“file” A file name in quotation marks, for example, "config.txt". This parameter can be used only with the -local and -USB options, each of which stores files in a predefined directory on the local chassis or on an attached USB device. Therefore, subdirectories and absolute path names are not permitted.

-force This parameter is used only with the -local and -USB options, and specifies that any existing file can be overwritten. Without this option, you are prompted to confirm such overwrites.

When invoked without operands or without “host” or “file” parameters, configUpload runs in interactive mode. Note that "host" is not required when -local or -USB is specified.

Examples To upload a configuration file interactively from the local chassis:

```plaintext
switch:admin> configupload
Protocol (scp, ftp, local, or usb) [ftp]: local
File Name [config.txt]:
Overwrite previous file (Y/N)? [N]: y

configUpload complete: All config parameters are uploaded
```

To upload a local configuration file from the command line forcing an overwrite:

```plaintext
switch:admin> configupload -local -force config.txt

configUpload complete: All config parameters are uploaded
```

See Also configDefault, configDownload, configShow, configure
configure

Changes system configuration settings.

Synopsis configure

Description Use this command to change the following system configuration settings for the switch:
• Switch fabric settings
• Virtual channel parameters
• F_Port login parameters
• Zoning operation parameters
• Remote State Change Notifications (RSCN) transmission mode
• Arbitrated Loop Parameters
• System Services Settings
• Portlog Events enable or disable Settings
• Secure Socket Layer (SSL) attributes
• Remote Procedure Call Daemon (RPCD) attributes
• cfgload attributes
• Webtools attributes
• System settings

Notes To access all parameters controlled by this command, you must disable the switch using the switchDisable command. If executed on an enabled switch, only a subset of attribute can be configured.

The Telnet interface is no longer configurable with this command. Use the ipFilter command to enable or disable the Telnet interface.

The SNMP attributes are no longer configurable with this command. Use snmpConfig --set seclevel to configure SNMP attributes.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

The configure command runs in interactive mode and presents you with a series of hierarchical menus. Each top-level menu and its associated submenus consist of a text prompt, a selection of valid values, and a default value (in brackets).

The following keys control the execution of the command:

Return When entered at a prompt with no preceding input, the command accepts the default value (if applicable) and moves to the next prompt.

Interrupt (Ctrl-C) Aborts the command immediately and ignores all changes made.

End-of-file (Ctrl-D) When entered at a prompt with no preceding input, terminates the command and saves changes made.

The following parameters can be modified with the configure command:
Switch Fabric Settings

Fabric settings control the overall behavior and operation of the fabric. Some of these settings, such as the domain, are assigned automatically and may differ from one switch to another in a given fabric. Other parameters, such as buffer-to-buffer credit or timeout values, can be modified to suit specific applications or operating environments but must be in agreement among all switches to allow formation of the fabric.

Table 2 lists the switch fabric settings that can be modified.

TABLE 2 Configure command fabric parameters (* = multiplication symbol)

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>number</td>
<td>1</td>
<td>varies</td>
</tr>
<tr>
<td>R_A_TOV</td>
<td>number</td>
<td>10000</td>
<td>E_D_TOV * 2 to 120000</td>
</tr>
<tr>
<td>E_D_TOV</td>
<td>number</td>
<td>2000</td>
<td>1000 to R_A_TOV / 2</td>
</tr>
<tr>
<td>WAN_TOV</td>
<td>number</td>
<td>0</td>
<td>0 to R_A_TOV / 4</td>
</tr>
<tr>
<td>MAX_HOPS</td>
<td>number</td>
<td>7</td>
<td>7 to 19</td>
</tr>
<tr>
<td>Data Field Size</td>
<td>number</td>
<td>2112</td>
<td>256 to 2112</td>
</tr>
<tr>
<td>Sequence Level Switching</td>
<td>boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Disable Device Probing</td>
<td>boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Suppress Class F Traffic</td>
<td>boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Per-frame Route Priority</td>
<td>boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Long Distance Fabric</td>
<td>boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>BB Credit</td>
<td>number</td>
<td>16</td>
<td>1 to 27</td>
</tr>
<tr>
<td>Insistent Domain ID Mode</td>
<td>boolean</td>
<td>0</td>
<td>0 or 1</td>
</tr>
</tbody>
</table>

Fabric setting fields are defined as follows:

Domain

The domain number uniquely identifies a switch in a fabric. This value is automatically assigned by the fabric. The range of valid values varies depending on the switch model and other system parameter settings.

R_A_TOV

The resource allocation time out value specified in milliseconds. This variable works with the variable E_D_TOV to determine switch actions when presented with an error condition.

Allocated circuit resources with detected errors are not released until the time value has expired. If the condition is resolved prior to the time out, the internal time-out clock resets and waits for the next error condition.

E_D_TOV

Error detect time out value specified in milliseconds. This timer is used to flag a potential error condition when an expected response is not received within the set time limit. If the time for an expected response exceeds the set value, then an error condition occurs.

WAN_TOV

Wide area network time out value specified in milliseconds. This timer is the maximum frame time out value for a WAN, if any, interconnecting the Fibre Channel islands.

MAX_HOPS

Maximum hops is an integer that denotes the upper limit on the number of hops a frame might have to traverse to reach any destination port from any source port across the fabric.
Note that the R_A_TOV, E_D_TOV, WAN_TOV, and MAX_HOPS configuration parameters are interrelated. Assigning a specific value to one or more of these parameters can change the range of allowed values that can be assigned to the other parameters. As a result, you may not be able to set all the values within the range displayed against each parameter. To reduce problems, the configuration utility validates the modified parameter values and prompts you to re-enter some values, if the validation check fails.

Data Field Size

The data field size specifies the largest possible value, in bytes, for the size of a type 1 (data) frame. The switch advertises this value to other switches in the fabric during construction of the fabric as well as to other devices when they connect to the fabric. Setting this to a value smaller than 2112 might result in decreased performance.

Sequence-Level Switching

When sequence-level switching is set to 1, frames of the same sequence from a particular source are transmitted as a group. When this feature is set to 0, frames are transmitted interleaved among multiple sequences.

Under normal conditions, sequence-level switching should be disabled for better performance. However, some host adapters have performance issues when receiving interleaved frames from multiple sequences. When there are such devices attached to the fabric, sequence-level switching should be enabled.

Disable Device Probing

When disable device probing is set to 1, devices that do not register with the Name Server will not be present in the Name Server data base. Set this mode only if the switch’s N_Port discovery process (PLOGI, PRLI, INQUIRY) causes an attached device to fail.

Suppress Class F Traffic

By default, the switch can send Class F frames. When this option is turned on, Class F traffic is converted to Class 2 traffic before being transmitted.

Per-frame Route Priority

In addition to the eight virtual channels used in frame routing priority, support is also available for per-frame-based prioritization when this value is set. When Per-frame Route Priority is set to 1, the virtual channel ID is used in conjunction with a frame header to form the final virtual channel ID.

Long Distance Fabric

When this mode is set to 1, ISLs in a fabric can be up to 100 km long. The exact distance level is determined by the per-port configuration on the E_Ports of each ISL. Both E_Ports in an ISL must be configured to run the same long-distance level; otherwise, the fabric will be segmented.

An Extended Fabrics license is required to set this mode.

BB Credit

The buffer-to-buffer (BB) credit represents the number of buffers available to attached devices for frame receipt. The range of allowed values varies depending on other system settings (see Unicast-only Operation).

Insistent Domain ID Mode

When this mode is set, the switch attempts to acquire from the fabric the domain number programmed in its "Switch Fabric Settings." If the operation fails, the switch will segment from the fabric.
Virtual Channel Settings
The switch enables fine-tuning for a specific application by configuring the parameters for eight virtual channels. The first two virtual channels are reserved for switch internal functions and are not available for modification.

The default virtual channel settings have already been optimized for switch performance. Changing the default values can improve switch performance but can also degrade performance. Do not change these settings without fully understanding the effects of the changes.

Table 3 lists the virtual channel settings.

TABLE 3 Configure command virtual channel settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC Priority 2</td>
<td>2</td>
<td>2 to 3</td>
</tr>
<tr>
<td>VC Priority 3</td>
<td>2</td>
<td>2 to 3</td>
</tr>
<tr>
<td>VC Priority 4</td>
<td>2</td>
<td>2 to 3</td>
</tr>
<tr>
<td>VC Priority 5</td>
<td>2</td>
<td>2 to 3</td>
</tr>
<tr>
<td>VC Priority 6</td>
<td>3</td>
<td>2 to 3</td>
</tr>
<tr>
<td>VC Priority 7</td>
<td>3</td>
<td>2 to 3</td>
</tr>
</tbody>
</table>

VC Priority specifies the class of frame traffic given priority for a virtual channel.

F_Port Login Parameters
Specify the F_Port login parameters to limit the number of virtual port logins. These are switch-wide parameters applicable to all N_Port ID virtualization (NPIV) ports in the switch. The last two parameters are related to staged F_Port bring up. *Logins per second* specifies the number of logins the switch accepts per second in staged F_Port bring up. The *Login stage interval* parameter specifies the stage interval in staged F_Port bring up. Unless there are issues with F_Port staging, do not change default values.

TABLE 4 F_Port login parameters (* = multiplication symbol)

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum logins per switch</td>
<td>Number</td>
<td>16 * the max number of ports</td>
<td>1 to 126 * the max number of ports</td>
</tr>
<tr>
<td>Maximum logins per port</td>
<td>Number</td>
<td>126</td>
<td>1 to 255</td>
</tr>
<tr>
<td>Logins per second</td>
<td>Number</td>
<td>0</td>
<td>0 to 100</td>
</tr>
<tr>
<td>Login stage interval (milliseconds)</td>
<td>Number</td>
<td>0</td>
<td>0 to 10000</td>
</tr>
</tbody>
</table>
Zoning Operation Parameters

Table 5 lists the configurable zoning operation parameters.

TABLE 5 Zoning operation parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable NodeName Zone Checking</td>
<td>Boolean</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Disable NodeName Zone Checking
Specify 1 to disable using node WWN when specifying nodes in the zone database, or specify 0 to enable using node WWN when specifying nodes in the zone data. The default value is 0. This value must be set to 1 for interoperability.

RSCN Transmission Mode

Table 6 lists the RSCN transmission mode values fields.

TABLE 6 RSCN transmission modes

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-device RSCN Transmission Mode</td>
<td>number</td>
<td>1</td>
<td>0 to 2</td>
</tr>
<tr>
<td>Domain RSCN to End-device for switch IP address or name change</td>
<td>number</td>
<td>0</td>
<td>0 to 1</td>
</tr>
</tbody>
</table>

End-device RSCN Transmission Mode values are as follows:
- 0: RSCN only contains single PID
- 1: RSCN contains multiple PIDs
- 2: Fabric addresses RSCN

Domain RSCN to End-device for switch IP address or name change values are as follows:
- 0: Disabled. No domain RSCN is sent to the end-device for the switch IP address or name change.
- 1: Enabled. Domain RSCN is sent to the end-device for the switch IP address or name change.

Arbitrated Loop Parameters
The Arbitrated Loop Setting fields are described in Table 7.

TABLE 7 Configure command arbitrated loop settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send FAN frames?</td>
<td>1</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Enable CLOSE on OPEN received?</td>
<td>4</td>
<td>0 to 4</td>
</tr>
<tr>
<td>Always send RSCN?</td>
<td>0</td>
<td>0 or 1</td>
</tr>
</tbody>
</table>

Descriptions of the Arbitrated Loop Parameter fields are as follows:

Send FAN frames? Specifies that fabric address notification (FAN) frames be sent to public loop devices to notify them of their node ID and address. When set to 1, frames are sent; when set to 0, frames are not sent.
Enable CLOSE on OPEN received?
If this is set, a CLS is returned immediately to an OPN if no buffers are available. This is required for TachLite.

Always send RSCN? Following the completion of loop initialization, a remote state change notification (RSCN) is issued when FL_Ports detect the presence of new devices or the absence of pre-existing devices. When set to 1, an RSCN is issued upon completion of loop initialization, regardless of the presence or absence of new or pre-existing devices.

System Services Settings
Settings affecting System Services are described in Table 8.

TABLE 8 Disable RLS probing

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable RLS probing</td>
<td>Boolean</td>
<td>off</td>
<td>off or on</td>
</tr>
</tbody>
</table>

Disable RLS probing. Enables or disables the read link status (RLS) probing. Performed by the FCP daemon, RLS probing reads the link error block from the device. This extended link services command is defined by the FC standards. Refer to the FC standards for information. This parameter is enabled (“on”) by default; “off” disables RLS probing.

Portlog Events Enable/Disable Settings
These settings determine whether or not various types of port events are logged.

Each event type displayed on the screen is enabled by default (“on”). When disabled, this event is not logged by the port log.

Application Attributes
Table 9 lists configurable application attributes. By default, all application attributes are enabled.

TABLE 9 Configurable application attributes

<table>
<thead>
<tr>
<th>Application</th>
<th>File</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssl</td>
<td>Certificate File</td>
<td>string</td>
<td>not set</td>
<td>varies</td>
</tr>
<tr>
<td></td>
<td>CA Certificate File</td>
<td>string</td>
<td>not set</td>
<td>varies</td>
</tr>
<tr>
<td></td>
<td>Length of crypto key</td>
<td>number</td>
<td>128</td>
<td>40, 56, 128</td>
</tr>
<tr>
<td>rpd</td>
<td>Secure RPCd Callback secret</td>
<td>string</td>
<td>none</td>
<td>varies</td>
</tr>
<tr>
<td>cfgload</td>
<td>Enforce secure Config Upload/Download</td>
<td>boolean</td>
<td>no</td>
<td>no/yes</td>
</tr>
<tr>
<td></td>
<td>Enforce signature validation for firmware</td>
<td>boolean</td>
<td>no</td>
<td>no/yes</td>
</tr>
<tr>
<td>Webtools</td>
<td>Basic User Enabled</td>
<td>boolean</td>
<td>no</td>
<td>no/yes</td>
</tr>
<tr>
<td></td>
<td>Perform License Checking and Warning</td>
<td>boolean</td>
<td>yes</td>
<td>yes/no</td>
</tr>
<tr>
<td></td>
<td>Allow Fabric Event Collection</td>
<td>boolean</td>
<td>yes</td>
<td>yes/no</td>
</tr>
</tbody>
</table>
System Settings

The following table lists system settings.

TABLE 10 System settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>system.blade.bladeFaultOnHwErrMsk</td>
<td>Number</td>
<td>0x0</td>
<td>0x0 to 0xffff</td>
</tr>
</tbody>
</table>

system.blade.bladeFaultOnHwErrMsk

If this field is set to a value other than 0, then any nonfatal HW ASIC data parity error causes the problem blade to be powered off.

Examples

To enable signed firmware download on a disabled switch:

```
switch:admin> configure
Configure...

Fabric parameters (yes, y, no, n): [no]
Virtual Channel parameters (yes, y, no, n): [no]
P-Port login parameters (yes, y, no, n): [no]
Zoning Operation parameters (yes, y, no, n): [no]
RSCN Transmission Mode (yes, y, no, n): [no]
Arbitrated Loop parameters (yes, y, no, n): [no]
System services (yes, y, no, n): [no]
Portlog events enable (yes, y, no, n): [no]
ssl attributes (yes, y, no, n): [no]
rpcd attributes (yes, y, no, n): [no]
cfgload attributes (yes, y, no, n): [no] y

Enforce secure config Upload/Download (yes, y, no, n): [no]
Enforce signature validation for firmware (yes, y, no, n): [no] y

webtools attributes (yes, y, no, n): [no]
System (yes, y, no, n): [no]
[output truncated]
```

See Also

configDefault, configShow, ipAddrSet, portCfgLongDistance, switchDisable, switchEnable, upTime
dataTypeShow

Displays sample data stream types used in some diagnostic commands.

Synopsis

datatypeshow [-seed value]

Description

Use this command to display sample data stream types used in diagnostic commands. There are 20 different sample data types. The command displays an example of each data stream.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operand:

- **-seed value**
 Specify the data pattern seed value. If no seed is specified, then a seed value of 0 is used.

Examples

To display sample data streams you can use with diagnostics:

```
switch:admin> datatypeshow

Pattern       type       example
BYTE_FILL     1          00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
WORD_FILL    2          0000 0000 0000 0000 0000 0000 0000 0000
QUAD_FILL     3          00000000 00000000 00000000 00000000
BYTE_NOT      4          00 ff 00 ff
WORD_NOT     5          0000 ffff 0000 ffff 0000 ffff 0000 ffff
QUAD_NOT      6          ffffffff ffffffff ffffffff ffffffff
BYTE_RAMP     7          00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
WORD_RAMP    8          0000 0001 0002 0003 0004 0005 0006 0007
QUAD_RAMP     9          00000000 00000001 00000002 00000003
BYTE_LFSR    10          69 01 02 05 0b 17 2f 5e bd fb 7b 06 c0
RANDOM       11          55 16 fc d7 17 65 a9 87 5f 44 be 5a d0 de bc a5
CRPAT        12          bc bc 23 47 6b 8f b3 d7 fb 14 36 59 bc bc 23 47
CSPAT        13          7e 7e
CHALF_SQ     14          4a 4a
CQTR_SQ      15          78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
RDRAM_PAT    16          00 ff 00 ff
jCRPAT       17          be d7 23 47 6b 8f b3 14 5e fb 35 59 be d7 23 47
jCJTPAT      18          7e 7e
jCSPAT       19          7f 7f
PRED_RAND    20          00000000 11111111 22222222 33333333
```

See Also

none
date

Displays or sets the switch date and time.

Synopsis date ["newdate"]

Description Use this command to display or set the date and time. All switches maintain current date and time in flash memory. Date and time are used for logging events. Normal switch operation does not depend on the date and time; a switch with incorrect date values continues to function properly.

This command sets a common date and time for the entire fabric. A change in date or time to one switch is forwarded to the principal switch and distributed to the fabric. It may take up to 64 seconds for the switches in the fabric to be synchronized. However, if FCS policy is enabled, this command can be executed only on the Primary FCS switch, and only the primary FCS switch can distribute the time stamp to all other switches in the fabric.

The date specified is always the local switch time, taking into account daylight saving time and the time zone setup of the switch. Each switch takes care of converting the GMT time distributed fabric-wide to its local time. Refer to **tsTimeZone** for more information on time zone support.

If the switch is operating in FICON Management Server mode (**fmsmode**), setting the date is subject to the director clock alert mode (**DCAM**). If DCAM is 1, the operator issues a warning that the switch date is about to change. The operator then prompts to confirm the change with a yes or no response.

Note This command becomes read-only if external NTP synchronization is enabled. For more information, refer to **tsClockServer**.

Operands When invoked without operand, this command displays the current date and time. The following operand is optional:

"newdate" Specify the new date and time, in quotation marks. Date and time are specified as a string in the format: "mmddhhmmyy" where:

- \(mm \) is the month, valid values are 01-12.
- \(dd \) is the date, valid values are 01-31.
- \(hh \) is the hour, valid values are 00-23.
- \(mm \) is minutes, valid values are 00-59.
- \(yy \) is the year, valid values are 00-37 and 70-99.

Year values from 70-99 are interpreted as 1970-1999, year values from 00-37 are interpreted as 2000-2037.

Examples To display the current date and time and then modify it:

```
switch:admin> date
Fri Jan 29 17:01:48 UTC 2007

switch:admin> date "0227123007"
Thu Feb 27 12:30:00 UTC 2007
```

See Also errShow, ficonCupSet, ficonCupShow, portLogShow, tsClockServer, tsTimeZone, upTime
dbgShow

Displays current values of debug and verbosity levels of the specified module.

Synopsis

```
dbgshow [module_name]
```

Description

Use this command to display the current values of debug and verbosity levels of the specified module. If no module name is specified, displays debug and verbosity levels of all modules.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operand:

- `module_name` Specify the name of the module for which you want to view the debug and verbosity levels. Module names are case-sensitive. This operand is optional.

Examples

To display information about a specific module named NS:

```
switch:admin> dbgshow NS
Module NS, debug level = 1, verbose level = 1
```

See Also

`setDbg`
defZone

Sets or displays the default zone access mode.

Synopsis defzone [--noaccess | --allaccess | --show]

Description Use this command to display or set the Default Zone access mode. Setting the Default Zone mode initializes a zoning transaction (if one is not already in progress), and create reserved zoning objects.

A default zone controls device access when zoning is not enabled. When a user-specified zoning configuration is not enabled, Default Zone is in effect, allowing access to all devices. When a user-specified zone configuration is enabled, it overrides the Default Zone access mode.

Notes This command must be run from the primary FCS switch.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Zone object names beginning with the d_default_ prefix are reserved for default zoning use. Editing of these objects is not permitted. Therefore, cfgShow does not display the names of these objects.

If d_default_Cfg is the effective zone configuration, both cfgShow and cfgActvShow do not display d_default_Cfg as the effective zone configuration.

Operands This command has the following operands:

--noaccess Sets the default zone access mode to No Access, initializes a zoning transaction (if one is not already in progress), and creates the reserved zoning objects equivalent to the following zoning commands:

 cfgCreate "d_default_Cfg", "d_default_Zone"
 zoneCreate "d_default_Zone", "00:00:00:00:00:00:00:01"

A cfgSave, cfgEnable, or cfgDisable command must be issued after issuing this command to commit the changes and distribute them to the fabric; for example:

 primaryfcs:admin> defzone --noaccess
 primaryfcs:admin> cfgsave

An audit log record is generated for each execution of this command.

When No Access default zone is activated, the following conditions apply:

- If the current effective zone configuration is disabled with the cfgDisable command, the local switch converts this command to the equivalent of cfgEnable d_default_Cfg.
- If zoning receives a cfgDisable command from a remote switch that does not support default zoning, zoning rejects the cfgDisable command in the second phase of RCS because the remote switch does not convert the cfgDisable command to cfgEnable d_default_Cfg.
defZone

--allaccess

Sets the default zone access mode to All Access, initiates a zoning transaction (if one is not already in progress), and deletes the reserved zoning objects by performing the equivalent to the following zoning commands:

```
cfgDelete "d_default_Cfg"
zoneDelete "d_default_Zone"
```

A `cfgSave`, `cfgEnable`, or `cfgDisable` command must be performed subsequent to the use of this command to commit the changes and distribute them to the fabric. If a `cfgSave` is performed and the fabric is already in the No Access default zone state, a `cfgDisable` is sent to the fabric. For example:

```
primaryfcs:admin> defzone --allaccess
primaryfcs:admin> cfgsave
```

An audit log record is generated for each use of this command.

--show

Displays the current state of the default zone access mode.

Examples

To create a default zone configuration:

```
primaryfcs:admin> cfgactvshow
Effective configuration:
   No Effective configuration
```

```
primaryfcs:admin> defzone --noaccess
primaryfcs:admin> cfgsave
```

```
primaryfcs:admin> defzone --show
Default Zone Access Mode
committed - No Access
transaction - No Transaction
```

```
primaryfcs:admin> cfgactvshow
Effective configuration:
   No Effective configuration: (No Access)
```

See Also

none
diagClearError

Clears the diagnostics failure status.

Synopsis diagclearerror [[--slot] slotnumber] -all

Description Use this command to clear the diagnostics failure status.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

 --slot slotnumber Specify the slot on which to clear the diagnostics failure status. The default is set to 0 and designed to operate on fixed-port-count products.

 -all If specified, all blades clear.

 If no operand is specified, the default is to clear all bad port flags.

Examples To clear the diag software flag:

 switch:admin> diagclearerror 8
 ERROR: DIAG CLEARERR
 Diagnostics Errors Cleared, port: 8/31
 Err# 0120041 081F

See Also none
diagDisablePost

Disables power-on self-test (POST).

Synopsis diagdisablepost

Description Use this command to disable POST. A reboot is not required for this command to take effect.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To disable the POST during future power ons:

switch:admin> diagdisablepost
Config update Succeeded
Diagnostic POST is now disabled.

See Also diagEnablePost
diagEnablePost

Enables power-on self-test (POST) execution at next reboot.

Synopsis
diagenablepost

Description
Use this command to enable POST. A reboot is not required for this command to take effect. POST includes two phases: POST Phase I mainly tests hardware and POST Phase II tests system functionality.

Note
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
none

Examples
To enable the POST during future power ons:

```
switch:admin> diagenablepost
Config update Succeeded
Diagnostic POST is now enabled.
```

See Also
diagDisablePost
diagHelp

Displays diagnostic command information.

Synopsis

```
diaghelp
```

Description

Use this command to display a short description of diagnostic commands.

Use default operands when running diagnostics commands. Non-default settings require detailed knowledge of the underlying hardware and are intended for support personnel only. Contact support if you want to use these operands.

Operands

`none`

Examples

To display diagnostic command information:

```
switch:admin> diaghelp
bladepropshow           display blade properties (**internal take out)
chippropshow            display chip properties (**internal take out)
datatypshow             display available diagnostic data types
diaghelp                display diagnostic command descriptions
diagoktorun             check to see if it is ok to run a diagnostic test
diagshow                display diagnostics status
minisregshow            display contents of ASIC pair registers.
ptbufshow               dump port buffer contents
(output truncated)
```

See Also

`none`
diagPost

Sets or displays diagnostic POST configuration.

Synopsis diagpost [mode | -show]

Description Use this command to enable or disable Power-On-Self-Test (POST) POST. The mode is saved in flash
memory (and stays in that mode) until the next execution of diagPost. The mode becomes active as
soon as this command is executed; it does not require a reboot to take effect.

POST mode modifies the behavior of the diagnostics daemon program to inhibit testing of switch
blades when the system is first powered on or a new blade is added.

To enable or disable diagnostic POST, the recommended method is to use diagEnablePost and
diagDisablePost.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands This command has the following operands:

mode Specify 1 to enable, 0 to disable POST test. This operand is optional.

-show Specify this operand to display the current mode. This operand is optional.

If no operand is specified, the current value is displayed.

Examples To enable and then disable the POST test:

switch:admin> diagpost
Diagnostic POST is currently disabled.
switch:admin> diagpost 1
Config update Succeeded
Diagnostic POST is now enabled.

See Also diagDisablePost, diagEnablePost
diagRetry

Sets or displays diagnostic retry mode.

Synopsis

 diagretry [mode | -show]

Description

Use this command to enable retry mode if the mode value is nonzero and to disable the retry mode if the mode value is 0. The mode is saved in flash memory (and stays in that mode) until the next execution of **diagRetry**. The mode becomes active as soon as this command is executed; it does not require a reboot to take effect.

Retry mode modifies the behavior of the diagnostic test methods, power-on self-test (POST), and burn-in scripts. The exact behavior depends on the tests and scripts that are run.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, *Understanding Admin Domain Restrictions* and Appendix A, *Command Availability* for details.

Operands

This command has the following optional operands:

- **mode**
 Specify 1 to enable, 0 to disable retry mode.

- **-show**
 Specify this operand to display the current mode setting.

If no operand is specified, the current value is displayed.

Examples

To view the current retry mode value:

```
switch:admin> diagretry -show
Diagnostic Retry Mode is currently enabled.
```

See Also

none
diagSetBurnin

Initializes the blade for a burn-in run.

Synopsis
diagsetburnin [--slot slotnumber][script | -current]

Description
This sets up the blade burn-in parameters for the registered burn-in script. The burn-in starts at the next run of power-on self-test (POST) on the designated blades.

The errors and activity logs are stored in flash memory. The activity log of the script is saved in /var/log/scriptname.slot.log. The errors produced are available from the burninErrShow command on a per-blade basis. When power cycles occur, the burn-in activity is restarted at the test that was interrupted at the time of the power cycle. This command does not require a reboot to take effect.

It is advisable to run the burninErrClear command prior to running diagSetBurnin and diagSetCycle.

Boards must be installed prior to running this command and diagSetCycle must be run prior to diagSetBurnin if you want to use both commands.

Note
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
This command has the following operands:

--slot slotnumber Specify which slot number to update. If this option is not specified at all, then all slots on the switch are set up for burn-in.

script Specify the name of the burn-in script to run.

-current Sets the name of the burn-in script to the current burn-in script.

Examples
To set the burn-in script and mode:

switch:admin> diagsetburnin --slot 1 -current
existing script is: /fabos/share/switchess.sh
Burnin mode is Enabled.
Removing all log files in /var/log for slot 1
Slot 1 burnin name is now /fabos/share/switchess.sh
Config update Succeeded

See Also
burninErrShow, diagSetCycle
diagSetCycle

Sets diagnostic script parameters.

Synopsis

```bash
diagsetcycle [script [\-show | -default | [-keyword value]]]
```

Description

Use this command to update diagnostic command parameters. If only a script is specified, the command displays all configuration variables used by the specified script and enters an interactive session. Using the full parameters, variables can be updated noninteractively.

In interactive mode, the current value, default value, and description of purpose of the variable are displayed for each variable. If no new value is specified, the current value is left unchanged. If a new value is entered, its value is updated and stored in the configuration database for that blade type. This command does not require a reboot to take effect.

It is recommended to run the **burninErrClear** command prior to running **diagSetBurnin** and **diagSetCycle**.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- `script` Specify a script in which you want to change parameters.
- `\-show` Displays the parameters for the specified diagnostic script.
- `\-default` Specify this operand to set the script parameters to default values.
- `\-keyword value` The script parameters can be updated noninteractively with the `-keyword` option. The specified value is the keyword to update.

Examples

To update diagnostic command parameters:

```bash
switch:admin> diagsetcycle switchburnin.sh -show
CURRENT - KEYWORD : DEFAULT
  1 - number_of_runs : 1
  2 - vib             : 2
 10 - thermal        : 10
BURNIN - label      : BURNIN
  1 - tbr_passes     : 1
  1 - prt_on         : 1
  1 - cntmem_on      : 1
  1 - cmi_on         : 1
  1 - retention_on   : 1
  1 - cam_on         : 1
 50 - flt_passes     : 50
 25 - sta_passes     : 25
100 - plb_nframes   : 100
 50 - txd_nframes    : 50
200 - xpt_nframes   : 200
 20 - bpt_nframes    : 20
 50 - slk_nmegs      : 50
 30 - bpt_all_nframes: 30
 50 - slk_all_nmegs  : 50
```

See Also

`burninLevel`, `diagSetBurnin`, `diagStopBurnin`
diagShow

Displays diagnostics status.

Synopsis

```
diagshow [--slot number][-uports itemlist][-bports itemlist][-use_bports value]
```

Description
Use this command to display the diagnostics status for the specified list of blade or user ports.

Note
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
This command has the following optional operands:

- **--slot number** Specify which slot to operate on. If this option is not specified, the default slot 0 is used. The default slot is designed to operate on fixed-port-count products. By default, this command displays all user ports in the system.

- **-uports itemlist** Specify a list of user ports to display.

- **-bports itemlist** Specify a list of blade ports to display.

- **-use_bports value** If this value is not 0 the diagnostics status for the blade ports specified in -use_bports displays; otherwise, the user ports specified in -uports displays. The default value is 0.

Notes
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Examples
To display diagnostic status on a switch blade:

```
switch:admin> diagshow
Diagnostics Status:  Fri Feb 08 15:25:24 2002
Slot: 1 UPORTS
   Port  BPort  Diag  Active  Speed
0 15 OK UP 2G Auto
1 14 OK UP 2G Auto
2 13 OK UP 2G Auto
3 12 OK UP 2G Auto
4 31 OK UP 2G Auto
5 30 OK UP 2G Auto
6 29 OK UP 2G Auto
7 28 OK UP 2G Auto
8 47 OK UP 2G Auto
(output truncated)
```

See Also
itemList
diagSkipTests

Enables or disables diagnostics skip test flags.

Synopsis

diagSkipTests [value | -show]

Description

Use this command to enable or disable the diagnostics skip test flags. The skip test flags are saved in flash memory and stay set until the next execution of `diagSkipTests`.

The mode becomes active as soon as this command is executed. It does not require a reboot to take effect.

The skip test flags are used to skip the execution of certain POSTs that might prove hazardous to normal switch operation. The exact use of this flag is determined by the POST scripts and the specific test methods used.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- `value`
 Specify a bit mask for tests to skip.

- `-show`
 If specified or no value is given, the current skip tests setting displays.

If no operand is specified, the current value is displayed.

Examples

To display the current skip test flags:

```
switch:admin> diagSkipTests -show
Skip tests is 1.
```

See Also

none
diagStopBurnin

Terminates a blade burn-in run.

Synopsis diagStopBurnin [--slot number]

Description Use this command to determine which PID is running burn-in on a blade and terminate that activity. The burn-in script handles the logging cleanup.

This command does not require a reboot to take effect.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

 --slot number Specify the slot on which to stop burn-in. If no slot is specified, this command executes on all slots in the logical switch. This operand is optional.

Examples To stop burn-in mode on a switch:

 switch:admin> diagStopBurnin --slot 1
 No burn-in script active on slot 1
 1 burninErrShow output:
 0x1eea (fabos): Dec 19 14:42:18
 Switch: 0, Error DIAG-MANUAL1, 1, " 1 Starting switchess ...
 Err# 0140042 0100:101:000:001:24:37:

 0xc84 (fabos): Dec 20 08:57:27
 Switch: 0, Error DIAG-MANUAL1, 1, " 1 switchess: ABORT ...
 Err# 0140042 0100:101:000:000:25:41:

 0x1b61 (fabos): Feb 07 19:02:28
 Switch: 0, Error DIAG-MANUAL1, 1, " 1 Starting switchess ...
 Err# 0140042 0100:101:000:001:26:39:

 0x47ff (fabos): Feb 07 21:45:36
 Switch: 0, Error DIAG-MANUAL1, 1, " 1 switchess: ABORT ...
 Err# 0140042 0100:101:000:002:26:41:1N

See Also diagSetBurnin
dbgShow

Displays current values of debug and verbosity levels of the specified module.

Synopsis

```
dbgshow module_name
```

Description

Use this command to display the current values of debug and verbosity levels of the specified module. If no module name is specified, displays debug and verbosity levels of all modules.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- `module_name`: Specify the name of the module for which you want to view the debug and verbosity levels. Module names are case-sensitive. This operand is optional.

Examples

To display information about a specific module named NS:

```
switch:admin> dbgshow NS
Module NS, debug level = 1, verbose level = 1
```

See Also

setDbg
distribute

Distributes data to switches in a fabric.

Synopsis
distribute -p policy_list -d switch_list

Description
Use this command to distribute data to a specified list of switches in the fabric. The distributed data must be from the list of currently supported policy sets:

- SCC Switch Connection Control Policy
- DCC Device Connection Control Policy
- PWD Password Database and Password Configuration Policy
- AUTH E_Port and F_Port Authentication Policy
- FCS Fabric Configuration Server Policy
- IPFILTER IP-Filter Policy

Each supported database has a switch-local configuration parameter that controls whether the database can be distributed and accepts distributions. Use the fddCfg command to view and modify these parameters.

Notes
If executed on pre-v5.3.0 switches, the command generates an error for security policies such as FCS, AUTH and IPFILTER, because these policies are not supported prior to Fabric OS v.5.3.0.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
This command has the following operands:

-p policy_list Specify the list of policy sets, also called security databases, to be distributed. policy_list is a semicolon-separated list. Valid values include SCC, DCC, PWD, AUTH, FCS, and IPFILTER.

-d switch_list Specify the list of switches that should receive the data distribution. The switch_list is a semicolon-separated list of one of the following:

- switch domain numbers
- switch names
- switch WWNs

A wildcard (*) may be specified to include all switches in the fabric that support the distribute feature. Switches running firmware earlier than v5.3.0 ignore the AUTH, FCS, and IPFILTER policies.

When specifying new policies in the policy list and a wildcard (*) is used, then switches prior to v5.3.0 ignore the new policies. If a wildcard (*) is not specified, then all domains should be v5.3.0 or later; otherwise distribute fails.

Examples
To distribute the Switch Connection Control Policy and Device Connection Control Policy to domains 3 and 5 in the fabric:

switch:admin> distribute -p "SCC;DCC" -d "3;5"
To distribute the Switch Connection Control Policy, FCS Policy, and Password database to all domains in the fabric that support the distribute feature:

```
switch:admin> distribute -p "SCC;FCS;PWD" -d "**"
Wildcard domains are:
1 3 5
```

To distribute the FCS policy, and the Password database to all domains in the fabric that support the distribute feature:

```
switch:admin> distribute -p "FCS;PWD" -d "**"
```

To distribute the AUTH and FCS policies to all switches in the fabric that run v5.3.0 or later:

```
switch:admin> distribute -p "AUTH;FCS" -d "**"
```

To distribute the AUTH and SCC policies to domains 1 and 3 in the fabric:

```
switch:admin> distribute -p "AUTH;SCC" -d "1;3"
```

See Also fddCfg
dlsReset

Disables the dynamic load sharing (DLS) option.

Synopsis dlsreset

Description Use this command to turn off DLS when a fabric change occurs. Refer to dlsSet for a full description of load sharing.

This command should be used only if devices connected to the fabric cannot handle occasional routing changes correctly.

Notes The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

DLS is not supported in certain routing policies. Refer to aptPolicy for more information on routing policies.

Operands none

Examples To disable the dynamic load sharing option:

switch:admin> dlsreset
Committing configuration...done.

switch:admin> dlsshow
DLS is not set

See Also aptPolicy, dlsSet, dlsShow
dlsSet

Enables the dynamic load sharing (DLS) option.

Synopsis

dlsset

Description

Use this command to turn on DLS when a fabric change occurs.

Routing is based on the incoming port and the destination domain. This means that all traffic coming in from a port (either from an E_Port or an Fx_Port) and directed to the same remote domain is routed through the same output E_Port.

Dynamic Load Sharing (DLS) optimizes fabric routing. When DLS is enabled and there are multiple equivalent paths to a remote domain, traffic is distributed among all these paths. Regardless of the setting of the DLS option, when a port comes online, its new route (selected out-port) is chosen to optimize load sharing. Whether pre-existing routes are recomputed or rebalanced is determined by the given DLS settings.

Furthermore, when DLS is enabled, load sharing is recomputed after any one of the following events:

- A change in the fabric occurs.
- A local E_Port goes up or down.
- A local Fx_Port goes down.

During load sharing recomputation, existing routes may be moved to maintain optimal load balance. This may cause momentary frame loss along these routes.

In contrast, if DLS is turned off (using **dlsReset**), load sharing calculations are used only to place new routes. Once placed, existing routes are never moved from one output E_Port to another unless the original output E_Port is no longer a recognized path to the remote domain. Optimal balance is rarely achieved with this setting.

Notes

DLS is not supported in certain routing policies. If supported, the DLS option is on by default. Refer to **aptPolicy** help for more information on routing policies.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, *"Understanding Admin Domain Restrictions"* and Appendix A, *"Command Availability"* for details.

Operands

none

Examples

To enable the dynamic load sharing option:

```
switch:admin> dlsset
switch:admin> dlsshow
DLS is set
```

See Also

aptPolicy, dlsReset, dlsshow, iodReset, iodSet, iodShow, uRouteShow, topologyShow
dlsShow

Displays the setting of the dynamic load sharing (DLS) option.

Synopsis
dlsshow

Description Use this command to display whether DLS is on or off. One of two messages displays:

DLS is set The DLS option is turned on. Load sharing is reconfigured with every change in the fabric, and existing routes can be moved to maintain optimal balance.

DLS is not set The DLS option is turned off. Once placed, existing routes are never moved to maintain optimal balance.

Refer to dlsSet for a description of load sharing.

Notes DLS is not supported in certain routing policies. Refer to aptPolicy for more information on routing policies.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To display the current DLS option setting:

 switch:admin> dlsshow
 DLS is set

See Also dlsSet, dlsReset
dnsConfig

Sets, displays, or removes domain name service (DNS) parameters.

Synopsis

dnsconfig

Description

Use this command to display, set, or remove the domain name service parameters.

The domain name service parameters are the domain name and the name server IP address for primary and secondary name servers. The dnsconfig command displays IPv4 and IPv6 addresses.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

none

Examples

To set the DNS parameters for the system:

```
switch:admin> dnsconfig

Enter option
1 Display Domain Name Service (DNS) configuration
2 Set DNS configuration
3 Remove DNS configuration
4 Quit
Select an item: (1..4) [4] 2

Enter Domain Name: [ ] domain.com
Enter Name Server IP address in dot notation: [ ] 123.123.123.123
Enter Name Server IP address in dot notation: [ ] 123.123.123.124
DNS parameters saved successfully

Enter option
1 Display Domain Name Service (DNS) configuration
2 Set DNS configuration
3 Remove DNS configuration
4 Quit
Select an item: (1..4) [4] 4
```

See Also

configDownload, configUpload, firmwareDownload, ipAddrSet, ipAddrShow
enclosureShow

Displays attributes of the switch enclosure.

Synopsis enclosureShow attribute

Description Use this command to display attributes of the switch enclosure. Supported attributes include the
vendor-specific enclosure identifier and the identifier of the enclosure interface to which the switch
is attached.

This command is only meaningful for products that are embedded in a blade server or storage
chassis. Most of the options are applicable to a specific platform. Options that do not apply to a
platform are identified with a “Not supported on this platform” message.

Operands This command has the following operand:
attribute Specifies the enclosure attribute. Valid attributes include the following:
 id The vendor-specific enclosure identifier.
 modelname The vendor-specific enclosure model name.
 slotid The identifier of the enclosure interface to which the switch
 is attached.
 rackname The name assigned by the enclosure manager to this rack.
 rackid The serial number assigned by the enclosure manager to this rack.
 enclosurename The name assigned by the enclosure manager to this enclosure.
 enclosureid The serial number assigned by the enclosure manager to this enclosure.
 connname The product name used by the enclosure manager for this switch model.
 connaddr The connector address used by the enclosure manager for this switch
 (indicates the physical position of the switch in the enclosure).
 connid The serial number of the switch used by the enclosure manager (not to be
 confused with the Factory Serial Number).
 connotype The connector type used by the enclosure manager for this model of switch.
 connloc The switch location within the enclosure.
 connpres Information about the switch’s presence that is used by the enclosure
 manager.
 connfuse Information about whether or not the switch has a fuse.

Examples To display the identifier of the enclosure interface to which the switch is attached:
 switch:admin> enclosureShow slotid
 Bay 4

See Also chassisShow
errClear

Clears all error log messages for all switch instances on this control processor (CP).

Synopsis
errclear

Description
Use this command to clear all internal and external error log messages for all switch instances on this CP.

Note
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
none

Examples
To clear the error log messages:

 switch:admin> errclear

See Also
errDump, errShow
errDelimiterSet

Sets the error log start and end delimiters for messages sent to the console and syslog.

Synopsis
errDelimiterSet [-s "start delimiter string"] [-e "end delimiter string"]

Description
Use this command to set the error log start and end delimiters for log messages sent to the console and syslog. An empty string clears the start and the end delimiters (including the colon) so that they are not displayed.

If no arguments are supplied to the command, it instead displays the existing errDelimiterSet configuration. These delimiters are stored persistently.

Note
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
This command has the following operands:

- **-s** "start delimiter string"
 Specify the alphanumeric string for the start delimiter; up to 10 characters are allowed. This operand is optional.

- **-e** "end delimiter string"
 Specify the alphanumeric string for the end delimiter; up to 10 characters are allowed. This operand is optional.

Examples
To display the start and end delimiters:

```
switch:admin> errDelimiterSet

delimiter start string: <none>

delimiter end string: <none>
```

To change the start and end delimiters (with sample output):

```
switch:admin> errDelimiterSet -s "Start" -e "End"

Start2003/03/10-09:54:03, [NS-1002], 1035,, ERROR, SWITCH43, Name Server received an invalid request from device 10:02:32:A3:78:23:23:End
```

See Also
errDump, errFilterSet, errShow
errDump

Displays the error log without pagination.

Synopsis

```
errdump [-s switch_instance][-r][-p]
```

Description

Use this command to display external error log messages for all switch instances and the chassis, without pagination. The `-r` operand displays the messages in reversed order. The following information displays in each message:

- **Start delimiter**: Delimiter string for the start of a message.
- **Timestamp**: Timestamp for the message.
- **Message ID**: Message identifier.
- **External sequence number**: Sequence number for the message.
- **Security audit flag**: Security audit logged. AUDIT displays in the field.
- **Severity**: Severity of the message. Valid values include INFO, WARNING, ERROR, and CRITICAL.
- **Switch name**: Switch name for the generator of this message, or “chassis”.
- **Message**: Message body.
- **End delimiter**: Delimiter string for the end of a message.

Operands

This command has the following operands:

- `-s switch_instance` Displays messages only from `switch_instance`. Valid values are 0 or 1. This operand is optional; if omitted, messages from all switch instances are displayed.

- `-r` Displays messages in reversed order. This operand is optional; if omitted, the messages display in the normal order.

- `-p` Displays error logs from Fabric OS versions prior to v4.2.

Examples

To display the error log without pagination:

```
switch:user> errdump
Version: 4.4.0
2004/07/14-22:24:08, [HAMK-1003], 1,, INFO, switch1, Heartbeat up
2004/07/14-22:24:47, [FSSM-1002], 2,, INFO, switchChassis, HA State is in sync
```

See Also

`errDelimiterSet`, `errFilterSet`, `errShow`
errFilterSet

Sets a filter for an error log destination.

Synopsis

 errfilterset [-d "destination"] [-v "severity"]

Description

Use this command to set a filter for an error log destination. A filter is set based on the severity level of the messages.

If no parameters are specified, this command displays the filters that are currently in use.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

 -d "destination"
 Specify the destination to set the filter. "console" is the only valid value at this time.

 -v "severity"
 Specify the minimum severity level of the message to pass through the filter. Valid values are "INFO", "WARNING", "ERROR", or "CRITICAL".

Examples

To display the current filter settings:

 switch:admin> errfilterset

 console: filter severity = WARNING

To set the filter severity level for the console:

 switch:admin> errfilterset -d "console" -v "WARNING"

See Also

errDump, errShow
errModuleShow

Displays all the defined error log modules.

Synopsis errmoduleshow

Description Use this command to display a list of all defined error log modules.

Operands none

Examples To display a list of all defined error log modules:

 switch:user> errmoduleshow
 Module IDs:

1 KT 2 UT 3 TRCE 4 KTRC
5 LOG 6 CDR 7 BLPU 8 PISP
9 PIXE 10 EGR 11 BL 12 PIC
13 PS 14 RTE 15 AS 16 AUTH
17 BLDE 18 BLM 19 BPRT 20 CER
21 CFLD 22 CFMN 23 CHPS 24 CONF
(output truncated)

See Also errDump, errShow
errShow

Displays the error log messages with pagination.

Synopsis

```
errshow [-s switch_instance][-r][-p]
```

Description

Use this command to display external error log messages for all switch instances and the chassis, one at a time. The `-r` operand displays the messages in a reversed order. The following information displays in each message:

- **Start delimiter**: Delimiter string for the start of a message.
- **Timestamp**: Timestamp for the message.
- **Message ID**: Message identifier.
- **External sequence number**: Sequence number for the message
- **Security audit flag**: Security audit logged. AUDIT displays in the field.
- **Severity**: Severity of the message. Valid values include INFO, WARNING, ERROR, and CRITICAL.
- **Switch name**: Switch name for the generator of this message, or “chassis”.
- **Message**: Message body.
- **End delimiter**: Delimiter string for the end of a message.

Operands

This command has the following operands:

- `-s switch_instance` Displays messages only from switch_instance. Valid values are 0 or 1. This operand is optional; if omitted, messages from all switch instances are displayed.
- `-r` Displays messages in reversed order. This operand is optional; if omitted, the messages display in the normal order.
- `-p` Displays error logs from Fabric OS versions prior to v4.2.

Examples

To display the error log with pagination:

```
switch:user> errshow
Version: 4.4.0
2004/07/14-22:24:08, [HAMK-1003], 1,, INFO, switch1, Heartbeat up
Type <CR> to continue, Q<CR> to stop:
```

```
2004/07/14-22:24:47, [FSSM-1002], 2,, INFO, switchChassis, HA State is in sync
Type <CR> to continue, Q<CR> to stop:
```

```
Type <CR> to continue, Q<CR> to stop:
```

See Also

errDelimiterSet, errDump, errFilterSet
exit

Logs out from a shell session.

Synopsis exit

Description Use this command to log out from a Telnet, SSH, rlogin or serial port session. Telnet and rlogin connections are closed; the serial port returns to the login: prompt.

The exit command is an accepted synonym for logout, as is typing Ctrl-D at the beginning of a line.

Operands none

Examples To exit from a shell session:

 switch:admin> exit
 Connection to host lost.

See Also logout
fabPortShow

Displays fabric port information.

Synopsis fabPortShow [slotnumber/]portnumber

Description Use this command to display the state of a port, relative to the fabric, as well as a list of pending commands. The following information displays:

Port The port number.
State The state of the port:
P0 Port Offline
P1 Port Online
P2 ELP ACC Received
P3 Link Reset Done
I0 Trunk Initiator: EMT Sent
I1 Trunk Initiator: ETP ACC Received
I2 Trunk Initiator: ETP Sent
I3 Trunk Initiator: Link Reset
T0 Trunk Target: EMT Received
T1 Trunk Target: ETP Received
T2 Trunk Target: Link Reset
LD Dynamic long distance: ECP sent or received
T3 Trunk Target: Link reset done on slave
I4 Trunk Initiator: Link reset done on slave
List The IU list pointer for this port.
Flags Port flags:
0x00000001 Slave connection
0x00000002 Loopback connection
0x00000004 Incompatible connection
0x00000008 Overlapping domains
0x00000010 Overlapping zones
0x00000020 Done PTOI ioctl
0x00000040 Sent an RJT to ELP
0x00000080 BF received from the port
0x00000100 Port truly connected to E_Port
0x00000200 Segmented by routing code
0x00000400 FSPF has completed routing
0x00000800 Zoning has completed
0x00001000 Segmented by Platform Management
0x00002000 Segmented due to no license
0x00004000 Segmented due to E_Port disabling
0x00008000 DIA already sent for that port
0x00010000 RDI already sent
0x00020000 Port is true T port
0x00040000 Port received an ELP
0x00080000 Port received an ELP RJT
0x00100000 LR pending due to ELP RJT rcv
0x00200000 Received a DIA on this port
0x00400000 Port is the EMT Initiator
0x00800000 Security violation
0x01000000 Security incompatibility
0x02000000 Rcv a DIA ACC
0x04000000 Port is security authenticating
0x08000000 ECP RJT or retires exceeded
0x10000000 Segmented due to duplicated WWN
0x20000000 Segmented due to E_Port isolation

nbrWWN Neighboring switch’s WWN
nbrPort Neighboring switch’s port
lr_tid Link reset timer identifier and current state.
red_ports All E_Ports that are connected to the same neighboring switch

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

slotnumber For bladed systems only, specifies the slot number of the port to display, followed by a slash (/).

portnumber Specifies the port number to display, relative to its slot for bladed systems. Use **switchShow** to list valid ports.
Examples To display fabric port information:

 switch:admin> fabportshow 4/14
 Fabric Port Information:

 Port: 62
 State: P3
 List: 0x10068418
 List Count: 0
 Flags: 0x280120
 nbrWWN: 10:00:00:60:69:80:06:cf
 nbrPort: 5
 lr_tid: 0x1005dbd8, IDLE STATE
 red_ports:
 10 11 62 63

 Open commands pending:

 No commands pending

See Also portShow
fabRetryShow

Displays the retry count of the fabric commands.

Synopsis fabretryshow

Description Use this command to display the retry count of the fabric commands. The SW_ISL (ISL ports) information displays the retry count for the following fabric commands:

ELP Exchange Link Parameters
EFP Exchange Fabric Parameters
HA_EFP Exchange Fabric Parameters used during warm recovery
DIA Domain Identifier Assigned
RDI Request Domain Identifier
BF Build Fabric
FWD Fabric Controller Forward
EMT Fabric Controller Mark Timestamp
ETP Fabric Controller Trunk Parameters
RAID Return Address Identifier
GAIID Get Address Identifier
ELP_TMR Used internally for fabric application (not a SW_ISL)
GRE Get Route Entry
ECP Exchange Credit Parameters

Operands none

Examples To display the retry count of Fabric OS commands:

switch: user> fabretryshow
SW_ISL
 E_Port ELP EFP HA_EFP DIA RDI BF FWD EMT ETP RAID GAIID ELP_TMR GRE ECP
 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0

See Also fabricLog
fabricLog

Displays (all users) or manipulates (admin) the fabric log.

Synopsis
fabricLog -s | -c | -d | -e | -r size

Description
Use this command to display, clear, disable, enable, or resize the fabric log.

Notes
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
This command has the following operands:

-s | --show
Displays the fabric log.

-c | --clear
Clears the fabric log.

-d | --disable
Disables the fabric log. By default, the fabric log is enabled.

-e | --enable
Enables the fabric log.

-r size | --resize size
Changes the maximum number of log entries. The given size has to be at least 2 and a power of 2; otherwise, the command fails.

Examples
To change the number of entries:

switch:admin> fabricLog -s

Time Stamp Input and *Action S, P Sn,Pn Port Xid
===
Wed Apr 6 01:08:52 2005
01:08:52.977 SCN Switch Offline A2,NA F2,NA NA NA
01:08:52.977 *Snd SW state: F2 F2,NA F2,NA NA NA
01:08:52.977 *Removing all nodes F2,NA F2,NA NA NA
01:08:52.977 *Cancel F_S_TOV Timer F2,NA F2,NA NA NA
01:08:52.977 *Cancel 2 * F_S_TOV Timer F2,NA F2,NA NA NA
01:08:52.977 *Cancel RDI Receive Timer F2,NA F2,NA NA NA
01:08:52.977 *Cancel RDI Send Timer F2,NA F2,NA NA NA
01:08:52.977 *Cancel 24 * F_S_TOV Timer F2,NA F2,NA NA NA
01:08:52.977 *Cancel EFP Flood Timer F2,NA F2,NA NA NA
01:08:52.977 *Cancel NTP Timer F2,NA F2,NA NA NA
01:08:52.977 *Cancel FAB_SIZE Timer F2,NA F2,NA NA NA
01:08:52.983 1) fabInqData F2,NA F2,NA NA NA
01:08:52.983 2) fabInqData F2,NA F2,NA NA NA
01:08:53.066 *Snd slv port (1) (-1) (2)
01:08:53.066 *Removing all nodes from port F2,P0 F2,P0 0 NA
01:08:53.066 SCN Port Offline;g=0x3e F2,P3 F2,P0 0 NA
01:08:53.066 *Snd inquiry (1) F2,NA F2,NA NA NA
01:08:53.066 *Removing all nodes from port F2,P0 F2,P0 0 NA
01:08:53.066 SCN Port Offline;g=0x40 F2,T3 F2,P0 0 NA
01:08:53.066 *Removing all nodes from port F2,P0 F2,P0 0 NA
01:08:53.066 *Snd slv port (1) (-1) (2)
01:08:53.066 *Removing all nodes from port F2,P0 F2,P0 0 NA
01:08:53.066 SCN Port Offline;g=0x42 F2,I4 F2,P0 8 NA
01:08:53.072 *Removing all nodes from port F2,P0 F2,P0 8 NA
01:08:53.072 *Snd slv port (8) (-1) (2)
Number of entries: 23
Max number of entries: 8192
switch:admin> **fabriclog -r 64**
Warning: This command will clear the logs.
Are you sure you want to do the resize [y/n]? y

switch:admin> **fabriclog -s**
Time Stamp Input and *Action S, P Sn,Pn Port Xid

See Also fabPortShow, fabStatsShow
fabricPrincipal

Sets principal switch selection mode.

Synopsis

```
fabricprincipal [-fhq] [mode]
```

Description

Use this command to set principal switch selection mode for the switch. The implementation of the `fabricPrincipal` command is based solely on mechanisms specified in the Fibre Channel standards. These mechanisms provide a preference for a switch requesting to be the principal switch in a fabric, but they do not provide an absolute guarantee that a switch requesting to be the principal switch achieves this status.

When dealing with larger fabrics, the selection of the principal switch is less deterministic. In these cases, to help ensure that the desired switch is selected as the principal switch, a small selection of switches should be connected together first, followed by the addition of the rest of the fabric.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- `-f`
 Specify the `-f` option to force a fabric rebuild. This option is required when enabling principal switch mode. This option is not valid when disabling principal switch mode.

- `-h`
 Specify the `-h` option to display command usage summary.

- `-q`
 Specify the `-q` option to display the current mode state.

- `mode`
 Specify 1 to enable principal switch mode. Specify 0 to disable principal switch mode. Principal switch mode is activated when the fabric rebuilds. This operand is optional.

Examples

To display the current mode setting:

```
switch:admin> fabricprincipal -q
Principal Selection Mode: Enable
```

To disable the mode setting:

```
switch:admin> fabricprincipal 0
Principal Selection Mode disabled
```

To enable the mode setting:

```
switch:admin> fabricprincipal 1
Principal Selection Mode enabled
```

To enable the mode setting and force fabric rebuild:

```
switch:admin> fabricprincipal -f 1
Principal Selection Mode enabled (Forcing fabric rebuild)
```

See Also fabricShow
FabricOS Command Reference

53-1000599-02

fabricShow

Displays fabric membership information.

Synopsis fabricshow

Description Use this command to display information about switches in the fabric.

If the switch is initializing or is disabled, the message "no fabric" is displayed. In a mixed fabric, fabricshow must be executed on a switch that runs Fabric OS v5.3.0 or later; otherwise, IPv6 information is lost, since switches running earlier versions do not recognize an IPv6-configured switch.

Running this command on an FCR or edge switch does not provide any router information; running this command on an edge switch with the -m option does provide router information.

If the fabric is reconfiguring, some or all switches may not be displayed; otherwise, the following fields are displayed:

Switch ID The switch Domain_ID and embedded port D_ID.
World Wide Name The switch WWN.
Enet IP Addr The switch Ethernet IP address for IPv4 and IPv6 configured switches. For IPv6 switches, only the static IP address displays.
FC IP Addr The switch FC IP address.
Name The switch symbolic name. An arrow (>) indicates the principal switch.
FC Router IP Addr The IP address of the FC router. This field is empty if the switch is not an FC Router or it the FC Router does not support it.
FC Router Name The FC Router symbolic name. This field is empty if the switch is not an FC Router or it the FC Router does not support it.

Operands This command has the following operands:

-m Displays fabric membership information with additional details of the FC Router, if present in the fabric.

Examples The following example illustrates a fabric of four switches. "sw180" is the Principal switch. Three of the switches are configured to run IP over Fibre Channel.

switch:admin> fabricshow

Switch ID Worldwide Name Enet IP Addr FC IP Addr Name

64: fffc40 10:00:00:60:69:00:06:56 192.168.64.59 192.168.65.59 "sw5"
65: fffc41 10:00:00:60:69:00:02:0b 192.168.64.180 192.168.65.180 >"sw180"
66: fffc42 10:00:00:60:69:00:05:91 192.168.64.60 192.168.65.60 "sw60"
67: fffc43 10:00:00:60:69:10:60:1f 192.168.64.187 0.0.0.0 "sw187"

The Fabric has 4 switches

To show a mixed fabric with IPv4 and IPv6-configured switches:

sw5:admin> fabricShow

Switch ID Worldwide Name Enet IP Addr FC IP Addr Name

1: fffc41 10:00:00:60:69:00:02:0b 192.168.64.180 192.168.65.180 >"sw180"
The Fabric has 2 switches.

To show additional details of the FC Router, if present:

```
switch:admin> fabricshow -m
```

<table>
<thead>
<tr>
<th>Switch ID</th>
<th>Name</th>
<th>ENET IP Addr</th>
<th>FC Router IP Addr</th>
<th>FC Router Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: fffc01</td>
<td>fcr_sprint_01</td>
<td>10.33.59.224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160: fffca0</td>
<td>fcr_fd_160</td>
<td>0.0.0.0</td>
<td>10.33.59.25</td>
<td>fcr_meteor2</td>
</tr>
<tr>
<td>190: fffcbe</td>
<td>fcr_mojo_6</td>
<td>10.33.59.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Fabric has 3 switches

See Also switchShow
fabStatsShow

Displays the fabric statistics.

Synopsis fabstatsshow

Description Use this command to display the statistics for the fabric. The following information is displayed:

- Number of times a switch domain ID has been forcibly changed
- Number of E_Port offline transitions
- Number of fabric reconfigurations
- Number of fabric segmentations as a result of any of the following causes:
 - Loopback
 - Incompatibility
 - Overlap
 - Zoning
 - E_Port segment
 - Licensing
 - Disabled E_Port
 - Platform DB
 - Security incompatibility
 - Security violation
 - ECP error
 - Duplicate WWN
 - E_Port isolated

Notes The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To display the fabric statistics:

 switch:admin> fabstatsshow
 Description Count

 Domain ID forcibly changed: 0
 E_Port offline transitions: 0
 Reconfigurations: 1
 Segmentations due to:
 Loopback: 6 <
 Incompatibility: 0
 Overlap: 0
 Zoning: 0
 E_Port Segment: 0
 Licensing: 0
 Disabled E_Port:0
 Platform DB: 0
2 fabStatsShow

Sec Incompatibility: 0
Sec Violation: 0
ECP Error: 0
Duplicate WWN: 0
Eport Isolated: 0

See Also fabRetryShow
fabSwitchShow

Displays the fabric switch state structure information.

Synopsis fabswitchshow

Description Use this command to display the fabric switch state structure information. This command is strictly for debugging; it is not intended as a user command.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To display fabric switch state structure:

 switch:admin> fabswitchshow
 Fabric Switch State Structure Information
 --
 State: D0
 Stage: warm done
 Rdi Receive Timer: 0x10069400, IDLE STATE
 Unconfirmed Sw Timer: 0x10069508, IDLE STATE
 NTP Timer: 0x100695b8, IDLE STATE
 ME Timer: 0x10069610, IDLE STATE
 Principal Domain: 2
 Upstream Port: 64
 Principal Wwn: 10:00:00:60:69:80:06:ce
 Principal Priority: 0x2
 Flags: 0x40
 me retry count: 0
 inq_sem count: 1
 dbg_sem count: 1
 ha efp count: 0
 fab_q current count: 0
 fab_q high water: 8
 fab_q age: 0 (sec)
 dup xid occurrence: 0
 iu nodes outstanding: 0
 EFP update port: 2
 FWN frames pending: 0
 test check point: No check point set
 fabric license: TRUE
 fabric EFP version: 7
 last message: 20:30:29.826 *Snd inquiry (4) DO,NA D0,NA NA NA
 (output truncated)

See Also supportShow
fanDisable

Disables a fan unit.

Synopsis fandisable unit

Description Use this command to disable a non-faulty fan unit by setting the RPM speed to 0.

Notes This command is not available on non-bladed systems except for the Brocade 4100 and 4900.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

 unit Specifies the number of the fan unit to disable.

Examples To disable a fan unit:

 switch:admin> fandisable 1

 Fan unit 1 has been disabled

See Also fanEnable, fanShow
fanEnable

Enables a fan unit.

Synopsis
fanenable unit

Description
Use this command to set a previously disabled fan unit back to the default RPM speed.

Notes
This command is not available on non-bladed systems except for the Brocade 4100 and 4900.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
This command has the following operand:

unit
Specify the fan unit number to enable.

Examples
To enable a fan unit:

switch:admin> fanenable 1

Fan unit 1 has been enabled

See Also
fanDisable, fanShow
fanShow

Displays fan status and speed.

Synopsis fanshow

Description Use this command to display the current status and speed of each fan in the system.

Fan status is displayed as:

OK Fan is functioning correctly.
absent Fan is not present.
below minimum Fan is present but rotating too slowly or stopped.
above minimum Fan is rotating too quickly.
unknown Unknown fan unit installed.
faulty Fan has exceeded hardware tolerance and has stopped. In this case, the last
known fan speed is displayed.

The output from this command varies depending on switch type and number of fans present.

Operands none

Examples To display information on the fans in the system:

 switch:admin> fanshow
 Fan #1 is OK, speed is 2721 RPM
 Fan #2 is OK, speed is 2657 RPM
 Fan #3 is OK, speed is 2700 RPM

See Also chassisShow, fanDisable, fanEnable, psShow
fastboot

Reboots the Control Processor (CP), bypassing Power-On Self-Tests (POST).

Synopsis

 fastboot

Description

Use this command to immediately reboot the CP. This command is similar to reboot, but skips POST when the system comes back up, reducing boot time significantly.

If POST was previously disabled using the diagDisablePost command, then fastboot is the same as reboot.

Notes

This command is not available on non-bladed systems except for the Brocade 4100 and 4900.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

 none

Examples

To reboot the Control Processor without executing power-on self test (POST) on startup:

 switch:admin> fastboot

See Also

 diagDisablePost, diagEnablePost, reboot
fastwritecfg

Enables or disables the FC fastwrite feature.

Synopsis fastwritecfg action [slot]

Description Use this command to configure FC fastwrite on a blade in a given slot. Fastwrite minimizes storage latency and improves the number of write transactions per second over long distances. A blade can be configured either to support FC fastwrite or FCIP (default supported when FC fastwrite is disabled). When the blade is configured to support a particular feature, the blade must be rebooted. After the blade has been rebooted, use portcfg --fastwritecfg to enable or disable FC fastwrite on the individual ports.

Notes This command requires a High-Performance Extension over FCIP/FC license

This command is supported only on the Brocade FC-IP/FC Router blade (FR4-18i) on a Brocade 7500, 48000 or DCX platform.

When FC fastwrite is enabled, GbE Ports are not allowed to be enabled on the blade. The blade comes up with GbE ports internally disabled.

A maximum of four user ports per port group (0-7 or 8-15) may be configured as FC fastwrite. i.e. maximum of eight FC fastwrite ports per blade.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

action

Actions include:

--enable Enables a blade for FC fastwrite on a specified slot.

--disable Disables the blade for FC fastwrite on a specified slot. The blade reverts to FCIP (default).

--show Displays the FC fastwrite configuration including the FC fastwrite-enabled ports. The slot number is an optional parameter. If the slot number is not specified, the command displays the FC fastwrite-enabled ports on the entire system.

slot This operand is required with --disable/--enable actions on FR4-18i platforms and optional on the Brocade 7500. On the 7500, slot 0 is a valid slot.

Examples To enable FC fastwrite for a given slot:

switch:admin> fastwritecfg --enable 7

!!!! WARNING !!!!

Enabling this feature requires power-cycling of the affected blade to take effect and may take up to 5 minutes to complete. Non-bladed switches will be rebooted. In all cases, data traffic on all the ports (FC and GbE) of the blade will be disrupted.
To disable FC fastwrite:

```
switch:admin> fastwritecfg --disable 7
```

!!!! WARNING !!!!
Disabling this feature requires power-cycling of the affected blade to take effect and may take up to 5 minutes to complete. Non-bladed switches will be rebooted. In all cases, data traffic on all the ports (FC and GbE) of the blade will be disrupted.

Continue (Y,y,N,n): [n]
fcipChipTest

Tests functionality of components in the FCIP complex.

Synopsis fcipChiptest [---slot slotnumber][-testtype type][-unit number]

Description Use this command to verify the internal registers and memory of the network processor, FCIP FPGA,
compression processor, and GigPHY.

Notes The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is supported only on Brocade FR4-18i blades and Brocade 7500 platforms.

Operands This command has the following operands:

--slot slotnumber Specifies the slot number on which the diagnostic operates. The default is 0 and operates on fixed-port-count products.

-testtype type Specifies the test type to run. By default, the command runs all tests. Valid tests include:

0 All tests
1 Network processor SRAM test
2 FCIP FPGA internal register test
3 FCIP FPGA interrupt test
4 FCIP FPGA checksum test
5 Compression engine MBIST and LBIST

-unit number Specifies the GbE port to test. By default, all GbE ports in the specified slotnumber are used. Valid number values include:

0 GbE port 0
1 GbE port 1
2 All GbE ports

Examples To run all tests on slot 7 and GbE port 1:

switch:admin> fcipChiptest --slot 7-unit 1-testtype 0
Running fcipChiptest
Test Complete: fcipChiptest Pass 1 of 1
Duration 0 hr, 1 min & 15 sec (0:1:15:351).
passed.
Diagnostics

When a failure is detected, the test might report one or more of the following error messages:

- CHIP_TEST_ERR
- CHIP_TEST_CHIP_INIT_ERR
- CHIP_TEST_IMAGE_VER_ERR
- CHIP_TEST_TIMEOUT_ERR
- CHIP_TEST_HEARBEAT_ERR
- CHIP_TEST_INVALID_RESULT

See Also

fcipPathTest
fcipHelp

Displays FCIP command information.

Synopsis diaghelp

Description Use this command to display a short description of fibre channel over IP (FCIP) commands. FCIP commands require an FCIP license.

Operands none

Examples To display FCIP command information:

switch:admin> diaghelp

fciphelp
fastwritecfg Configure FC fastwrite feature
portcfg Create/Delete a new ip interface/route/arp entry or fcip tunnel on the GigE port
portcmd Execute commands (ping etc) on the GigE port
portshow Show configured ip interfaces/routes/arp entries or fcip tunnels on the GigE Port

See Also fastWriteCfg, portCfg, portCmd, portShow
fcipPathTest

Tests the data path of the FCIP complex.

Synopsis

fcipPathTest [--slot slotnumber] [-unit number] [-path mode] [-nframes count] [-length data_length] [-compress mode]

Description

Use this command to verify the data paths in the FCIP complex. All data path modes run tests by comparing Fibre Channel frames or data packets transmitted from and received by the network processor due to the designated loopback.

Notes

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is supported only on Brocade FR4-18i blades and Brocade 7500 platforms.

Operands

This command has the following operands:

- --slot slotnumber
 Specifies the slot number on which the diagnostic operates. The default is 0 and operates on fixed-port-count products.

- unit number
 Specifies the GbE port to test. By default, all GbE ports in the specified slotnumber are used. Valid number values include:

 0 GbE port 0
 1 GbE port 1
 2 All GbE ports

- path mode
 Specifies the loopback point for the test. By default, fcipPathTest uses PHY and central ASIC loopback. Valid mode values include:

 1 SFP loopback
 2 PHY loopback
 3 FCIP FPGA GMAC loopback
 4 FCIP FPGA FC loopback
 5 Central ASIC FC loopback
 7 SFP and central ASIC FC loopback
 8 PHY and central ASIC FC loopback
 9 FCIP FPGA GMAC and central ASIC FC loopback

- nframes count
 Specifies the number of frames to send. The test progresses until the specified number of frames are transmitted on each port. The default value is 100.

- length data_length
 Specifies the data length of the frames used in the test. The default is 1,024; the maximum is 2,112 FC frames and 8,196 data packets.
-compress mode

Specifies the compression device for which to select or to bypass data compression for the test. By default, data compression is used. This setting is applicable only to path mode 1 and 2.

Examples

To run the test on slot 2 with PHY loopback sending 10 frames:

```
switch:admin> fcippathtest --slot 2 -path 2 -nframes 10
Running fcippathtest ..............
Test Complete: fcippathtest Pass 10 of 10
Duration 0 hr, 1 min & 50 sec (0:1:50:942).
passed.
```

Diagnostics

When a failure is detected, the test might report one or more of the following:

- PATH_TEST_ERR
- PATH_TEST_CHIP_INIT_ERR
- PATH_TEST_IMAGE_ERR
- PATH_TEST_TIMEOUT_ERR
- PATH_TEST_HEARTBEAT_ERR
- PATH_TEST_INVALID_RESULT
- PATH_TEST_GE_PORT_ENABLE_ERR
- PATH_TEST_GE_PORT_DISABLE_ERR

See Also fcipChipTest
fcLunQuery

Displays a list of LUN IDs and LUNs for all accessible targets.

Synopsis

fcLunQuery [-w wwn | -s]

Description

Use this command to display a list of LUN IDs and LUNs for all accessible targets.

Notes

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

-wwn Specifies a port or node WWN from which to display LUN information; otherwise, LUN information from all FC devices specified in the name sever is displayed. Use commas to separate a list of WWNs.

-s Displays the port and node WWNs which is used for any LUN query from this switch.

Examples

To display the LUN information:

switch:user> fcLunQuery

Target Index: 1
Target Node WWN: 50:05:07:65:05:03:f9:39
Target Pid: 144e8
Number of LUNs returned by query: 1
LUN ID: 0x00

To display the LUN information of a list of port WWNs:

switch:admin> fcLunQuery -w 20:00:00:04:cf:5d:cf:0e

Target Index: 1
Target Node WWN: 20:00:00:04:cf:5d:cf:0e
Target Port WWN: 21:00:00:04:cf:5d:cf:0e
Target Pid: 207ef
Number of LUNs returned by query: 1
LUN ID: 0x00

To display what port and node WWNs which is used for any LUN query from this switch:

switch:admin> fcLunQuery -s

The following WWNs will be used for any lun query from this switch:
Node WWN: 10:00:00:60:69:e2:09:c8
Port WWN: 21:fd:00:60:69:e2:09:c8

See Also

fosConfig, iscsiCfg, iscsiPortCfg
fcPing

Sends a Fibre Channel Extended Link Service (ELS) Echo request to a pair of ports.

Synopsis

```
fcping [-h -b -q][-n frames][-l length][-i wait][-p pattern] source destination
```

Description

Use this command to perform a zoning check between the source and destination. In addition, two Fibre Channel ELS requests are generated. The first ELS request is from the domain controller to the source port identifier. The second ELS request is from the domain controller to the destination port identifier. The ELS Echo request elicits an ELS Echo response from a port identifier in the fabric and is useful for validating link connectivity.

The source and destination port identifiers can be specified as a 24-bit Fibre Channel port identifiers, port World Wide Names, or node World Wide Names. The two port identifiers are then used to determine if the identifiers are zoned together.

The ELS Echo requests contains a 24-byte Fibre Channel frame header, a 4-byte ELS Echo request header, an 8-byte timestamp from `getTimeOfDay`, and an arbitrary number of bytes as specified by `-l length` to fill out the request frame. The source identifier in the ELS Echo request is the domain controller and the destination identifier is either source or destination.

The echo ELS may not be supported on all devices. In such cases, the response could be either an ELS reject or a request timeout.

By default, `fcPing` sends five ELS Echo requests to each port. When a device does not respond to the ELS Echo request, further debugging is necessary to determine whether the device does not support ELS Echo or the request is rejected for some other reason. Do not assume that the device is not FC-connected.

Operands

This command has the following operands:

- `-h` Causes the program to display the proper command line usage syntax information and then terminate.
- `-b` Specifies to bypass the zone check functionality.
- `-q` Specifies quiet output. Only the zoning information and the summary line display on program termination.
- `-n frames` Specifies the number of ELS Echo requests to send.
- `-l length` Specifies requests containing length bytes of data. The default is 0 bytes of data. Without data, the Fibre Channel Echo request frame size is 12 bytes. This byte count includes four bytes from the Echo request header and eight bytes from the timestamp. The maximum allowed value is 2,036 bytes. The length must be word-aligned.
- `-i wait` Specifies the interval, in seconds, between successive ELS Echo requests. The default is 0 seconds.
- `-p pattern` Specifies up to 16 "pad" bytes, which are used to fill out the request frame payload sent. This is useful for diagnosing data-dependent problems in the fabric link. The pattern bytes are specified as hexadecimal characters. For example, `-p ff` causes the request frame to be filled with all 1s.
- `source` Specifies the source port ID, port WWN, or node WWN.
- `destination` Specifies the destination port ID, port WWN, or node WWN.
Examples

To display one device that accepts the request and another device that rejects the request:

```
switch:admin> fcping 10:00:00:00:c9:29:0e:c4 21:00:00:20:37:25:ad:05
Source: 10:00:00:00:c9:29:0e:c4
Destination: 21:00:00:20:37:25:ad:05
Zone Check: Not Zoned

Pinging 10:00:00:00:c9:29:0e:c4 [0x20800] with 12 bytes of data:
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1162 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1013 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1442 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1052 usec
received reply from 10:00:00:00:c9:29:0e:c4: 12 bytes time:1012 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 1012/1136/1442 usec

Pinging 21:00:00:20:37:25:ad:05 [0x211e8] with 12 bytes of data:
Request rejected
Request rejected
Request rejected
Request rejected
Request rejected
5 frames sent, 0 frames received, 5 frames rejected, 0 frames timeout
Round-trip min/avg/max = 0/0/0 usec
```

To display one device that accepts the request and another device that does not respond to the request:

```
switch:admin> fcping 0x020800 22:00:00:04:cf:75:63:85
Source: 0x20800
Destination: 22:00:00:04:cf:75:63:85
Zone Check: Zoned

Pinging 0x20800 with 12 bytes of data:
received reply from 0x20800: 12 bytes time:1159 usec
received reply from 0x20800: 12 bytes time:1006 usec
received reply from 0x20800: 12 bytes time:1008 usec
received reply from 0x20800: 12 bytes time:1038 usec
received reply from 0x20800: 12 bytes time:1010 usec
5 frames sent, 5 frames received, 0 frames rejected, 0 frames timeout
Round-trip min/avg/max = 1006/1044/1159 usec

Pinging 22:00:00:04:cf:75:63:85 [0x217d9] with 12 bytes of data:
Request timed out
5 frames sent, 0 frames received, 0 frames rejected, 5 frames timeout
Round-trip min/avg/max = 0/0/0 usec
```

See Also

ping
fcpLogClear

Clears the FCPD debug information log.

Synopsis fcplogclear

Description Use this command to clear the debug information logged by the Fibre Channel Protocol daemon (FCPD).

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To clear the FCPD debug information log:

switch:admin> fcplogclear

See Also fcpLogDisable, fcpLogEnable, fcpLogShow
fcpLogDisable

Disables the FCPD debug information log (debug command).

Synopsis
fcplogdisable

Description
Use this command to disable the logging of debug information by the Fibre Channel Protocol
daemon (FCPD).

Notes
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands
none

Examples
To disable the FCPD debug information log:

switch:admin> fcplogdisable

See Also
fcpLogClear, fcpLogEnable, fcpLogShow
fcpLogEnable

Enables the FCPD debug information log (debug command).

Synopsis fcplogenable

Description Use this command to enable Fibre Channel Protocol daemon (FCPD) logging. Debug information
logging is enabled by default.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
page 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To enable the FCPD debug information log:

switch:admin> fcplogenable

See Also fcpLogClear, fcpLogDisable, fcpLogShow
fcpLogShow

Displays the FCPD debug information log (debug command).

Synopsis fcplogshow

Description Use this command to display the debug information logged at various stages during the Fibre Channel Protocol daemon (FCPD) device probing.

Notes The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To display the FCPD debug information log:

switch:admin> fcplogshow

<table>
<thead>
<tr>
<th>Time Stamp</th>
<th>Event</th>
<th>Port</th>
<th>file&lineno</th>
<th>arg0</th>
<th>arg1</th>
<th>arg2</th>
<th>arg3</th>
<th>arg4</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:20:12.274</td>
<td>FlshOrProbe 0</td>
<td>1</td>
<td>536</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:20:12.275</td>
<td>ProbeFlsh</td>
<td>0</td>
<td>3031</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:20:12.275</td>
<td>FlshOrProbe 1</td>
<td>1</td>
<td>536</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:20:12.275</td>
<td>ProbeFlsh</td>
<td>1</td>
<td>3031</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:20:12.275</td>
<td>FlshOrProbe 2</td>
<td>1</td>
<td>536</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:20:12.275</td>
<td>ProbeFlsh</td>
<td>2</td>
<td>3031</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:20:12.275</td>
<td>FlshOrProbe 3</td>
<td>1</td>
<td>536</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:20:12.275</td>
<td>ProbeFlsh</td>
<td>3</td>
<td>3031</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:20:12.275</td>
<td>FlshOrProbe 4</td>
<td>1</td>
<td>536</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[output truncated]

See Also fcpLogClear, fcpLogDisable, fcpLogEnable
fcpProbeShow

Displays the Fibre Channel Protocol (FCP) probe information.

Synopsis

fcpProbeShow [slotnumber/]portnumber

Description

Use this command to display the Fibre Channel Protocol daemon (FCPD) device probing information for the devices attached to the specified F_Port or FL_Port. This information includes the number of successful logins and SCSI INQUIRY commands sent over this port and a list of the attached devices.

Operands

This command has the following operands:

slotnumber

For bladed systems only, specify the slot number of the port to display, followed by a slash (/).

portnumber

Specify the port number to display, relative to its slot for bladed systems. Use switchShow to list valid ports. This operand is required.

Examples

To display the FCP probe information:

switch:admin> fcpProbeShow 4/4

port 52 is L-Port and it is online.
nodes probed: 2
successful PLOGIs: 2
successful PRLIs: 2
successful INQUIRies: 2
successful LOGOs: 2
outstanding IUs: 0
probing state: 3
probing TOV: 0
probing count: 0
probing next: 0
pmap: 0x00000000, 0x00000000, 0x00000000, 0x00000000
update map: 0x00000000, 0x00000000, 0x00000000, 0x00000000

list of devices (may include old devices on the loop):
0x2b4e2: IBM DDFY-T09170R F60N
0x2b4e4: IBM DDFY-T09170R F60N

See Also

portLoginShow, portLogShow
Synopsis

```
fcpRlsShow [slotnumber/]portnumber
```

Description

Use this command to display the FCP RLS information for the specified F_Port or FL_Port. This information describes the number of loss-of-signal, loss-of-sync, CRC-error, and other failure events that have been detected on this port.

Operands

This command has the following operands:

- `slotnumber`
 For bladed systems only, specify the slot number of the port to display, followed by a slash (/).

- `portnumber`
 Specify the port number to display, relative to its slot for bladed systems. Use `switchShow` to list valid ports. This operand is required.

Examples

To display the FCP RLS information:

```
switch:admin> fcprlsshow 2/5
```

```
link fail  loss sync  loss sig  prtc err  bad word  crc err
0xda       0         5         0         0         525       0
0xdc       0         3         0         0         330       0
```

See Also

`portLoginShow`, `portLogShow`
fcrBcastConfig

Displays or sets the broadcast frame forwarding option.

Synopsis fcrbcastconfig --show
 fcrbcastconfig --enable -f fabric id
 fcrbcastconfig --disable -f fabric id
 fcrbcastconfig --help

Description Use this command to enable or disable the broadcast frame option or to display the current configuration. If no operands are specified, this command displays the usage. By default, frame forward option is enabled. Use the --show option to display the current settings on the switch.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command takes the following operands:

 --show Shows the current broadcast configuration as enabled or disabled. If broadcast frame forwarding is disabled for selected FIDs, only the disabled FIDs in the current configuration are displayed.

 --enable Enables the frame forwarding option for a specified fabric ID.

 --disable Disables the frame forwarding option for a specified fabric ID

 -f fabric id Specifies the fabric ID to be disabled/enabled. Valid values are 1-128. This operand is required with the --enable and --disable options.

 --help Displays the command usage.

EXAMPLES To display the current configuration:

 fcr:admin> fcrbcastconfig --show
 Broadcast configuration is enabled for all FID

To disable broadcast frame forwarding for FID 33, 28, and 2:

 fcr:admin> fcrbcastconfig --disable -f 33
 fcr:admin> fcrbcastconfig --disable -f 28
 fcr:admin> fcrbcastconfig --disable -f 2

To display the new configuration:

 fcr:admin> fcrbcastconfig --show
 Broadcast configuration is disabled for FID:
 2 33 128

To enable broadcast frame forwarding for FID 33:

 fcr:admin> fcrbcastconfig --enable -f 33
To display the new configuration:

 switch:admin> fcrbcastconfig --show
 Broadcast configuration is disabled for:
 fid 2
 fid 128

SEE ALSO bcastshow, portRouteShow
fcrChipTest

Tests the functionality of FC Router FPGA.

Synopsis

\texttt{fcrchip\textunderscore test [\textendash\textasciitilde slot slotnumber] [\textendash unit number] [\textendash testtype type]}

Description

Use this command to test the FC Router Field-programmable gate array (FPGA). This test verifies that all SRAM and register data bits in each ASIC can be independently written and read successfully.

The method used is to write a walking 1 pattern to each location. This is accomplished by writing a pattern of 0x00000001 to register N, performing a DMA read, and ensuring that the same pattern previously written is read back. Shift the pattern to the left by 1 bit (to 0x00000002), repeat the write, read, and compare the cycle. Shift again and repeat until the last writable bit in register N is reached (0x80000000 for a 32-bit register).

For example, a 6-bit register is effectively tested with the following patterns:

\begin{itemize}
\item 0x0001 0x0002 0x0004 0x0008
\item 0x0010 0x0020 0x0040 0x0080
\item 0x0100 0x0200 0x0400 0x0800
\item 0x1000 0x2000 0x4000 0x8000
\end{itemize}

Repeat the steps until all FPGA registers are tested.

The BIST test runs to verify the SRAM of the FPGAs.

Notes

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is supported only on Brocade FR4-18i blades and Brocade 7500 platforms.

Operands

This command has the following operands:

\begin{itemize}
\item \texttt{--slot slotnumber} Specifies the slot number on which the diagnostic operates. The default is 0 and operates on fixed-port-count products.
\item \texttt{-testtype type} Specifies the test type to run. By default, the command runs all tests. Valid tests include:
\begin{itemize}
\item 0 All tests
\item 1 DMA test
\item 2 SRAM BIST test
\end{itemize}
\item \texttt{-unit number} Specifies the FC Router FPGA to test. By default, all FC Router FPGA in the specified slotnumber are used. Valid number values include:
\begin{itemize}
\item 0 FC Router FPGA 0
\item 1 FC Router FPGA 1
\item 2 All FC Router FPGAs
\end{itemize}
\end{itemize}

Examples

To run all tests on slot 7 and FC Router FPGA 1:
switch:admin> fcrchiptest --slot 7 -unit 1 -testtype 0
Running fcrchiptest
Test Complete: fcrchiptest Pass 1 of 1
Duration 0 hr, 0 min & 4 sec (0:0:4:351).
Passed.

Diagnostics When a failure is detected, the test might report one or more of the following:

DMA_ALLOC_FAIL
DMA_READ_ABORT
DMA_READ_TIMEOUT
CHIP_INIT_TIMEOUT
BIST_TIMEOUT
BIST_FAIL

See Also fcrPathTest, miniCycle, portLoopbackTest
fcrConfigure

Sets FC Router configuration parameters.

Synopsis

fcrconfigure

Description

Use this command to configure the FC Router parameters for this platform. This is an interactive command.

This command cannot execute on a system with the FC Router feature enabled. First disable FC routing by using fosConfig or disable the switch with switchDisable.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command interactively prompts for the following parameter:

Backbone Fabric ID A fabric ID uniquely identifies a fabric in FC Router configurations. The backbone fabric is the fabric attached to the U_Ports—for example, E/F_Ports—of this switch. The backbone fabric ID must be unique across all FC Router-connected fabrics. The current Backbone Fabric ID can be displayed using the switchShow command.

Examples

To configure FC Router parameters:

fcr:admin> fcrconfigure
FC Router parameter set. <cr> to skip a parameter
Backbone fabric ID: (1-128)[100]

See Also

fosConfig, switchDisable, switchEnable, switchShow
fcrFabricShow

Displays the FC Routers on a backbone fabric.

Synopsis fcrfabricshow

Description Use this command to display information about FC Routers that exist in an FC Router backbone fabric. The existing syntax is maintained for IPv6 support. When IPv6 addresses are not configured, the output of fcrFabricShow displays the IPv4 format.

The following information is displayed for each FC Router found on the backbone fabric:

- **WWN** - The World Wide Name of the FC Router.
- **Domain ID** - The domain ID of the FC Router. This domain ID is relevant only on the backbone fabric.
- **Info** - The Ethernet IP address and switch name of the FC Router. When IPv6 addresses are configured, only the static IP address displays for each FC router found on the backbone fabric.
- **EX_Ports** - A listing of active EX_Ports for the FC Router and information about these EX_Ports. This information includes:
 - **EX_Port** - The port number for the EX_Port.
 - **FID** - The fabric ID of the EX_Port.
 - **Neighbor Switch Info** - (WWN, enet IP, name) The WWN, Ethernet IP address, and switch name of the switch attached to the EX_Port.

Operands none

Examples To display the FC Routers in the backbone fabric:

```
switch:admin> fcrfabricshow
FC Router WWN: 10:00:00:05:1e:39:a6:7e, Dom ID:   1,
     Info: 10.32.66.210, 210:::10:32:66:210    "Neptune210"
     EX_Port   FID    Neighbor Switch Info (enet IP, WWN, name)
     ----------------------------------------------
        17    76     10.20.30.176     10:00:00:05:1e:35:bf:1d   "b240e_7x_1"
       16    79     10.32.66.189     10:00:00:05:1e:35:a4:53   "b4100_7x_2"
  189::10:32:69:189
       18    79     10.32.66.179     10:00:00:05:1e:37:12:f8   "Sprint_179"
FC Router WWN: 10:00:00:05:1e:40:22:00, Dom ID:   2,
     Info: 10.32.66.220, 220::10:32:66:220    "sw220n"
     EX_Port   FID    Neighbor Switch Info (enet IP, WWN, name)
     ----------------------------------------------
        16    80     10.32.66.180     10:00:00:05:1e:34:e8:46   "b4100_7x_1"
   180::10:32:66:180
       27    80     10.32.69.180     10:00:00:05:1e:37:12:e0   "Sprint_180"
```

See Also fcrPhyDevShow, fcrProxyDevShow, fcrRouteShow, lsanZoneShow, switchShow
fcrLsanCount

Displays or sets the maximum LSAN count.

Synopsis

fcrLsanCount [max-lsan-count]

Description

Use this command to set or display the maximum number of LSAN zones that can be configured on the edge fabric. By default, the maximum LSAN count is set to 3000, which is also the minimum. This command lets you create more LSANs on your edge fabric, up to 5000, if needed to support additional devices. The maximum number of supported LSAN devices is 10,000.

When executed without operand, this command displays the current LSAN zone limit.

This command assumes that all FCRs in the same LSAN fabric matrix or backbone have the same maximum LSAN count defined in order to protect the FCRs from running into indefinite state. Asymmetric LSAN configurations due to different maximum LSAN counts may lead to different devices being imported on different FCRs.

Since the maximum number of LSANs is configured per switch, if there is a different maximum LSAN count on the switches throughout the meta-SAN, the device import or export will not be identical on the FCRs. You should therefore enter the same maximum LSAN count for all the FCR switches in the same backbone that support this feature. Verify the configured maximum limit against the LSANs configured using the fcrResourceShow command.

Note

The default LSAN count maximum of 3000 is the Fabric OS v5.2 default). It allows v5.2 to run on the standby CP if the active CP runs firmware v5.3 or later. If this case, you cannot increase the LSAN Zone count to 5000 and if the v5.2 standby CP is coming online in a system where the LSAN count is set to 5000, the HA sync will not be established. In addition, downgrading to a firmware version lower than v5.3 is blocked if LSAN count is set to 5000.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

max-lsan-count

Specifies the maximum LSAN count.

Examples

To display the current LSAN limit:

switch:admin> fcrLsanCount
LSAN Zone Limit: 3000

To increase the LSAN zone limit:

switch:admin> fcrLsanCount 5000
LSAN Zone Limit: 5000

See Also

fcrResourceShow
fcrLsanMatrix

Creates, edits and displays LSAN fabric or FCR matrix information, which binds the LSAN Zone and device database information to specified edge fabric IDs or FCRs.

Synopsis

fcrLsanMatrix

fcrLsanMatrix --add -lsan FID FID | -fcr wwn wwn
fcrLsanMatrix --remove -lsan FID FID | -fcr wwn wwn
fcrLsanMatrix --apply -lsan | -fcr | -all
fcrLsanMatrix --cancel -lsan | -fcr | -all
fcrLsanMatrix --display -lsan | -fcr | -all
fcrLsanMatrix --fabricview -lsan | -fcr
fcrLsanMatrix --verify -lsan | -fcr
fcrLsanMatrix --quickmode -lsan | -fcr
fcrLsanMatrix --help

Description

Use this command to specify pairs of edge fabrics IDs (FIDs) that can access each other. Every pair implies two-way communications. The pairs of edge fabrics have access only to the edge fabrics associated with them by this command. The edge fabrics that are not specified have access to the remaining unspecified edge fabrics. Using this information, the FCR switch maintains the remote LSAN Zone and the device state database only if it is associated to its local edge fabrics.

For example, if edge fabric FIDs 1, 2, 3, 4, 5 are online, the default is that all edge fabrics have two-way communication. In the case where 1 and 2 are specified with the --add option to have access to each other, then:

- 1 can access only 2.
- 2 can access only 1.
- 3, 4, 5 can access each other, but cannot access 1 or 2.

The FIDs entered are not required to be online when you set up the LSAN fabric matrix. The FIDs entered are not required to be online when you set up the LSAN fabric matrix. In Fabric OS v6.1 and later, the LSAN fabric matrix information is automatically distributed to all switches in the fabric. On pre-Fabric OS v6.1 switches, the information is saved only locally. For FC Routers running Fabric OS versions prior to 6.1.0, the best practice is, therefore, to enter the same information for all the FCR switches in the backbone that support this command.

This command is also used to specify FC Router pairs that can talk to each other. All edge fabrics connected to a defined pair of FCRs are allowed to import devices each other. Once, a fabric is removed from an FCR, the communication with other fabrics of the two FCRs is also removed. The worldwide name (WWN) is used to specify an FCR member. If the FCR is online, the domain ID of the switch can be used in place of the WWN.

Using the command options, you can do the following:

- Update the cached information (non-persistent location) by editing pairs of FIDs.
- Update the cached information by removing pairs of FIDs.
- Apply the changes to the persistent memory and distribute the changes to all FCRs in the backbone fabric.
- Display the information saved in the cache.
- Clear the information from the cache and revert to the saved value.
- Display the information that is saved in the persistent memory (CLI command with no option).
- Display the static and default/dynamic binding of the backbone to show which edge fabrics or FCRs can access each other.
- Verify that the information in the cache is valid and does not disrupt existing import/export devices.
- Run a quickmode to derive the LSAN Zone matrix from the current import/export database.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

If no operands are specified, this command displays the persistent LSAN Zone matrix information. The following operands are optional:

- `--add -lsan FID FID | -fcr wwn wwn`

 Adds the pair of edge fabrics or FCR members that can access each other. If you specify `--add` with zero (0) value for `FID` or 00:00:00:00:00:00:00:00 for `wwn`, the command returns the cache to default mode.

- `--remove -lsan FID FID | -fcr wwn wwn`

 Removes the entry of the pair of FIDs. If no longer specified, the edge fabric assumes the default behavior.

- `--apply -lsan | -fcr | -all`

 Applies the information from the cache to the persistent memory only if there is no effect on the existing import/export devices. Otherwise, an error message is displayed.

- `--cancel -lsan | -fcr`

 Cancels the data that was not applied; reverts to the persistent information.

- `--display -lsan | -fcr | -all`

 Displays the information saved in the cache.

- `--fabricview -lsan | -fcr`

 Views all the static and default/dynamic fabric binding in the backbone.

- `--verify -lsan | -fcr`

 Verifies if the LSAN Zone information previously entered and stored in the cache can be successfully applied. The data is okay if the apply operation does not cause disruption to the traffic.

- `--quickmode`

 Derives the LSAN Zone matrix from the import/export setup.

Examples

For the following example, assume that the backbone has the following online edge fabrics (FIDs): 1, 2, 4, 5, 7, 8, 10 (currently, 14, 19 are not available). To add the LSAN Zone Matrix data:

```
switch:admin > fcrlsanmatrix --add 4 5
switch:admin > fcrlsanmatrix --add 4 7
switch:admin > fcrlsanmatrix --add 10 14
```
switch:admin > fcrsanmatrix --add 10 19

To remove an entry:
switch:admin > fcrsanmatrix --remove 10 14

To display the information from the cache:
switch:admin > fcrsanmatrix --display

<table>
<thead>
<tr>
<th>Fabric ID 1</th>
<th>Fabric ID 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
</tr>
</tbody>
</table>

To apply the changes persistently:
switch:admin > fcrsanmatrix --apply -lsan

To view the persistent changes:
switch:admin > fcrsanmatrix -lsan

LSAN MATRIX is activated

<table>
<thead>
<tr>
<th>Fabric ID 1</th>
<th>Fabric ID 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
</tr>
</tbody>
</table>

To view the LSAN Zone static and default/dynamic binding in the backbone where online fabrics are: 1, 2, 4, 5, 7, 8, 10:

switch:admin > fcrsanmatrix --fabricview -lsan

LSAN MATRIX is activated

<table>
<thead>
<tr>
<th>Fabric ID 1</th>
<th>Fabric ID 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
</tr>
</tbody>
</table>

Default LSAN Matrix:
1 2 8

To display all proxy devices for all FC Routers in the same backbone fabric whether or not they are relevant to this FC Router:
switch:admin > forproxydevshow -a

<table>
<thead>
<tr>
<th>Proxy Created in Fabric</th>
<th>WWN</th>
<th>Proxy PID</th>
<th>Device Exists in Fabric</th>
<th>Physical PID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>10:00:00:06:2b:0e:4d:e5 01f001</td>
<td>78</td>
<td>4e0000</td>
<td>Imported</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>10:32:16:90:28:dd:d0:03 0bf001</td>
<td>82</td>
<td>2a0900</td>
<td>Imported</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>10:32:16:91:24:dd:d0:07 0bf002</td>
<td>82</td>
<td>520c00</td>
<td>Imported</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>10:32:16:91:25:dd:d0:06 01f002</td>
<td>78</td>
<td>4e3000</td>
<td>Imported</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>10:00:00:06:2b:0d:29:31 09f002</td>
<td>52</td>
<td>482200</td>
<td>Imported</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>10:32:16:90:29:dd:d0:07 08f002</td>
<td>82</td>
<td>2a0a00</td>
<td>Imported</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>10:32:16:91:24:dd:d0:05 09f001</td>
<td>52</td>
<td>48a100</td>
<td>Imported</td>
<td></td>
</tr>
</tbody>
</table>
To display the information from the cache:

```
switch:admin > fcrlsanmatrix --display -lsan
```

```
<table>
<thead>
<tr>
<th>Fabric ID 1</th>
<th>Fabric ID 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>78</td>
</tr>
<tr>
<td>52</td>
<td>82</td>
</tr>
<tr>
<td>78</td>
<td>82</td>
</tr>
</tbody>
</table>
```

To apply the changes persistently:

```
switch:admin > fcrlsanmatrix --apply -lsan
```

To view all the static and the default/dynamic fabric binding in the backbone:

```
switch:admin > fcrlsanmatrix --fabricview -lsan
```

```
LSAN MATRIX is activated
```

```
<table>
<thead>
<tr>
<th>Fabric ID 1</th>
<th>Fabric ID 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>78</td>
</tr>
<tr>
<td>52</td>
<td>82</td>
</tr>
<tr>
<td>78</td>
<td>82</td>
</tr>
</tbody>
</table>
```

Default LSAN Matrix:

```
57 91
```

Diagnostics

Error message (1):

"LSAN Matrix in the cache conflicts with existing import/export devices and may disrupt traffic."

"Please refer to the man page for the corrective action."

Corrective actions:

- Any new router added to backbone fabric automatically triggers a matrix merge. If a router does not support the matrix merge feature, the router can not join the backbone fabric. Make sure that all legacy FCR switches in the backbone support the matrix merge feature, otherwise the feature is not supported.

- Use `fcrlsanmatrix --fabricview -lsan` to confirm that all the switches in the backbone have the same LSAN and FCR binding matrix. If not, there are two solutions. The first solution is to modify one FCR or both to make them the same and then activate the FCRs. The second solution is to zero out the database of one FCR to signal that this FCR accepts the database from the other FCR once the change is activated.

To zero out database execute the following commands:

```
fcrsanmatrix --add -lsan 0 0
fcrsanmatrix --add -fcr 00:00:00:00:00:00:00:00 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
fcrsanmatrix --apply -all
```
• In a dual backbone configuration, execute `fcrLsanMatrix --fabricview` on the FCR switches to confirm that the shared edge fabric FIDs have the same access in both backbones.

• Execute `fcrLsanMatrix --display -lsan | -fcr` and `fcrProxyDevShow -a` Check that the LSAN binding matrix in the cache is not in conflict with the existing import/export devices that are displayed on the FCR switch. If there is a conflict, do one of the following:
 - Update the LSAN/FCR binding matrix in the cache to allow access for the FIDs that have imported devices.
 - Remove the conflicting import/export devices by updating the LSAN zone in the edge fabrics.
 - Disable the conflicting devices.

Error message (2):
"There may be other FCR switches in the backbone that do not support the LSAN Binding feature or do not have the same fcrLsanMatrix settings."

"Please refer to the man page for the corrective action."

Corrective actions:
• Check that all FCR switches in the backbone support the LSAN Binding feature, otherwise the feature is not supported.

• Execute `fcrLsanMatrix --fabricview` to confirm that all the switches in the backbone have the same LSAN binding matrix. If not, clear the LSAN binding feature on all the switches and re-apply the same LSAN binding matrix on all the FCR switches in the backbone.

• In a dual backbone configuration, use `fcrLsanMatrix --fabricview` on the FCR switches to confirm that the shared edge fabric FIDs have the same access in both backbones.

Refer to the Fabric OS Message Reference manual for further diagnostic information.

See Also: fcrFabricShow, lsanZoneShow, fcrPhyDevShow, fcrProxyDevShow, fcrRouteShow, switchShow
fcrPathTest

Tests the data path connection between the FC Router FPGA and the central ASIC.

Synopsis

fcrPathTest [- --slot slotnumber][---unit number][---path mode][---nframes count]

Description

Use this command to verify the data path connecting the FC Router field-programmable gate array (FPGA) and the central ASIC by sending frames from the FC Router FPGA port N's transmitter, and looping the frames back into the same port N's receiver. The loopback is accomplished at the parallel loopback path. The path exercised in this test does not include the media nor the fibre cable.

Only one frame is transmitted and received at any one time. An external cable is not required to run this test. The port LEDs flicker green rapidly while the test is running.

The test method is as follows:

1. Set all ports present for parallel loopback.
2. Create a frame F of maximum data size (2,112 bytes).
3. Transmit frame F by way of the FC Router FPGA port N.
4. Pick up the frame from the same port N.
5. Check if any of the eight statistic error counters are nonzero:
 - ENC_in
 - CRC_err
 - TruncFrm
 - FrmTooLong
 - BadEOF
 - Enc_out
 - BadOrdSet
 - DropRxUnavail
6. Check if the transmit, receive, or Class 3 receiver counters are stuck at some value.
7. Check if the number of frames transmitted is not equal to the number of frames received.
8. Repeat steps 2 through 7 for all ports present until one of the following conditions is met:
 a. The number of frames (or passCount) requested is reached.
 b. All ports are marked bad.

At each pass, a different data type is used to create the frame from a palette of seven; if a pass of seven is requested, seven different frames are used in the test. If eight passes, the first seven frames are unique and the eighth is the same as the first pass.

The data palette of seven includes:

CSPAT 0x7e, 0x7e, 0x7e, 0x7e, ...
BYTE_LFSR0x69, 0x01, 0x02, 0x05, ...
CHALF_SQ0x4a, 0x4a, 0x4a, 0x4a, ...
QUAD_NOT0x00, 0xff, 0x00, 0xff, ...
CQTR_SQ0x78, 0x78, 0x78, 0x78, ...
CRPAT 0xbc, 0xbc, 0x23, 0x47, ...
RANDOM0x25, 0x7f, 0x6e, 0x9a, ...

Notes
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is supported only on Brocade FR4-18i blades and Brocade 7500 platforms.

Operands
This command has the following operands:

- **--slot slotnumber**
 Specifies the slot number on which the diagnostic operates. The default is 0 and operates on fixed-port-count products.

- **-unit number**
 Specifies the FC Router FPGA to test. By default, all FC Router FPGAs in the specified slotnumber are used. Valid number values include:
 - 0: FC Router FPGA 0
 - 1: FC Router FPGA 1
 - 2: All FC Router FPGAs

- **-path mode**
 Specifies the loopback point for the test. By default, fcrPathTest uses central ASIC loopback. Valid mode values include:
 - 1: Central ASIC loopback
 - 2: FC Router FPGA Serdes loopback
 - 3: FC Router FPGA internal loopback

- **-nframes count**
 Specifies the number of frames to send. The test progresses until the specified number of frames are transmitted on each port. The default value is 10.

Examples
To test slot 2 with FC Router FPGA Serdes loopback sending 10 frames:

```
switch:admin> fcrpathtest --slot 2 -path 2 -nframes 10
```

Running fcrpathtest
Test Complete: fcrpathtest Pass 10 of 10
Duration 0 hr, 0 min & 18 sec (0:0:18:942).

passed.

Diagnostics
When a failure is detected, the test might report one or more of the following:

- DATA
- ERRSTAT
- INIT
- PORTDIED
- STATS
- TIMEOUT
- XMIT

See Also
fcrChipTest, miniCycle, portLoopbackTest
fcrPhyDevShow

Displays the FC Router physical device information.

Synopsis

fcrphydevshow [-a][[-f fabricid][-w wwn][-c][-d]]

Description

Use this command to display the physical (real) devices that are configured to be exported to other fabrics. A device is considered to be configured to be exported to another fabric if it is a member of an LSAN zone. The device is displayed only if it is discovered in the EX_Port-attached fabric and backbone fabric’s name server (for instance, the device is online).

Physical device information is available only for physical devices that exist in fabrics attached to EX_Ports of FC Routers on the same backbone fabric as this FC Router.

The default output displays only physical device information relevant to this FC Router. Relevant physical devices include physical devices that are configured to be exported from fabrics attached to this FC Router’s EX_Ports.

The physical devices are listed by fabric.

The -f and -w operands allow searching for physical devices based on fabric ID or port World Wide Name.

“No device found” is displayed if there is no physical device information available at this FC Router.

Each line of the output displays:

Device Exists in Fabric
The fabric in which the physical device exists.

WWN
The World Wide Name of the device port.

Physical PID
The port ID of the physical device. This port ID is only relevant on the fabric specified by the “Device Exists in Fabric” column.

Operands

This command has the following operands:

-a
Displays all physical devices for all FC Routers in the same backbone fabric whether or not they are relevant to this FC Router.

-a -f fabricID
Displays the physical devices in the specified fabric for all FC Routers in the same backbone fabric whether or not they are relevant to this FC Router.

-w wwn
Displays the physical devices with the specified port WWN.

-c
Clears login-related counters.

-d
Displays login-related counters in login try (local failure, remote failure) format. Login try counter represents the number of times the device has attempted to log in. Local failure counter represents the number of times the device login failed due to missing LSAN zones within the device’s fabric. Remote failure counter represents the number of times the device login failed due to missing LSAN zones within the remote fabric. Counters are cleared upon reboot or failover.
Examples

To display the physical devices relevant to this FC Router:

```
fcr:admin> fcrphydevshow
Device     WWN            Physical
  Exists    PID
in Fabric
-----------------------------------------
  2  10:00:00:00:c9:2b:6a:68  c70000
  3  50:05:07:65:05:84:09:0e  0100ef
  3  50:05:07:65:05:84:0b:83  0100e8
Total devices displayed: 3
```

See Also

fcrFabricShow, fcrProxyDevShow, fcrRouteShow, lsanZoneShow, switchShow
fcrProxyConfig

Displays or configures proxy devices presented by an FC Router.

Synopsis

fcrproxyconfig [-s importedFID devWWN slot][r importedFID devWWN]

Description

Use this command to display or set the persistent configuration of proxy devices presented by the local FC Router.

If no optional operand is provided, the command displays the persistent proxy device configuration; otherwise, it sets the specified attributes to its new value.

The proxy device must be inactive prior to setting or clearing persistent attributes. Disabling EX_Ports (using the portDisable command) attached to the relevant edge fabric, removing the device from the appropriate LSAN zones, or disabling the physical device are valid methods of ensuring a proxy device is inactive.

Persistent proxy device configuration attributes apply to the local FC Router. Multiple FC Routers attached to the same edge fabric coordinate to present the same proxy devices. As a result, persistent proxy device configurations must be consistent across all FC Routers attached to the same edge fabric or unpredictable results may occur. If the proxy device configuration is not altered, no action is required. If the configuration is altered, then care must be taken to ensure consistency across all FC Routers attached to the same edge fabric.

If no operand is specified, the command displays the following information:

importedFID The imported fabric ID of the proxy device.

devWWN The port World Wide Name of the device.

Slot The slot used for the device WWN. The device WWN-to-slot association is persistently stored. The slot format is XXYYH, where XX specifies the translate domain area_ID (valid values include F0H through FFH) and YY specifies the PortID value or the low 8-bits of the proxy device address (valid values include 01H through 7FH). The address of the proxy device is derived from the PID format (for example, native, core, or extended edge) and the proxy device slot.

"All slots empty" is displayed if no proxy device WWN is stored in any slot for all edge fabrics.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands This command has the following operands:

-s importedFID devWWN slot

Adds the specified devWWN (format: xx:xx:xx:xx:xx:xx:xx:xx) to the specified slot (format XXYYH, where XX is the translate domain area_ID [F0H through FFH] and YY is the port_ID [01H through 7FH]) for the edge fabric specified (1 through 128).
“WWN does not exist in any proxy device slot” is displayed if the WWN does not exist in any slot for the specified edge fabric.

“Too many proxy slots configured. Remove some unused proxy device WWNs from their slots using the -r operand and try again.” is displayed if all slots are used for the specified edge fabric.

“The specified slot already contains a WWN, overwrite? [y]” is displayed if the specified slot already contains an entry. You are then prompted for overwrite confirmation.

```
-r importedFID devWWN
```


“WWN does not exist in any proxy device slot.” is displayed if the WWN does not exist in any slot for the specified edge fabric.

Examples

To display the persistent proxy device configuration:

```
switch:admin> fcrproxyconfig
Imported FID           Device WWN          Slot
 002          50:05:07:65:05:84:08:d7    f001
 002          50:05:07:65:05:84:0a:7b    f002
 002          22:00:00:20:37:c3:11:71    f001
 002          22:00:00:20:37:c3:1a:8a    f002
 003          10:00:00:00:c9:2b:6a:2c    f001
```

To persistently configure device WWN 00:11:22:33:44:55:66:77 to use slot f101h in fabric 5:

```
```

To remove device WWN 00:11:22:33:44:55:66:77 from its persistent slot in fabric 5:

```

WWN deleted from proxy device slot
```

See Also

fcrPhyDevShow, fcrProxyDevShow, fcrXlateConfig, lsanZoneShow, switchShow
fcrProxyDevShow

Displays FC Router proxy device information.

Synopsis

fcrproxydevshow [-a][-f fabricid][-w wwn]

Description

Use this command to display the proxy devices presented by FC Router EX_Ports and information about the proxy devices. A proxy device is a virtual device presented in to a fabric by an FC Router. A proxy device represents a real device on another fabric. When a proxy device is created in a fabric, the real Fibre Channel device is considered to be imported in to this fabric. The presence of a proxy device is required for inter-fabric device communication. The proxy device appears to the fabric as a real Fibre Channel device. It has a name server entry and is assigned a valid port ID.

Proxy device information is available only for proxy devices that are presented by FC Routers on the same backbone fabric as this FC Router.

The default output displays only proxy device information relevant to this FC Router. Relevant proxy devices include proxy devices created by this FC Router (devices imported by this FC Router).

The proxy devices are listed by fabric. Search parameters -f and -w allow searching for proxy devices based on fabric ID or port WWN.

“No proxy device found” is displayed if there is no proxy device information available on this FC Router.

This command displays the following information:

Proxy Created in Fabric

The fabric in which the proxy device has been created.

WWN

The WWN of the device port.

Proxy PID

The port ID of the proxy device. The port ID is only relevant on the fabric specified by the “Proxy Created in Fabric” column.

Device Exists in Fabric

The fabric in which the physical device represented by this proxy device exists.

Physical PID

The port ID of the physical device. The port ID is relevant only on the fabric specified by the “Device Exists in Fabric” column.

State

State includes:

Imported

Proxy device has been imported into the fabric.

Initializing

The proxy device is being initialized and will soon be imported into the fabric.

Operands

This command has the following operands:

-a

Display all proxy devices for all FC Routers in the same backbone fabric whether or not they are relevant to this FC Router.

-a -f fabricid

Display the proxy devices in the specified fabric for all FC Routers in the same backbone fabric whether or not they are relevant to this FC Router.

-f fabricid

Display the proxy devices in the specified fabric that are relevant to this FC Router.

-w wwn

Displays proxy devices with the specified port WWN.
Examples

To display the physical devices relevant to this FC Router:

switch:admin> fcrphydevshow

<table>
<thead>
<tr>
<th>Device</th>
<th>WWN</th>
<th>Physical Exists in Fabric</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10:00:00:00:00:c9:2b:6a:68</td>
<td>c70000</td>
</tr>
<tr>
<td>3</td>
<td>50:05:07:65:05:84:09:0e</td>
<td>0100ef</td>
</tr>
<tr>
<td>3</td>
<td>50:05:07:65:05:84:0b:83</td>
<td>0100e8</td>
</tr>
</tbody>
</table>

Total devices displayed: 33

See Also fcrFabricShow, fcrProxyDevShow, fcrRouteShow, lsanZoneShow, switchShow
fcrResourceShow

Displays FC Router physical resource usage.

Synopsis fcrresourceshow

Description Use this command to display the FC Router-available resources. The maximum number allowed versus the currently used is displayed for various resources. The command output includes:

- **LSAN Zones** The maximum versus the currently used LSAN zones.
- **LSAN Devices** The maximum versus the currently used LSAN device database entries. Each proxy or physical device constitutes an entry.
- **Proxy Device Slots** The maximum versus the currently used proxy device slots. A proxy device is presented to an edge fabric as being connected to a translate domain slot. A slot is the port number and AL_PA combination. The slot-to-device WWN association is persistently stored.
- **Phantom Node WWNs** The maximum versus the currently allocated phantom switch node WWNs. The phantom switch requires node WWNs for fabric-shortest-path-first (FSPF) and manageability purposes. Phantom node names are allocated from the pool sequentially and are not reused until the pool is exhausted and rolls over. The last allocated phantom node WWN is persistently stored. If the switch is disabled, the phantom node WWNs are not returned to the pool until the system reboots, because the phantom switch could still be accessible through other switches. Across a switch reboot, the allocation starts from the next usable WWN from the pool and not from the beginning.
- **Phantom Port WWNs** The maximum versus the currently used phantom domain port WWNs. Phantom domain ports require port WWNs for manageability purposes. Phantom domain ports include ports connecting front and translate domains (virtual ISLs), translate domain ports for proxy devices, and EX_Ports. Phantom port names are allocated from the pool sequentially and are not resumed until the pool is exhausted and rolls over. The last allocated phantom port WWN is persistently stored. If the switch is disabled, phantom port WWNs are not returned to the pool until the system reboots, because the phantom switch might still be accessible through other switches. Across the switch reboot, the allocation starts from the next usable WWN base from the pool and not from the beginning.
- **Port Limits** Displays resources for each physical port (EX_Port), which include the following:
 - **Max Proxy Devices** The maximum versus the currently used proxy device.
 - **Max NR_Ports** The maximum versus the currently used NR_Port entries. Destination NR_Port entries are stored at every physical port for routing decision purposes.

Note Only configured "EX/VEX" ports are displayed.
Operands

none

Examples
To display the resource usage for the local FC Router:

switch:Admin> fcrresourceshow

Daemon Limits:

<table>
<thead>
<tr>
<th>Max Allowed</th>
<th>Currently Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSAN Zones:</td>
<td>1000</td>
</tr>
<tr>
<td>LSAN Devices:</td>
<td>10000</td>
</tr>
<tr>
<td>Proxy Device Slots:</td>
<td>10000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WWN Pool Size</th>
<th>Allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phantom Node WWN:</td>
<td>8192</td>
</tr>
<tr>
<td>Phantom Port WWN:</td>
<td>32768</td>
</tr>
</tbody>
</table>

Port Limits:

Max proxy devices: 2000
Max NR_Ports: 1000

Currently Used(column 1: proxy, column 2: NR_Ports):

48	0	0
49	0	0
50	0	0
52	0	0
53	0	0
54	0	0
60	0	0
63	1	4
176	1	4
177	1	4
183	1	4
190	0	0

See Also

fcrFabricShow, fcrProxyDevShow, fcrRouteShow, lsanZoneShow, switchShow
fcrRouterPortCost

Displays FC Router route information.

Synopsis fcrrouterportcost [[slotnumber/]portnumber] [cost]

Description Use this command to set or display the cost of the router ports. The cost of the link is a
dimensionless positive number (which can be 0 or 1000 or 10000). The router module chooses
the router port path based on the minimum cost per FID connection. If multiple paths exist with the
same minimum cost, the load is shared over these paths.

Every IFL has a default cost. For an EX_Port IFL, the default cost is 1000. For a VEX port, the default
cost is 10000.

If the cost is set to 0, the default cost is used for that IFL.

To set the cost, make sure that admin is enabled for the EX_Port/VEX_Port with portCfgEXPort or
portCfgVEXPort. The cost can be set only on a disabled port.

If no operands are specified, this command displays the current link costs for all ports on the
switch.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability”
for details.

Operands This command has the following operands:

slotnumber For bladed systems only, specify the slot number of the port whose cost is to
be displayed or changed, followed by a slash (/).

portnumber Specify the number of the port whose cost is to be displayed or changed. This
value is relative to the slot for bladed systems. Use switchShow for a list of
valid ports. If omitted, this command displays the costs of all ports.

cost Specify the new cost of the link connected to the specified port. This operand
is optional; if omitted, this command displays the cost of the specified port.
The cost of the link can be changed only when the specified port is disabled.
Valid values for cost are 0, 1000 or 10000.

Examples To display the cost of all EX_Ports:

switch:admin> fcrrouterportcost
Port Cost

7/3 1000
7/4 1000
7/9 1000
7/10 1000
7/16 10000
10/0 10000
To display the cost of one EX_Port:

```
switch:admin> fcrrouterportcost 7/10
Port     Cost
--------  ------
 7/10     1000
```

To set the cost of an EX_Port:

```
switch:admin> fcrrouterportcost 7/10 10000
```

See Also switchShow, fcrRouteShow, portCfgEXPort
Displays FC Router route information.

Synopsis
`fcrouteshow`

Description
Use this command to display routes through the FC Router backbone fabric to accessible destination fabrics. An FC Router backbone fabric is the fabric that contains the E_Ports of this platform and routes inter-fabric traffic between imported fabrics, creating a meta-SAN.

There are FC Router ports that reside on the backbone fabric. These ports are known as NR_Ports. NR_Ports send and receive inter-fabric traffic. For the AP7420, there is a one-to-one relationship between an NR_Port on a backbone fabric and an EX_Port. NR_Port technology enables EX_Ports to exchange traffic across an intermediate fabric. NR_Ports are addressable entities on the backbone fabric and have port IDs relevant to the backbone fabric.

Because cascaded backbone/intermediate fabrics are currently not supported, an NR_Port provides a path to a single fabric with a single FC Router protocol cost. Multiple NR_Ports can provide paths to the same destination fabric.

“No routes found” is displayed if there is no route information available at this FC Router. There is no route information available if no EX_Ports are configured at this FC Router.

The output includes:

- **Destination Fabric ID**
 - The destination fabric.

- **NR_Port PID**
 - The port ID of the NR_Port. The port ID is relevant only on the backbone fabric. This NR_Port has a route to the destination fabric identified by the “Destination Fabric ID” column.

- **FCRP Cost**
 - The FC Router protocol cost (for routing decisions) for this NR_Port. The FCRP cost is the same (1000) for all NR_Ports.

- **WWN of the Principal Switch in the Dest. Fabric**
 - The World Wide Name of the principal switch in the destination fabric specified by the “Destination Fabric ID” column. This is useful to correlate the fabric ID listed in the “Destination Fabric ID” column with the actual fabric.

Operands

- none

Examples

To display the route information:

```
switch:admin> fcrouteshow

<table>
<thead>
<tr>
<th>Destination Fabric Id</th>
<th>NR_Port PID</th>
<th>FCRP Cost</th>
<th>WWN of Principal Switch in the Dest. Fabric</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>640000</td>
<td>1000</td>
<td>10:00:00:60:69:c0:05:d1</td>
</tr>
<tr>
<td>4</td>
<td>640100</td>
<td>1000</td>
<td>10:00:00:60:69:c0:05:d1</td>
</tr>
<tr>
<td>5</td>
<td>640200</td>
<td>1000</td>
<td>10:00:00:60:69:c0:20:ed</td>
</tr>
<tr>
<td>5</td>
<td>640300</td>
<td>1000</td>
<td>10:00:00:60:69:c0:20:ed</td>
</tr>
</tbody>
</table>
```

See Also

`fcrFabricShow`, `fcrPhyDevShow`, `fcrProxyDevShow`, `lsanZoneShow`, `switchShow`
fcrXlateConfig

Displays or persistently configures a translate (xlate) domain ID for both the EX_Port-attached fabric and the backbone fabric.

Synopsis

fcrxlateconfig importedFabricID exportedFabricID preferredDomainID

fcrxlateconfig [-r] importedFabricID exportedFabricID

Description

Use this command to display a translate domain ID or change the preferred domain ID.

A translate domain is a phantom domain created by an FC Router. FC Routers emulate proxy devices representing real devices in remote fabrics. These proxy devices are emulated to be connected to translate domains. Translate domains are presented to a fabric as residing topologically behind front phantom domains (domains created by an EX_Port). In the case of backbone fabrics, translate domains are topologically behind an E_Port. In every EX_Port-attached edge fabric and backbone fabric, there can be a translate domain for every FC Router-accessible remote fabric.

During a fabric build, the translate domain requests a domain ID from the principal switch in the EX_Port-attached edge fabric. The domain ID requested is the preferred domain ID. You can set the preferred domain ID when the translate domain is not active and is persistently saved. The principal switch attempts to provide the translate domain with the requested domain ID, but might not provide it if there are domain ID conflicts with other domains in the fabric. If the requested domain ID (such as the preferred domain ID) is unavailable, the domain ID assignment is completely at the discretion of the principal switch. The assignment domain ID is persistently stored and is used as the preferred domain ID in the future.

Information displayed is not related to the entire BB. The FC Router displays only connections to an edge fabric for which there are xlate domain IDs. Any changes you intend to make using this command should be issued on the switches to which the edge fabrics are directly attached.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands

This command has the following operands:

-r

Removes the preferred domain ID. The translate domain must be inactive to remove the preferred domain ID.

importedFabricID

Specifies the fabric ID (1 through 128) of the fabric that contains the translate domain.

exportedFabricID

Specifies the fabric ID (1 through 128) of the remote fabric represented by this translate domain.

preferredDomainID

Specifies the preferred domain ID (1 through 239) of the translate phantom.

fcrxlateconfig

Sets the preferred domain ID (1-239) to preferredDomainID for the translate phantom. The translate domain must be inactive to set the preferred domain ID.
fcrXlateConfig

importedFabricID

Specifies the fabric ID (1 through 128) of the fabric that contains the translate domain.

exportedFabricID

Specifies the fabric ID (1 through 128) of the remote fabric represented by this translate domain.

preferredDomainID

Specifies the preferred domain ID (1 through 239) of the translate phantom.

Examples

To display the translate domain configuration:

```
switch:admin> fcrxlateconfig

ImportedFid  ExportedFid  Domain  OwnerDid  XlateWWN
  001      002          004       000001              N/A
  001      005          003       N/A              50:00:51:e1:30:30:0f:05
```

To set the preferred domain ID of the translate domain created in fabric 2 that represents remote fabric 3 to a value of 8:

```
switch:admin> fcrxlateconfig 2 3 8
xlate domain already configured, overwrite?(n) y
```

To clear the preferred domain ID of the translate domain created in fabric 2 that represents remote fabric 3:

```
switch:admin> fcrxlateconfig -r 2 3
xlate domain deleted
```

See Also portCfgEXPORT, portCfgVEXPort, portDisable, portEnable, portShow
fddCfg

Manages the fabric data distribution configuration parameters.

Synopsis

fddcfg --showall
fddcfg --localaccept policy_list
fddcfg --localreject policy_list
fddcfg --fabwideset policy_list

Description

Use this command to manage the fabric data distribution configuration parameters. These parameters control the fabric-wide consistency policy. Switches can be locally configured to allow or reject a security policy. Supported policies are Switch Connection Control (SCC), Device Connection Control (DCC), Password (PWD), Fabric Configuration Server (FCS), Fabric Element Authentication (AUTH), and IP Filter (IPFILTER) policies.

Automatic distribution of a fabric-wide consistency policy is limited to SCC, DCC, and FCS policies. To enforce these policies fabric-wide in tolerant or strict mode, use the --fabwideset parameter. The following rules apply:

- The SCC and DCC policies can be distributed to any switch and do not require all switches to run Fabric OS v6.0 for automatic distribution.
- In tolerant mode, fabric-wide enforcement of FCS consistency policy is blocked in "mixed fabrics" that include switches running firmware versions earlier than v6.0. If a v5.3/5.2 switch joins a fabric that has fabric-wide FCS policy enforcement in tolerant mode, a corresponding message is displayed.
- In strict mode, fabric-wide enforcement of FCS consistency policy is possible in mixed fabrics. However, switches that do not support the policies ignore them.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands

This command has the following operands:

--showall Displays the accept/reject configuration of all policy sets and the fabric-wide consistency policy on the switch.

--localaccept policy_list Configures the switch to accept distributions of the specified policies. The policies in policy_list must be separated by semicolons and enclosed in quotation marks; for example, “SCC;DCC;FCS”.

--localreject policy_list Configures the switch to reject distributions of the specified policies in policy_list. However, a database cannot be rejected if it is specified in the Fabric-Wide Consistency Policy. The policies in policy_list must be separated by semicolons and enclosed in quotation marks; for example, “SCC;DCC”.

--fabwideset policy_list Sets the Fabric-Wide Consistency Policy. A database that is set to reject distributions cannot be specified in the Fabric-wide Consistency Policy. To set the Fabric-Wide Consistency Policy as strict, use the strictness indicator "S".
To set the Fabric-Wide Consistency Policy as tolerant, omit the "S". A valid policy set should be of the form "SCC:S;DCC;FCS". To set the fabric-wide policy to NULL (default) or no fabric-wide consistency, use the policy Set "".

Supported policies are Switch Connection Control (SCC), Device Connection Control (DCC), and Fabric Configuration Server (FCS). All members specified in a given policy set are automatically distributed to all participating switches in the fabric that support the policy. Refer to the DESCRIPTION section for specific exceptions. In the presence of a fabric-wide FCS consistency policy, this command can only be run from the primary FCS switch.

Examples

To display the Fabric-Wide Consistency Policy and the accept/reject configuration for all databases:

```
switch:admin> fddcfg --showall
Local Switch Configuration for all Databases:
DATABASE - Accept/Reject
---------------------------------------
  SCC   - accept
  DCC   - accept
  PWD   - accept
  FCS   - accept
  AUTH  - accept
  IPFILTER - accept

Fabric-Wide Consistency Policy: "SCC:S;DCC;FCS"
```

To configure the switch to accept distribution of the SCC policy set and PWD database:

```
switch:admin> fddcfg --localaccept "SCC;PWD"
Local Switch Configured to accept policies.
```

To configure this switch to reject distribution of SCC and DCC policy sets:

```
switch:admin> fddcfg --localreject "SCC;DCC"
Local Switch Configured to reject policies.
```

To set the Fabric-Wide Consistency Policy to "strict" for SCC and "tolerant" for DCC and FCS:

```
switch:admin> fddcfg --fabwideset "SCC:S;DCC;FCS"
```

See Also
distribute
fdmiCacheShow

Displays abbreviated remote FDMI device information, according to remote domain ID.

Synopsis
fdmicacheshow

Description
Use this command to display FDMI cache information for remote domains only.
The state of each remote domain, identified by its domain ID, is shown to be unknown, known, unsupported, or error.
The revision of the switch also displays, followed by the World Wide Name of the switch.
For HBAs, only the HBA identifiers and registered port lists are displayed. No detailed HBA attributes are displayed. For registered ports, only port identifier and corresponding HBA are shown; no detailed port attributes are displayed.

Note
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands
none

Examples
To display the FDMI cache:

```
switch:admin> fdmicacheshow
Switch entry for domain 3
  state:  known
  version: v310
  wwn:    10:00:00:60:69:90:03:c7

  HBAs:
    10:00:00:00:c9:25:9b:96

  Ports: 1
    10:00:00:00:c9:25:9b:96

  Total count of devices on the switch is 1
```
fdmiShow

Displays detailed FDMI device information.

Synopsis

fdmishow

Description

Use this command to display FDMI information for all HBAs and ports.

Detailed FDMI information is displayed for local HBAs and ports. This information includes the HBA with its corresponding ports, along with their respective attributes.

Only abbreviated FDMI information is shown for HBA and ports on remote switches.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands

none

Examples

To display FDMI information on a local switch:

switch:admin> fdmishow
Local HBA database contains:
10:00:00:00:c9:25:9b:96
 Ports: 1
 10:00:00:00:c9:25:9b:96
 Port attributes:
 FC4 Types: 0x000100000100
 Supported Speed: 0x00000001
 Port Speed: 0x00000001
 Frame Size: 0x00000800
 HBA attributes:
 Node Name: 20:00:00:00:c9:25:9b:96
 Manufacturer: Emulex Network Systems
 Serial Number: 0000c9259b96
 Model: LP9000
 Model Description: Emulex LightPulse LP9000 1 Gigabit PCI Fibre Channel Adapter
 Hardware Version: 00000001
 Driver Version: SLI-2 SW_DATE:May 3 2002, v5-2.11a2 **CT_TEST 1**
 Firmware Version: 03814101
 OS Name and Version: Window 2000
 Max CT Payload Length: 0x00061300

Local Port database contains:
10:00:00:00:c9:25:9b:96

Remote HBA database contains no entry.
Remote Port database contains no entry.

See Also

fdmiCacheShow
ficonClear

Clears the records from the specified FICON database.

Synopsis

```
ficonclear database
```

Description

Use this command to remove records from the local FICON database. The command effect depends on the specified database.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands

This command has the following operand:

- `database`
 Specifies the name of the FICON database. The databases are:
 - `RLIR` Remove all entries from the link incidents database including implicit link incidents (ILIR).
 - `RNID` Remove all the “not current” entries from the device node identification database. The entries are for devices that were previously connected but are no longer online. Note that “current” entries are not removed from the RNID database.

Examples

To clear the RLIR database:

```
switch:user> ficonclear RLIR
successfully clear local RLIR Database.
```

To clear the RNID database:

```
switch:user> ficonclear RNID
successfully clear not current entries from local RNID Database.
```

See Also

`ficonHelp`, `ficonShow`
ficonCupSet

Sets FICON-CUP parameters for a switch.

Synopsis ficoncupset fmsmode enable | disable
 ficoncupset modereg bitname 0 | 1
 ficoncupset MIHPTO seconds

Description Use this command to set FICON-CUP (Control Unit Port) parameters for a switch. All parameters can
be set while the switch is online. Changes made by this command take effect immediately. A reboot
is not required.

Use ficonCupShow to display current settings.

Notes FICON Management Server (FMS) mode cannot be enabled if port ID (PID) Format 2 is used.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
 to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands This command has the following operands:

fmsmode Enables or disables the FICON Management Server (FMS) mode for the
 switch.

modereg Set a bit in the FICON-CUP mode register. The following operands are
 required:

 bitname 0|1 Specifies a given bit value to be (1) set or not set (0). Valid values for bitname
 are

 POsc Programmed offline state control
 UAM User alert mode
 ASMA Active=saved mode
 DCAM Director clock alert mode
 ACP Alternate control prohibited
 HCP Host control prohibited

MIHPTO Sets the missing interrupt handler primary timeout (MIHPTO) value for the
 CUP. The following operand is required:

 seconds Specifies the timeout value in seconds. Provide a decimal value in the range
 between 15 and 600 seconds. The default timeout value is 180 seconds. If a
 value greater than 63 seconds is specified, the timeout value is rounded
down to the closest value divisible by 10. For example, an MIHPTO timeout
 value of 86 defaults to 80.

Examples To enable FMS mode for the switch:

 switch:admin> ficoncupset fmsmode enable
 fmsmode for the switch is now Enabled
To set the ASM bit in the mode register for the switch:

switch:admin> ficoncupset modereg ASM 1
Active=Saved Mode bit is set to 1

To set the MIHPTO value to 60 seconds:

switch:admin> ficoncupset MIHPTO 60
MIHPTO has been changed to 60 seconds

See Also ficonCupShow
ficonCupShow

Displays FICON-CUP parameters for a switch.

Synopsis

ficoncupshow fmsmode
ficoncupshow modereg [bitname]
ficoncupshow MIHPTO

Description

Use this command to display FICON-CUP (Control Unit Port) parameters for a switch.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

fmsmode
Display the FICON Management Server (FMS) mode for the switch.

modereg
Display the FICON-CUP mode register. If no operand is specified, all mode register bit settings are displayed. If a mode register bit name is specified, then only the value of that bit is displayed. A value of 1 indicates that a given mode register bit is set, and 0 indicates that it is not set.

The following operand is optional:

bitname
Displays the specified mode register bit as either set (1) or not set (0). Valid values for bitname are:

POSC Programmed offline state control
UAM User alert mode
ASM Active=saved mode
DCAM Director clock alert mode
ACP Alternate control prohibited
HCP Host control prohibited
MIHPTO Displays the FICON-CUP missing interrupt handler primary timeout (MIHPTO) value in seconds.

Examples

To display the FMS mode for the switch:

```
switch:user> ficoncupshow fmsmode
fmsmode for the switch: Enabled
```

To display the mode register for the switch:

```
switch:user> ficoncupshow modereg
POSC UAM ASM DCAM ACP HCP
-----------------------------
 1    0    1    1    1    0
```
To display the ASM bit in the mode register for the switch:

```
switch:user> ficoncupshow modereg ASM
ASM
---
1
```

To display the MIHPTO value for the CUP:

```
switch:user> ficoncupshow MIHPTO
MIHPTO for the CUP: 60 seconds
```

See Also ficoncupset
ficonHelp

Displays a list of FICON support commands.

Synopsis ficonhelp

Description Use this command to display a list of FICON support commands with descriptions.

Operands none

Examples To display a list of FICON commands:

 switch:admin> ficonhelp
 ficonclear Clears contents of the specified FICON management database
 ficoncupset Sets FICON-CUP parameters for a switch
 ficoncupshow Displays FICON-CUP parameters for a switch
 ficonhelp N/A
 ficonshow Displays contents of the specified FICON management database

See Also none
ficonShow

Displays the contents of the specified FICON database.

Synopsis

ficonshow database [fabric]

where database is one of the following:

- ficonshow RNID [fabric]
- ficonshow LIRR [fabric]
- ficonshow SwitchRNID [fabric]
- ficonshow RLIR [fabric]
- ficonshow ILIR [fabric]

Description

Use this command to display the contents of a FICON database. The ficonShow database operand is the name of the database to display. If the fabric operand is absent, the command displays the members of the named database that are local to the switch on which the command was issued. If the fabric operand is present, it must be entered exactly as shown, and this specifies that all members are displayed, both local and remote.

The following information might be displayed, depending on which database you enter and which operands you use with the command:

Domain Displays the domain ID.

Fabric WWN Displays the fabric WWN.

Flag Indicates if the node is valid, not valid, or not current. Flag values are as follows:

- 0x00 Indicates the node ID of the storage port for RNID switch for SwitchRNID is valid.
- 0x10 Indicates the node ID of the channel port is valid.
- 0x20 Indicates the node ID of the storage port is not current.
- 0x30 Indicates the node ID of the channel port is not current.
- 0x40 Indicates the node ID of the storage port for the RNID switch for RLIR is not valid.
- 0x50 Indicates the node ID of the channel port is not valid.

Fmt Displays the record-registration format.

FRU Failure Description Indicates the FRU failure type as one of the following:

- WWN card [unit number] The WWN card.
- Hardware Slot [unit number] The Hardware Slot.
Blower [unit number]

The Blower.

FRU Part Number Displays the FRU part number.

FRU Serial Number Displays the FRU serial number.

Incident Count Displays the incident count. This number increases by 1 for each incident within the individual switch.

Link Incident Description

Same as Link Incident Type.

Link Incident Type Indicates the link incident type as one of the following:

- Bit-error-rate threshold exceeded
- Loss of signal or synchronization
- NOS recognized
- Primitive sequence timeout
- Invalid primitive sequence for port state

Listener PID Same as PID.

Listener Port Type Same as Port Type.

Listener Port WWN Displays the channel HBA port World Wide Name.

Listener Type Indicates the listener type as follows:

Conditional

This port receives a link incident record if no other recipients from the established registration list have been chosen.

Unconditional

This port is always chosen as a recipient of a link incident record.

Manufacturer Displays the manufacturer name or code.

Model Number Displays the model number.

Node Parameters Same as Parameters.

Parameters Displays the node type for the switch in three bytes, 0xAABBCC:

- Byte AA 0x20 FC-SB-2 and updates.
- Byte BB 0x0a Switch.
- Byte CC 0x00 Port number. It is dynamically assigned whenever a link incident occurs.

Parm Displays the incident node parameters type in three bytes, 0xAABBCC:

- Byte AA 0x00 Reserved.
- 0x20 FC-SB-2 and updates.
- 0x40 Other FC-4s including FCP and updates.
- 0x60 FC-SB-2 and updates and other FC-4s including FCP and updates.
- 0x80 FC-4 support not specified.
- 0xa0 Reserved.
- 0xc0 Reserved.
ficonShow

<table>
<thead>
<tr>
<th>Byte BB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xe0</td>
<td>Vendor-specific.</td>
</tr>
<tr>
<td>0x00</td>
<td>Unspecified class.</td>
</tr>
<tr>
<td>0x01</td>
<td>Direct access storage device, if it is a storage port; otherwise, not channel-to-channel capable.</td>
</tr>
<tr>
<td>0x02</td>
<td>Magnetic tape, if it is a storage port; otherwise, a reserved field for a channel port.</td>
</tr>
<tr>
<td>0x03</td>
<td>Input unit record, if it is a storage port; otherwise, a reserved field for a channel port.</td>
</tr>
<tr>
<td>0x04</td>
<td>Output unit, if it is a storage port; otherwise, a reserved field for a channel port.</td>
</tr>
<tr>
<td>0x05</td>
<td>Reserved field for a channel port.</td>
</tr>
<tr>
<td>0x06</td>
<td>Controller, if it is a storage port; otherwise, a reserved field for a channel port.</td>
</tr>
<tr>
<td>0x07</td>
<td>Terminal - Full screen if it is a storage port; otherwise, a reserved field for a channel port.</td>
</tr>
<tr>
<td>0x08</td>
<td>Terminal - Line mode if it is a storage port; otherwise, an emulated control unit support only.</td>
</tr>
<tr>
<td>0x09</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0x10</td>
<td>Switch, if it is a switch device; otherwise, reserved.</td>
</tr>
<tr>
<td>0x0b-0xff</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte CC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>If storage CU port has registered with the switch.</td>
</tr>
<tr>
<td>0xID</td>
<td>CHIPID if channel port has registered with the switch.</td>
</tr>
<tr>
<td>0xPN</td>
<td>If switch has registered with the channel, PN represents the FL port number.</td>
</tr>
</tbody>
</table>

Part Number
Displays the switch chassis part number.

PID
Displays the 24-bit Fibre Channel port address in 0xDDAAPP format. DD is Domain ID. AA is Area ID. PP is AL_PA ID.

Plant of Manufacture
Displays the manufacturer plant name or code.

Port
Physical port number.

Port Status
Displays the status of the port:
- Link degraded but operational
- Link not operational

Port Type
Displays the port type:
- U is unknown.
- N is N_Port.
- NL is NL_Port.
Protocol Displays whether the traffic is using FICON or FCP.

Registered Node WWN Displays the device's node World Wide Name associated with the device HBA.

Registered Port WWN Displays the device's channel or storage CU port World Wide Name associated with the device HBA.

Sequence Number Displays the sequence number of the self-describing node.

Serial Number Displays the switch serial number.

Switch node WWN Displays the switch node World Wide Name.

Switch Port WWN Displays the switch port World Wide Name.

Switch WWN Displays the switch WWN.

Tag Displays the physical identifier for the self-describing node interface.

TS Format Displays the Time Server format.

Time Stamp Displays the timestamp, expressed in date format.

Type Same as Port Type.

Type Number Displays the type number of the self-describing node. It also describes the machine type.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

database Specify the database to display. This operand is required. Valid values are:

- RNID
- LIRR
- SwitchRNID
- RLIR
- ILIR

fabric Specify fabric for which to display both local and remote information. If this operand is omitted, only local members of the named database are displayed.

Examples To display the local RNID database:

```
switch:admin> ficonshow RNID
/{Fmt Type PID Registered Port WWN Registered Node WWN flag Parm
  0x18 N 502b00 50:05:07:64:01:00:15:8d 50:05:07:64:00:c1:69:ca 0x10
  0x200110
  Type number: 002064
  Model number: 101
  Manufacturer: IBM
  Plant of Manufacture: 02
```
To display the local and remote LIRR database:

switch:admin> ficonshow LIRR fabric
{Fmt Type PID Registered Port WWN Registered Node WWN Flag Parm
 0x18 N 502e00 50:05:07:64:01:40:0f:ca 50:05:07:64:00:c1:69:ca 0x10
 0x200105
 Type number: 002064
 Model number: 101
 Manufacturer: IBM
 Plant of Manufacture: 02
 Sequence Number: 0000000169CA
tag: 052e
}
}
The LIRR database has 5 entries.

To display the local Switch RNID database:

switch:admin> ficonshow switchrnid
{
 Switch WWN flag Parm
 10:00:00:60:69:80:1e:4e 0x00 0x200a00
 Type number: SLKWRM
 Model number: 48K
 Manufacturer: BRD
 Plant of Manufacture: CA
 Sequence Number: 0RB030000082
tag: 00ff
}
The Local switch RNID database has 1 entries.

To display the local RLIR database:

switch:user> ficonshow RLIR
{
 {Fmt Type PID Port Incident Count TS Format Time Stamp
 0x18 N 502e00 46 1 Time server Mon Jan 13 04:29:33 2003
 Port Status: Link not operational
 Link Failure Type: Loss of signal or synchronization
 Registered Port WWN Registered Node WWN Flag Node Parameters
 50:05:07:64:01:40:0f:ca 50:05:07:64:00:c1:69:ca 0x50 0x200105
 Type Number: 002064
 Model Number: 101
 Manufacturer: IBM
}
Plant of Manufacture: 02
Sequence Number: 0000000169CA
tag: 2e00

<table>
<thead>
<tr>
<th>Switch Port WWN</th>
<th>Switch Node WWN</th>
<th>Flag</th>
<th>Node Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:2e:00:60:69:80:1e:4e</td>
<td>10:00:00:60:69:80:1e:4e</td>
<td>0x00</td>
<td>0x200a2e</td>
</tr>
</tbody>
</table>

Switch Part Number: 060-0001501-05
Switch Serial Number: 0FT02X801E4E
Domain: 20480

The local RLIR database has 1 entry.

To display the local ILIR database:

```
switch:user> ficonshow ILIR
```

```
Fmt   Protocol Domain Fabric WWN              Switch WWN
0x18  FICON    80     10:00:00:60:69:33:33:33 10:00:00:60:69:80:1e:4e
FRU part number: 23000000602
FRU serial number: FL2L0001071

{Listener Port Type Listener PID Listener Port WWN
 N   0x502b00     50:05:07:64:01:00:15:8d
}

Fmt   Protocol Domain Fabric WWN              Switch WWN
0x18  FICON    80     10:00:00:60:69:33:33:33 10:00:00:60:69:80:1e:4e
FRU part number: 23000000602
FRU serial number: FL2L0001060

{Listener Port Type Listener PID Listener Port WWN
 N   0x502b00     50:05:07:64:01:00:15:8d
}
}
```

The Local ILIR database has 2 entries.

See Also ficonClear
fipsCfg

Configures FIPS (Federal Information Processing Standards) mode.

Synopsis
fipscfg --enable [fips | selftests]
fipscfg --disable [fips | selftests]
fipscfg --zeroize
fipscfg --show | --showall
fipscfg --force fips
fipscfg --verify fips
fipscfg --disable | --enable bootprom

Description
Use this command to configure FIPS mode in the switch. In this mode, only FIPS-compliant algorithms are allowed. As part of FIPS 140-2 level 2 compliance, passwords, shared secrets and the private keys used in SSL/TLS, system login, etc., need to be zeroized. Power-up self tests are executed when the switch is powered on to check for the consistency of the algorithms implemented in the switch.

Notes
Certain services and functions, such as FTP, HTTP, remote procedure calls (RPC), root account, boot prom access, etc., must be blocked for the system to enter FIPS mode.
LDAP should not be configured while FIPS is enabled.
The system must be rebooted for FIPS mode changes to take effect.
Refer to the Fabric OS Administrator's Guide for information on configuring your system for FIPS 140-2 level 2 compliance.
FIPS mode cannot be modified through configDownload.
FIPS is not supported on all platforms. For FIPS-compliant hardware, refer to the Fabric OS Administrator's Guide.
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
This command has the following operands:
--disable [fips | selftests]
 Disables FIPS or Selftests mode. Note: Selftests cannot be disabled when FIPS mode is enabled.
--enable [fips | selftests]
 Enables FIPS or Selftests mode. Notes: Selftests must be enabled before FIPS mode is enabled.
--zeroize
 Erases all passwords, shared secrets, private keys, etc. in the system.
--show | --showall
 Displays the current FIPS configuration.
fipsCfg

--force fips
This option enables FIPS mode even if prerequisites are not met, except under the following two conditions:

1. In a dual-CP system if HA is not in sync between the two CPs.
2. If selftests is in a disabled state.

--verify fips
This option runs through the prerequisites for enabling FIPS and print the failure/success cases.

--disable | --enable bootprom
Disables or enables the Boot Programmable Read-Only Memory (Boot PROM) on the switch. Boot PROM access is blocked in FIPS mode. Disabling Boot PROM requires root permission. Enabling Boot PROM does not require root permission.

--help
Print command usage.

Examples
To display current FIPS configuration:
```
switch:admin> fipscfg --show
FIPS mode is : Disabled
FIPS Selftests mode/status is : Disabled/None
```
To enable selftests:
```
switch admin> fipscfg --enable selftests
FIPS Selftests mode/status has been set to : Enabled/None
```
To verify FIPS prerequisites:
```
switch:admin> fipscfg --verify fips
Standby firmware supports FIPS
SELF tests check has passed
Root account is enabled.
Radius check has passed
Authentication check has passed
SNMP is in read only mode.
Bootprom access is disabled.
Firmwaredownload signature verification is enabled.
cfgload.secure parameter value is 1.
```
To attempt enabling FIPS when prerequisites are not met:
```
switch:admin> fipscfg --enable fips
SelfTests mode is not enabled.
Authentication uses MD5 hash algorithm.
Telnet port number <23> for the policy <default_ipv4> is in permit state.
HTTP port number <80> for the policy <default_ipv4> is in permit state.
RPC port number <898> for the policy <default_ipv4> is in permit state.
TELNET port number <23> for the policy <default_ipv6> is in permit state.
HTTP port number <80> for the policy <default_ipv6> is in permit state.
RPC port number <898> for the policy <default_ipv6> is in permit state.
SNMP is not in read only mode.
Bootprom access is enabled.
FIPS mode cannot be configured at this time
```
To enable FIPS after prerequisites have been met:

switch:admin> fipscfg --enable fips
FIPS mode has been set to : Enabled
Please reboot the system

switch:admin> fipscfg --show
FIPS mode is : Enabled

See Also none
firmwareCommit

Commits switch firmware.

Synopsis firmwarecommit

Description Use this command to commit a firmware download to a CP. This command copies an updated firmware image to the secondary partition and commits both partitions of the CP to an updated version of the firmware. This must be done after each firmware download and after the switch has been rebooted and a sanity check is performed to make sure the new image is fine.

For switches that have nonvolatile memory set into two equal partitions, the primary partition is the where the system boots from; the secondary partition is where a copy of the firmware is stored, in case the primary partition is damaged.

To maintain the integrity of the firmware image in the nonvolatile memory, the firmwareDownload command updates the secondary partition only. When firmwareDownload completes successfully and the CP is rebooted, the system switches the primary partition (with the old firmware) to the secondary, and the secondary partition (with the new firmware) to the primary.

The default behavior of the firmwareDownload command is to automatically run the firmwareCommit command after the reboot. If you decide to disable the autocommit option when running firmwareDownload, after the CP is rebooted, you must execute one of two commands:

- firmwareCommit copies the primary partition (with new firmware) to the secondary and commits the new firmware to both partitions of the CP.
- firmwareRestore copies the secondary partition (with the old firmware) to the primary and backs out of the new firmware download. The firmwareRestore command can be run only if autocommit was disabled during the firmware download. Autocommit can be disabled only when you run firmwareDownload in single mode.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To commit a new version of the firmware:

 switch:admin> firmwarecommit
 Validating primary partition...
 Doing firmwarecommit now.
 Please wait ...
 Replicating kernel image

 FirmwareCommit completes successfully.

See Also firmwareDownload, firmwareRestore
firmwareDownload

Downloads firmware from a remote host, a local directory, or a USB device.

Synopsis

To invoke the command in interactive mode:

```
firmwaredownload
```

To download FOS firmware over a network:

```
firmwaredownload [-s [-b | -n]] [-p ftp | scp] [-c] [-o] host, user, pfile, passwd
```

To download SAS/SA firmware over a network:

```
firmwaredownload -a sas | dmm | application [-t slotnumber(s)] [-p ftp | scp] [-c] [-o] host, user, pfile, passwd
```

To download SAS firmware over a network and remove the existing SA firmware at the same time:

```
firmwaredownload -a sas [-t slotnumber(s)] [-p ftp | scp] [-c] [-o] [-e] host, user, pfile, passwd
```

To download FOS firmware from a USB device:

```
firmwaredownload [-s [-b | -n]] [-U] [-c] [-o] pfile
```

To download SAS/SA firmware from a USB device:

```
firmwaredownload -a sas | dmm | application [-t slotnumber(s)] [-U] [-c] [-o] pfile
```

To download SAS firmware from a USB device and remove the existing SA firmware at the same time:

```
firmwaredownload -a sas [-t slotnumber(s)] [-U] [-c] [-o] [-e] pfile
```

Description

Use this command to download switch firmware from an FTP or SSH server or local NFS directory to the switch's nonvolatile storage area. Switch firmware can also be downloaded from an external USB device on platforms that support USB.

The new firmware is downloaded in the form of RPM packages. Package names are defined in pfile along with other firmware information (time stamp, platform code, version, etc.). These packages are made available periodically to add features or to remedy defects. Contact customer support to obtain information about available firmware versions.

On enterprise-class platforms, this command, by default, downloads the firmware image to both CPs in rollover mode to prevent disruption to application services. This operation depends on HA support. If HA is not available, you can still upgrade the CPs one at a time using the -s option.

All systems supported by this firmware have two partitions of nonvolatile storage areas (primary and secondary), to store two firmware images. firmwareDownload always downloads the new image to the secondary partition and then swaps the secondary partition to be the primary.

By default, it then reboots the system and activates the new image. Finally, it performs a firmwareCommit automatically to copy the new image to the other partition. In systems with blade processors (BPs), after the new CP firmware is downloaded to the system and activated, the BP firmware is downloaded to the BP processors if there is a mismatch between the BP and CP firmware.

By default, firmwareDownload performs a full install, autoreboot, and autocommit. These modes are selectable only in single CP (-s) mode, in which case autoreboot is OFF by default.
For each non-director-class platform in your fabric, complete all firmware download changes before issuing the `firmwareDownload` command on the next switch to ensure a nondisruptive download.

If `firmwareDownload` is interrupted due to an unexpected reboot as a result of a software error or power failure, the command automatically recovers the corrupted secondary partition. Wait for the recovery to complete before starting another `firmwareDownload`.

Notes

Firmware download procedures may vary depending on which Fabric OS version you are migrating from. See the Fabric OS Administrator’s Guide “Firmware Download” chapter for restrictions on changing Fabric OS versions.

To correlate Brocade blade names with blade IDs, use the `slotShow` command.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

The following operands are optional. When invoked without operands, the command goes into interactive mode.

- `-U` Downloads firmware from an attached USB device. This option is valid only on platforms that support a USB port. Refer to your specific Hardware Reference Guide for details. The USB device must be enabled prior to firmware download with the `usbStorage` command. Firmware must be stored under the `/firmware` directory in the USB filesystem. On a dual-CP chassis, the USB device must be attached to the active CP. When downloading firmware from a USB device, the `-p` option is ignored.

- `-s` Enables single CP mode. This mode supports selectively enabling or disabling a full install, autoreboot, and autocommit on bladed and non-bladed systems. On enterprise-class platforms, this mode supports upgrading a single CP. When downloading the main Fabric OS firmware, this option disables autoreboot, unless overridden by the `-b` option.

- `-b` Enables autoreboot mode. When single CP mode is enabled and this operand is not specified, `reboot` must be run manually to activate the downloaded image. If autoreboot mode is enabled, the switch reboots automatically after the firmware has been downloaded.

- `-n` Disables autocommit mode. When autocommit mode is disabled, the `firmwareCommit` command must be executed manually to propagate the downloaded image to both partitions of the storage device.

- `host` Specify a valid FTP or SSH server name or IP address. IPV4 and IPv6 addresses are supported. The firmware is downloaded from the specified host. If a host is not specified, the firmware is considered accessible on a local directory. To mention an FTP server by name, a DNS server must first be set up with the `dnsConfig` command. If DNS is enabled and a server name is specified, `firmwareDownload` automatically determines whether IPv4 or IPv6 should be used.

- `user` Specify a user name for FTP or SSH server access. This operand can be omitted, if the firmware is accessible on a local directory, a USB device, or by anonymous FTP server access. A user name other than “anonymous” is required for SSH server access.
firmwareDownload

```
pfile Specify a fully qualified path for the firmware pfile. Absolute path names may be specified using forward slashes (/).

passwd Specify a password. This operand can be omitted, if the firmware is accessible through a local directory or an attached USB device, or if no password is required by the FTP server. This operand is required when accessing an SSH server.

-p scp|ftp Specify the file transfer protocol used to download the firmware from the file server. Valid values are ftp and scp. The values are not case-sensitive. If -p is not specified, firmwareCommit determines the protocol automatically by checking the config.security parameter. When using the USB option, these parameters, if specified, are ignored.

-a fos | sas | any application

Specify the type of firmware being downloaded. Accepted values are fos, sas, or any valid application name. Values are not case-sensitive.

-t slot_number(s) Specify the target slots for the firmware download. Valid values are a list of slot numbers separated by comma.

-c Disables version compatibility checking. By default, firmwareDownload checks if the firmware being downloaded is compatible with other running firmware images in the system. If the firmware version is not compatible, firmwareDownload fails. If this option is specified, version compatibility checking is disabled.

-e Removes all of the installed SA images in the system during SAS firmware download. By default, downloading a SAS image does not remove the installed SA images. If this option is specified, the installed SA images are removed. This option is only valid with the -a sas option.

-o Bypasses the checking of Coordinated HotCode Load (HCL). On single CP systems in interop fabrics, the HCL protocol is used to ensure data traffic is not disrupted during firmware upgrades. This option allows firmwareDownload to continue even if HCL is not supported in the fabric or the protocol fails. Using this option may cause traffic disruption for some switches in the fabric.

Examples

To download the firmware to an HA switch over a network:

```
switch:admin> firmwareDownload 192.168.166.30,johndoe,/pub/dist/release.plist,12345
The following BP blades are installed in the system.

<table>
<thead>
<tr>
<th>Slot Name</th>
<th>Versions</th>
<th>Scope of Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>v5.3.0</td>
<td>GigE/FC Fast-write</td>
</tr>
<tr>
<td>7</td>
<td>v5.3.0</td>
<td>GigE/FC Fast-write</td>
</tr>
<tr>
<td>9</td>
<td>v5.3.0</td>
<td>Virtualization</td>
</tr>
</tbody>
</table>

This command will upgrade both CPs and all BP blade above. If you want to upgrade a single CP only, use the -s option.

You can run firmwareDownloadstatus to get the status of this command.

This command will cause the active CP to reset and will require that existing telnet, secure telnet or SSH sessions be restarted.
```
Do you want to continue [Y]: y

The firmware is being downloaded to the Standby CP. It may take up to 10 minutes.

To download the firmware to both CPs on a dual-CP chassis with an attached USB device. (You would execute the same command on a single CP processor with USB support. Output may vary depending on platform.)

switch:admin> firmwaredownload -U v6.0.0

Checking system settings for firmwaredownload...
Protocol selected: USB
Trying address--->AF_INET IP: 127.1.1.8, flags : 2
System settings check passed.

Checking version compatibility...
Version compatibility check passed.

This command will upgrade the firmware on both CP blades. If you want to upgrade firmware on a single CP only, please use -s option.

You may run firmwaredownloadstatus to get the status of this command.

This command will cause a warm/non-disruptive boot on the active CP, but will require that existing telnet, secure telnet or SSH sessions be restarted.

To download SAS firmware interactively:

switch:admin> firmwaredownload
Type of Firmware (FOS, SAS, or any application) [FOS]: SAS
Target Slots (all, or slot numbers) [all]:
Server Name or IP Address: 192.168.32.10
Network Protocol (1-auto-select, 2-FTP, 3-SCP) [1]:
User Name: userfoo
File Name: /home/userfoo/dist/release.plist
Password:

To download SAS firmware without version compatibility checking:

switch:admin> firmwaredownload -c
Type of Firmware (FOS, SAS, or any application name) [FOS]: SAS
Targeted Slots (slot numbers): 8
Server Name or IP Address: 192.168.126.250
Network Protocol (1-auto-select, 2-FTP, 3-SCP) [1]:
User Name: userfoo
File Name: /home/userfoo/dist
Password:

Verifying the system parameters for firmwaredownload...
System parameters checking passed.

Checking version compatibility...
Version compatibility checking DISABLED.

This command will reboot the selected blades and disrupt the virtualization applications on these blades.
WARNING: YOU HAVE ELECTED TO DISABLE THE VERSION COMPATIBILITY CHECKING FEATURE. THIS CAN CAUSE THE VIRTUALIZATION SERVICES TO STOP WORKING. If you want to check the version compatibility, please exit and re-enter this command without the "-c" option.

Do you want to continue [Y]: y

To download SAS firmware and remove the installed SA image at the same time:

switch:admin> firmwaredownload -a sas -e 192.168.126.250,\ userfoo/home/userfoo/dist/release.plist,12345

This command will download "sas" and at the same time, it will remove all of the installed SA images on the switch.

Do you want to continue [Y]: y

Diagnostics The command checks the network connection and other system parameters before initiating firmwaredownload. It may fail if at least one of the following conditions is encountered:

- The host cannot be reached by the switch.
- The user does not have permission on host.
- The password is not specified correctly.
- Indicated firmware does not exist on the host, or is not in the right format, or is corrupted.
- The FTP or SSH service is not running on host.
- The platform is not supported by the firmware indicated.
- The USB device may not be plugged in correctly. On standalone switches, the device must be plugged into the switch USB port. On enterprise-class platforms, the USB device must be plugged into the Active CP.
- The USB device is not enabled. Use the usbStorage command on the switch to enable the USB device. On enterprise-class platforms, the command must be run on the Active CP. Active CP to enable the USB device.
- On single CP, Interop fabric does not support Coordinated HotCode Load.

For other return codes, refer to the Fabric OS Error Message Reference Manual.

See Also firmwaredownloadCommit, firmwaredownloadStatus, firmwareKeyShow, firmwareKeyUpdate, firmwareRestore, firmwareShow, reBoot, slotShow, version
firmwareDownloadStatus

Displays the status of a firmware download.

Synopsis   firmwareDownloadStatus

Description Use this command to display an event log that records the progress and status of events during
FOS, SAS, and SA firmwareDownload. The event log is created by the current firmwareDownload
command and is kept until another firmwareDownload command is issued. There is a timestamp
associated with each event.

When downloading SAS or SA in systems with two control processor (CP) cards, you can only run
this command on the active CP. When downloading FOS, the event logs in the two CPs are
synchronized. This command can be run from either CP.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for
details.

Operands none

Examples The following example shows the status of the firmwareDownload for an SAS image to the blades in
slot 2 and 7.

switch:admin> firmwareDownloadStatus
[1]: Thu Jul 28 00:30:49 2007
  Slot 2 (SAS): Firmware is being downloaded to the blade. It may take up to 30
  minutes.

[2]: Thu Jul 28 00:30:49 2007
  Slot 7 (SAS): Firmware is being downloaded to the blade. It may take up to 30
  minutes.

[3]: Thu Jul 28 00:37:42 2007
  Slot 2 (SAS): Firmware has been downloaded successfully to the blade.

[4]: Thu Jul 28 00:37:42 2007
  Slot 7 (SAS): Firmware has been downloaded successfully to the blade.

[5]: Thu Jul 28 00:37:50 2007
  Slot 2 (SAS): Blade is rebooting.

[6]: Thu Jul 28 00:37:50 2007
  Slot 7 (SAS): Blade is rebooting.

[7]: Thu Jul 28 00:37:50 2007
  Slot 2 (SAS): Firmware commit is started.

[8]: Thu Jul 28 00:37:50 2007
  Slot 7 (SAS): Firmware commit is started.

[9]: Thu Jul 28 00:37:50 2007
  Slot 2 (SAS): Firmware commit has completed.

[10]: Thu Jul 28 00:37:50 2007
  Slot 7 (SAS): Firmware commit has completed.
To display the status of a firmware download on a switch:

```
switch:admin> firmwareDownloadStatus
[1]: Fri Feb 15 22:17:03 2007
Firmware is being downloaded to the switch. This step may take up to 30 minutes.
Firmware has been downloaded to the secondary partition of the switch.
The firmware commit operation has started. This may take up to 10 minutes.
Switch is relocating an internal firmware image.
The commit operation has completed successfully.
The internal firmware image is relocated successfully.
[7]: Fri Feb 15 22:25:46 2007
Firmwaredownload command has completed successfully. Use firmwareshow to verify the firmware versions.
```

To display the status of a firmware download on a chassis:

```
switch:admin> firmwareDownloadStatus
[1]: Mon Dec 19 18:40:19 2007
Slot 6 (CP1, active): Firmware is being downloaded to standby CP. This step may take up to 30 minutes.
Slot 6 (CP1, active): Firmware has been downloaded successfully to Standby CP.
Slot 6 (CP1, active): Standby CP is going to reboot with new firmware.
[4]: Mon Dec 19 18:47:45 2007
Slot 6 (CP1, active): Standby CP booted successfully with new firmware.
[5]: Mon Dec 19 18:47:56 2007
Slot 8 (FR4-18i): Firmware is being downloaded to the blade. This step may take up to 10 minutes.
Slot 5 (CP0, active): Forced failover succeeded. New Active CP is running new firmware
[7]: Mon Dec 19 18:48:57 2007
Slot 5 (CP0, active): Firmware is being download to standby CP. This step may take up to 30 minutes.
Slot 8 (FR4-18i): Firmware has been downloaded successfully. Blade is rebooting with the new firmware.
[9]: Mon Dec 19 18:50:12 2007
```
firmwareDownloadStatus

Slot 8 (FR4-18i): Firmware commit has started on the blade. This may take up to 10 minutes.

[10]: Mon Dec 19 18:50:51 2007
Slot 8 (FR4-18i): The commit operation has completed successfully.

Slot 5 (CP0, active): Firmware has been downloaded successfully on Standby CP.

Slot 5 (CP0, active): Standby CP reboots.

[13]: Mon Dec 19 18:57:06 2007
Slot 5 (CP0, active): Standby CP booted successfully with new firmware.

[14]: Mon Dec 19 18:57:10 2007
Slot 5 (CP0, active): Firmware commit operation has started on both active and standby CPs.

[15]: Mon Dec 19 19:01:38 2007
Slot 5 (CP0, active): Firmware commit operation has completed successfully on active CP.

[16]: Mon Dec 19 19:01:39 2007
Slot 5 (CP0, active): firmwareDownload command has completed successfully. Use firmwareShow to verify the firmware versions.

See Also  firmwareCommit, firmwareDownload, firmwareRestore, firmwareShow
firmwareKeyShow

Displays the public key used for signed firmware validation.

Synopsis  firmware key show

Description This command displays the contents of the public key used for validating the integrity of firmware images when signed firmware validation is enabled.

Notes A firmware key should be installed on every switch as a part of the Fabric OS installation. The presence of a firmware key does not imply that the firmware signature is checked during firmwareDownload. Signed Firmware Download must be enabled before the public key can be used for signature validation.

Use the configure command to enable Signed Firmware Download.

If Signed Firmware Download is enabled, and if the validation succeeds, firmware download proceeds normally. If the firmware is not signed or if the signature validation fails, signed firmware download fails.

Refer to the Fabric OS Administrator's Guide for complete details on upgrading or downgrading firmware.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands none

Examples To display the public key used for signed firmware validation:

    switch:admin> firmware key show
    -----BEGIN PUBLIC KEY-----
    MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDjuQpMk4FrceFvVz121AakFNv9
    k42GhFDMPGIHtems1Ywd155U7LTDIVwoViTLevtIDn012r1XlINQ+DORAzyJFkwD
    XegkeTn/8wDqHBwotPz4WTd9UGJ9M0Vs52ro1TukIpsh084LXKgxt+IgdeRczY
    8p8rQZWLpyputx6rgwIDAQAB
    -----END PUBLIC KEY-----

See Also firmwareDownload, firmwareKeyUpdate, configure
firmwareKeyUpdate

Updates the public key used for signed firmware validation.

Synopsis

```
firmwarekeyupdate
firmwarekeyupdate [-p ftp|scp] host,user,keyfile,passwd
firmwarekeyupdate -U keyfile
```

Description

Use this command to update the public key used for firmware signature validation.

The firmware key can be updated over the network, or, if the switch supports this option, from an attached USB device.

A default firmware key is released as part of the firmware image and is downloaded to the switch during the firmware download process. The default key is used to download new firmware. However, the firmware key may be change for future releases, and the default key may not be the right key for validating the signature of the new firmware. In this case, switch administrators can use the `firmwareKeyUpdate` command to update the firmware key first. After the new firmware is downloaded, the firmware key that is part of the new firmware becomes the default firmware key.

Notes

A firmware key should be installed on every switch as a part of the Fabric OS installation. The presence of a firmware key does not imply that the firmware signature is checked during firmwareDownload. Signed Firmware Download must be enabled before the public key can be used for signature validation.

Use the `configure` command to enable Signed Firmware Download.

If Signed Firmware Download is enabled, and if the validation succeeds, firmware download proceeds normally. If the firmware is not signed or if the signature validation fails, signed firmware download fails.

Refer to the Fabric OS Administrator's Guide for complete details on upgrading or downgrading firmware.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

The following operands are supported. When invoked without operands, the command goes into interactive mode, prompting you for input.

-`p` scp|ftp
  Specify the file transfer protocol. Valid values are `ftp` and `scp`. Values are not case-sensitive. If `-p` is not specified, `firmwareKeyUpdate` determines the protocol automatically.

-`U`
  Specify this operand to update the firmware key from a USB device. This option requires the `keyfile` operand.

`host`
  Specify a valid FTP or SSH server name or IP address. IPV4 and IPV6 addresses are supported. The firmware key is updated from the specified host. If a host is not specified, the firmware key is considered accessible on a local directory. To mention an FTP server by name, a DNS server must first be set up with the `dnsConfig` command.
user  Specify a user name for FTP or SSH server access. This operand can be omitted, if the firmware key is accessible on a local directory or by anonymous FTP server access. A user name other than “anonymous” is required for SSH server access.

keyfile  Specify a fully qualified path for the firmware keyfile. Absolute path names may be specified using forward slashes (/). When updating from a USB device, the keyfile must reside in the /firmwarekey directory on the USB device.

passwd  Specify a password. This operand can be omitted, if firmware is accessible through a local directory or an attached USB device, or if no password is required by the FTP server. This operand is required when accessing an SSH server.

Examples  To update the public key from a server, using an automatically determined transfer protocol:

switch:admin> firmwarekeyupdate 192.168.21.34,johndoe,/pub/dist/pubkey.pem,12345
Updating the public key, please wait...
Public key successfully updated.

To update the public key using the interactive method:

switch:admin> firmwarekeyupdate
Server Name or IP Address: 192.168.21.34
User Name: johndoe
File Name: /pub/dist/pubkey.pem
Network Protocol(1-auto-select, 2-FTP, 3-SCP) [1]:
Password:
Updating the public key, please wait...
Public key successfully updated.

To update the public key from an external USB device:

switch:admin> Firmwarekeyupdate -U /usb/usbstorage/brocade/firmwarekey/pubkey.pem
Updating the public key, please wait...
Public key successfully updated.

See also  firmwareDownload, firmwareKeyShow, configure
firmwareRestore

Restores the former active firmware image.

Synopsis  firmwareRestore

Description Use this command to restore the former active Fabric OS firmware image. This command can only
be run if autocommit was disabled during the firmwaredownload. This command cannot be used to
restore SAS and SA images.

After a firmwaredownload and a reboot (with autocommit disabled), the downloaded firmware
becomes active. If you then do not want to commit the firmware and want to restore the former
firmware, run firmwareRestore. After running firmwareRestore, you can run firmwaredownload
again.

This command reboots the system and makes the former firmware active. After reboot, both
primary and secondary partitions restore to the former firmware.

This command only takes action if the system is booted after a firmwaredownload; otherwise, it
returns with an error code.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands none

Examples To restore the former active firmware image:

switch:admin> firmwareRestore
Restore old image to be active ...
Restore both primary and secondary image after reboot.
The system is going down for reboot NOW !
Broadcast message from root (ttyS0) Fri Oct 26 23:48:54 2001...

Doing firmwarecommit now.
Please wait ...

See Also firmwareCommit, firmwaredownload
firmwareShow

Displays the Fabric OS versions on all firmware partitions in the system.

Synopsis firmwareShow

Description Use this command to display the FOS, SAS, and SA firmware versions. The command shows the firmware versions on both the primary and secondary partitions of the storage device.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To display the firmware versions in a Brocade director with FA4-18 blades installed in slot 2 and 7:

```
switch:admin> firmwareShow
Slot Name Appl Primary/Secondary Versions Status

 2 FA4-16 FOS v6.1.1 v6.1.1
 SAS v3.0.0 v3.0.0
 DMM v3.0.0 v3.0.0
 5 CP0 FOS v6.1.1 Standby *
 v6.1.1
 6 CP0 FOS v6.1.1 Active
 v6.1.1
 7 FA4-16 FOS v6.1.1 v6.1.1
 SAS v3.0.0 v3.0.0
 DMM v3.0.0 v3.0.0
* Local CP
Note: If Local CP and Remote CP have different versions, retry the firmwareDownload command.
```

To display the firmware version on a switch:

```
switch:admin> firmwareShow
Appl Primary/Secondary Versions
--
FOS v6.1.1 v6.1.1
SAS v3.0.0 v3.0.0
DMM v3.0.0 v3.0.0
```

See Also firmwareDownload, firmwareDownloadStatus
fosConfig

Displays or modifies Fabric OS features.

Synopsis

fosconfig --enable feature
fosconfig --disable feature
fosconfig --show

Description

Use this command to enable or disable a feature, or to display the current operating status of features on a switch.

The following features are supported (see Notes for limitations):

- FC Routing service (see fcrConfigure)
- iSCSI service (see iscsiCfg)
- iSNS client service (see isnscCfg)

Notes

The features described may not be supported on all platforms. If you attempt to enable a feature that is not supported on your platform, an error message stating "Command not supported on this platform" is displayed.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- enable feature

   Enables a feature on the switch. This command can be run while the switch is online. Valid values for feature are:

   - fcr
     Enables the FC Routing service on the switch. The FC Routing service is disabled by default. Use fosConfig --show to determine if FCR is enabled or disabled,

     When enabling FCR, you may encounter one of the following system messages:

     "FC Routing service is in the process of being disabled, please try again after a few minutes." This means that a command to disable the FC Routing service is still in progress. Wait a few minutes and try again.

     "FC Routing service is already enabled." This means that the FC Routing service is already enabled.

   - iSCSI
     Enables the iSCSI service on the switch. By default, iSCSI is disabled.

   - iNSNC
     Enables the iNSNC service on the switch. By default, iNSNC is disabled.
**--disable feature**

Disables a feature on the switch. This command can be run while the switch is online. Valid values for *feature* are:

- **fcr**
  
  Disables the FC Routing service on the switch. All enabled EX_Ports and VEX_Ports on the switch must be offline for this command to succeed. If there is an XPath OS switch in the BB fabric, it may take up to eight minutes to complete the disable process.

  To use this command to disable the FC Routing service only instead of disabling the switch, issue this command, then change the BB fabric ID using *fcrConfigure*.

  When disabling the FCR service, you may encounter the following system messages:

  "Please disable all EX/VEX_Ports first before running this command." This means that there were EX_Ports or VEX_Ports online when this command was issued. Take these ports offline and try the command again.

  "FC Routing service is already disabled" This means that the FC Routing service is already disabled.

- **iSCSI**
  
  Disables the iSCSI service on the switch.

- **iSNSC**
  
  Disables the iSNSC service on the switch.

**--show**

Displays the current operating status of features on the switch.

**Examples**

To display the status of the features:

```bash
switch:admin> fosconfig --show
FC Routing service: enabled
iSCSI service: enabled
iSNS Client service: disabled
```

To disable the FC Routing service:

```bash
switch:admin> fosconfig --disable fcr
FC Routing service is disabled
```

To enable the FC Routing service:

```bash
switch:admin> fosconfig --enable fcr
FC Routing service is enabled
```

To enable the iSCSI service:

```bash
switch:admin> fosconfig --enable iscsi
iSCSI service is enabled
```

To disable the iSCSI service:

```bash
switch:admin> fosconfig --disable iscsi
iSCSI service is disabled
```

**See Also**  
*fcrConfigure, iscsiCfg, iscsiPortCfg, isnsCfg, switchShow*
fruReplace

Provides an interactive interface to help replace a field replaceable unit (FRU).

Synopsis  
frureplace fru

Description  
Use this command to replace a FRU. The command automatically performs the necessary backup and restore operations to accommodate the replacement.

Note  
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  
The following operand is required:

fru  
Specify the type of hardware component being replaced. WNN is the only supported value, specifying the replacement of the WNN card.

Examples  
To replace the World Wide Name card:

switch:admin> frureplace wnn
This is the WNN card hot swap interface.
Continuing from this point will require the whole process to be completed.
If this process is not complete due to a power cycle, or CP failover, please follow the recovery procedure in Core Switch WNN Card Removal and Replacement document.
Do you wish to continue [y/n]? y

Backing up WNN card data, please wait about 25 seconds for further instruction.

Please install the new FRU now.

If this session lost for any reason, please re-enter the frureplace command and follow the instructions to complete the operation.

Please enter the word 'continue' after the new WNN card has been installed: continue
Restoring the information to the replacement FRU now, please wait about 20 seconds to complete
Verifying the replacement FRU now...
WNN card hot swap is now complete.
FRU replacement completed successfully!

See Also  
none
fspfShow

Displays Fabric Shortest Path First (FSPF) protocol information.

Synopsis  fspfshow

Description  Use this command to display the FSPF protocol information and internal data structures of the FSPF module.

The following fields display:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>Version of FSPF protocol.</td>
</tr>
<tr>
<td>domainID</td>
<td>Domain number of local switch.</td>
</tr>
<tr>
<td>switchOnline</td>
<td>State of the local switch.</td>
</tr>
<tr>
<td>domainValid</td>
<td>TRUE if the domain of the local switch is currently confirmed.</td>
</tr>
<tr>
<td>isl_ports</td>
<td>Bit map of all the ISL. Bit positions correspond to the default areas of the ports. Bit 0 refers to default area 0, and so forth.</td>
</tr>
<tr>
<td>trunk_ports</td>
<td>Bit map of all the trunk slave ports.</td>
</tr>
<tr>
<td>f_ports</td>
<td>Bit map of all the Fx_Ports.</td>
</tr>
<tr>
<td>seg_ports</td>
<td>Bit map of all the segmented ports.</td>
</tr>
<tr>
<td>active_ports</td>
<td>Bit map of all the ONLINE ports.</td>
</tr>
<tr>
<td>minLSArrival</td>
<td>FSPF constant.</td>
</tr>
<tr>
<td>minLSInterval</td>
<td>FSPF constant.</td>
</tr>
<tr>
<td>LSoriginCount</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>startTime</td>
<td>Start time of the FSPF task from boot time, in milliseconds.</td>
</tr>
<tr>
<td>fspfQ</td>
<td>FSPF input message queue.</td>
</tr>
<tr>
<td>fabP</td>
<td>Pointer to fabric data structure.</td>
</tr>
<tr>
<td>agingTID</td>
<td>Aging timer ID.</td>
</tr>
<tr>
<td>agingTo</td>
<td>Aging time out value, in milliseconds.</td>
</tr>
<tr>
<td>IsrDlyTID</td>
<td>Link State Record delay timer ID.</td>
</tr>
<tr>
<td>IsrDelayTo</td>
<td>Link State Record delay time out value, in milliseconds.</td>
</tr>
<tr>
<td>IsrDelayCount</td>
<td>Counter of delayed Link State Records.</td>
</tr>
<tr>
<td>ddb_sem</td>
<td>FSPF semaphore ID.</td>
</tr>
<tr>
<td>event_sch</td>
<td>FSPF scheduled events bit map.</td>
</tr>
</tbody>
</table>

Operands  none
Examples

To display FSPF protocol information:

```bash
switch:admin> fspfShow

version = 2
domainID = 131
switchOnline = TRUE
domainValid = TRUE
isl_ports[0] = 0x00000000
isl_ports[1] = 0x74000000
trunk_ports[0] = 0x00000000
trunk_ports[1] = 0x02000000
f_ports[0] = 0x00400000
f_ports[1] = 0x00000000
seg_ports[0] = 0x00000000
seg_ports[1] = 0x00000000
active_ports[0] = 0x00400000
active_ports[1] = 0x76000000
minLSArrival = 3
minLSInterval = 5
LSoriginCount = 3
startTime = 50222
fspfQ = 0x1003e640
fabP = 0x1003e630
agingTID = 0x1004ca28
agingTo = 10000
lsrDlyTID = 0x100507a8
lsrDelayTo = 5000
lsrDelayCount = 1
ddb_sem = 0x1003e6e8

fabP:
 event_sch = 0x0
```

See Also  bcastShow, topologyShow, uRouteShow
fwAlarmsFilterSet

Enables or disables alarms for Fabric Watch.

Synopsis fwalarmsfilterset [mode]

Description Use this command to configure alarm filtering for Fabric Watch. By turning off the alarms, all non-environment class alarms are suppressed. By turning on the alarms, all class alarms are generated.

Notes This command requires a Fabric Watch license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

mode Specify 1 to enable the alarms, 0 to disable the alarms. If no operand is specified, the default value is 0 (alarms deactivated). This operand is optional.

Examples To enable alarms in Fabric Watch:

switch:admin> fwalarmsfilterset
FW: Alarms are already disabled

switch:admin> fwalarmsfilterset 1
FW: Alarms are already enabled

See Also fwAlarmsFilterShow
fwAlarmsFilterShow

Displays alarm filtering for Fabric Watch.

Synopsis  fwalarmsfiltershow

Description Use this command to display whether alarm filtering is enabled or disabled.

Notes This command requires a Fabric Watch license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To display the status of alarm filtering in Fabric Watch:

    switch:user> fwalarmsfiltershow
    FW: Alarms are enabled

    switch:user> fwalarmsfiltershow
    FW: Alarms are disabled

See Also  fwAlarmsFilterSet
fwClassInit

Initializes all classes under Fabric Watch.

Synopsis fwclassinit

Description Use this command to initialize all classes under Fabric Watch. The command should only be used after installing a Fabric Watch license to start licensed Fabric Watch classes. Refer to fwConfigure for a list of classes.

Notes This command requires a Fabric Watch license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To initialize all classes under Fabric Watch:

    switch:admin> fwclassinit
    fwClassInit: Fabric Watch is updating...
    fwClassInit: Fabric Watch has been updated.

See Also fwConfigReload, fwConfigure, fwShow
fwConfigReload

Reloads the Fabric Watch configuration.

Synopsis fwconfigreload

Description Use this command to reload the Fabric Watch configuration. This command should only be used after downloading a new Fabric Watch configuration file from a host.

Notes This command requires a Fabric Watch license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To reload the saved Fabric Watch configuration:

switch:admin> fwconfigreload
fwConfigReload: Fabric Watch configuration reloaded

See Also configDownload, configUpload, fwClassInit, fwConfigure, fwShow
fwConfigure

Displays and modifies the Fabric Watch configuration.

Synopsis

fwconfigure
fwconfigure --enable --port portNumber
fwconfigure --disable --port portNumber

Description

Use this command to display and modify threshold information for the Fabric Watch configuration. Switch elements monitored by Fabric Watch are divided into classes, which are further divided into areas. Each area can include multiple thresholds. In addition, the command can be used to disable or enable all thresholds associated with a given port. When executed without operands, this command runs interactively.

On switches running Fabric OS v 6.1.0 or later, use this command to enable Port Fencing. This feature allows the OS to disable a port that is operating outside the bounds of normal operation. When an erratically behaving port is fenced, the port is placed into the disabled state and is kept offline, thereby preventing the port to transmit or receive frames. Refer to the Fabric Watch Administrator’s Guide for information on how to enable Port Fencing.

The Fabric Watch classes and areas are provided in Table 12. The following restrictions apply:

1. The Port class does not support VE_Ports and VEX_Ports, except for State Changes.
2. The E_Port class has the same port limitations as the port class except under the following condition: On a Brocade 48000 with a FR4-18i blade, or on the Brocade 7500, the E_Port class monitors the following additional ports and creates monitors for each of the logical ports:
   - FCR (includes EX_Ports)
   - FCIP (includes VE_Ports, VEX_Ports)
3. SFP Class: SFPs connected to GbE ports are not monitored. For more Information, refer to the Fabric Watch Administrator’s Guide.

<table>
<thead>
<tr>
<th>Class</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Temperature Fan* Power Supply*</td>
</tr>
<tr>
<td>SFP</td>
<td>Temperature RXP TXP Current Voltage</td>
</tr>
<tr>
<td>Port</td>
<td>Link loss Sync loss Signal loss Protocol error Invalid words Invalid CRCs RX Performance TX Performance State Changes</td>
</tr>
</tbody>
</table>
### TABLE 12 fwConfigure Fabric Watch classes and areas

<table>
<thead>
<tr>
<th>Class</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric</td>
<td>E_Port downs</td>
</tr>
<tr>
<td></td>
<td>Fabric reconfigure</td>
</tr>
<tr>
<td></td>
<td>Domain ID changes</td>
</tr>
<tr>
<td></td>
<td>Segmentation changes</td>
</tr>
<tr>
<td></td>
<td>Zone changes</td>
</tr>
<tr>
<td></td>
<td>Fabric&lt;-&gt;QL</td>
</tr>
<tr>
<td></td>
<td>Fabric logins</td>
</tr>
<tr>
<td></td>
<td>SFP state changes</td>
</tr>
<tr>
<td>E_Port</td>
<td>Link loss (E-port)</td>
</tr>
<tr>
<td></td>
<td>Sync loss (E-port)</td>
</tr>
<tr>
<td></td>
<td>Signal loss (E-port)</td>
</tr>
<tr>
<td></td>
<td>Protocol error (E-port)</td>
</tr>
<tr>
<td></td>
<td>Invalid words (E-port)</td>
</tr>
<tr>
<td></td>
<td>Invalid CRCs E-port</td>
</tr>
<tr>
<td></td>
<td>RX Performance (E-port)</td>
</tr>
<tr>
<td></td>
<td>TX Performance (E-port)</td>
</tr>
<tr>
<td></td>
<td>State Changes (E/VE-port)</td>
</tr>
<tr>
<td></td>
<td>Utilization (VE-port)</td>
</tr>
<tr>
<td></td>
<td>Packet Loss (VE-port)</td>
</tr>
<tr>
<td>F/FL_Port (Optical)</td>
<td>Same as Port class</td>
</tr>
<tr>
<td>AL_PA Performance Monitor</td>
<td>Invalid CRCS</td>
</tr>
<tr>
<td>EE Performance Monitor</td>
<td>Invalid CRCS</td>
</tr>
<tr>
<td></td>
<td>RX Performance</td>
</tr>
<tr>
<td></td>
<td>TX Performance</td>
</tr>
<tr>
<td>Filter Performance Monitor</td>
<td>Customer Defined</td>
</tr>
<tr>
<td>Security</td>
<td>Telnet Violations</td>
</tr>
<tr>
<td></td>
<td>HTTP Violations</td>
</tr>
<tr>
<td></td>
<td>API Violations</td>
</tr>
<tr>
<td></td>
<td>RSNMP Violations</td>
</tr>
<tr>
<td></td>
<td>WSNMP Violations</td>
</tr>
<tr>
<td></td>
<td>SES Violations</td>
</tr>
<tr>
<td></td>
<td>MS Violations</td>
</tr>
<tr>
<td></td>
<td>Serial Violations</td>
</tr>
<tr>
<td></td>
<td>Front Panel Violations</td>
</tr>
<tr>
<td></td>
<td>SCC Violations</td>
</tr>
<tr>
<td></td>
<td>DCC Violations</td>
</tr>
<tr>
<td></td>
<td>Login Violations</td>
</tr>
<tr>
<td></td>
<td>Invalid Timestamps</td>
</tr>
<tr>
<td></td>
<td>Invalid Signatures</td>
</tr>
<tr>
<td></td>
<td>Invalid Certificates</td>
</tr>
<tr>
<td></td>
<td>SLAP Failures</td>
</tr>
<tr>
<td></td>
<td>SLAP Bad Packets</td>
</tr>
<tr>
<td></td>
<td>TS Out of Sync</td>
</tr>
<tr>
<td></td>
<td>No-FCS</td>
</tr>
<tr>
<td></td>
<td>Incompatible Security DB</td>
</tr>
<tr>
<td></td>
<td>Illegal Command</td>
</tr>
<tr>
<td>Resource</td>
<td>Flash</td>
</tr>
</tbody>
</table>
In Access Gateway mode, only the following classes are supported. F/FL_Port (Copper) class is supported only on Embedded platforms.

### TABLE 13  Access Gateway mode

<table>
<thead>
<tr>
<th>Class</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental</td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Fan*</td>
</tr>
<tr>
<td></td>
<td>Power Supply*</td>
</tr>
<tr>
<td>SFP</td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>RXP</td>
</tr>
<tr>
<td></td>
<td>TXP</td>
</tr>
<tr>
<td></td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
</tr>
<tr>
<td>Port</td>
<td>Link failure</td>
</tr>
<tr>
<td></td>
<td>Sync loss</td>
</tr>
<tr>
<td></td>
<td>Signal loss</td>
</tr>
<tr>
<td></td>
<td>Protocol error</td>
</tr>
<tr>
<td></td>
<td>Invalid words</td>
</tr>
<tr>
<td></td>
<td>Invalid CRCs</td>
</tr>
<tr>
<td></td>
<td>RX Performance</td>
</tr>
<tr>
<td></td>
<td>TX Performance</td>
</tr>
<tr>
<td></td>
<td>State Changes</td>
</tr>
<tr>
<td>Fabric</td>
<td>E_Port downs</td>
</tr>
<tr>
<td></td>
<td>Fabric reconfigure</td>
</tr>
<tr>
<td></td>
<td>Domain ID changes</td>
</tr>
<tr>
<td></td>
<td>Segmentation changes</td>
</tr>
<tr>
<td></td>
<td>Zone changes</td>
</tr>
<tr>
<td></td>
<td>Fabric&lt;-&gt;QL</td>
</tr>
<tr>
<td></td>
<td>Fabric logins</td>
</tr>
<tr>
<td></td>
<td>SFP state changes</td>
</tr>
<tr>
<td>FFL_Port (Optical)</td>
<td>Same as Port class</td>
</tr>
<tr>
<td>FFL_Port (Copper)</td>
<td>Same as Port class</td>
</tr>
<tr>
<td>Resource class</td>
<td>Flash area</td>
</tr>
<tr>
<td>EE Performance Monitor</td>
<td>Invalid CRCs</td>
</tr>
<tr>
<td></td>
<td>RX Performance</td>
</tr>
<tr>
<td></td>
<td>TX Performance</td>
</tr>
<tr>
<td>Filter Performance Monitor</td>
<td>Customer Defined</td>
</tr>
<tr>
<td>Resource</td>
<td>Flash</td>
</tr>
</tbody>
</table>

### Notes
This command requires a Fabric Watch license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Not all platforms support fans or power supplies. If you attempt to configure values for these items the following displays: *ERROR: No threshold available.*

### Operands
This command has the following optional operands:

- --enable --port portNumber
  Enables all thresholds associated with a certain port.
fwConfigure

--disable --port portNumber
Disables all thresholds associated with a certain port.

Examples
To configure thresholds in Fabric OS mode:

switch:admin> fwconfigure
  1 : Environment class
  2 : SFP class
  3 : Port class
  4 : Fabric class
  5 : E-Port class
  6 : F/FL Port (Optical) class
  7 : Alpa performance Monitor class
  8 : EE performance Monitor class
  9 : Filter performance Monitor class
 10 : Security class
 11 : Resource class
 12 : Quit
Select a class => : (1..12) [1] 1

  1 : Temperature
  2 : Fan
  3 : Power Supply
  4 : return to previous page
Select an area => : (1..4) [4] 1

Index ThresholdName Status CurVal LastEvent LastEventTime LastVal LastState
===========================================================================
 1 envTemp001   enabled 33 C  started 10:28:59 on 02/01/2000 0 C Informative
 2 envTemp002   enabled 34 C  started 10:28:59 on 02/01/2000 0 C Informative
 3 envTemp003   enabled 36 C  started 10:28:59 on 02/01/2000 0 C Informative
 4 envTemp004   enabled 35 C  started 10:28:59 on 02/01/2000 0 C Informative
 5 envTemp005   enabled 36 C  started 10:28:59 on 02/01/2000 0 C Informative

  1 : refresh
  2 : disable a threshold
  3 : enable a threshold
  4 : advanced configuration
  5 : return to previous page
Select choice => : (1..5) [5]

To disable all thresholds associated with port 1:

switch:admin> fwConfigure --disable --port 1

To configure thresholds in Access Gateway mode:

switch:admin> fwconfigure
  1 : Environment class
  2 : SFP class
  3 : Port class
  4 : F/FL Port (Optical) class
  5 : Resource class
  6 : quit
Select a class => : (1..6) [6] 1

  1 : Temperature
  2 : Fan

3 : Power Supply
4 : return to previous page
Select an area => : (1..4) [4] 1

<table>
<thead>
<tr>
<th>Index</th>
<th>ThresholdName</th>
<th>Status</th>
<th>CurVal</th>
<th>LastEvent</th>
<th>LasteventTime</th>
<th>LastVal</th>
<th>LastState</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>envTemp001</td>
<td>enabled</td>
<td>23 C</td>
<td>inBetween</td>
<td>Sat Oct 7 10:01:53</td>
<td>21 C</td>
<td>In_Range</td>
</tr>
<tr>
<td>2</td>
<td>envTemp002</td>
<td>enabled</td>
<td>24 C</td>
<td>inBetween</td>
<td>Sat Oct 7 10:01:53</td>
<td>21 C</td>
<td>In_Range</td>
</tr>
</tbody>
</table>

1 : refresh
2 : disable a threshold
3 : enable a threshold
4 : advanced configuration
5 : return to previous page
Select choice => : (1..5) [5] 5

See Also  fwClassInit, fwConfigReload, fwShow
fwFruCfg

Displays or modifies FRU state alert configuration.

Synopsis  fwfrucfg [--show]

Description Use this command to configure field-replaceable unit (FRU) states and actions. Based on these
configuration settings, Fabric Watch generates action when a FRU state changes. To configure
email alerts, use fwMailCfg.

Notes This command requires a Fabric Watch license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

The command is not applicable to platforms without FRUs.

Operands This command has the following operand:

--show Displays the current FRU configuration setting.

If no operand is specified, the configuration prompt displays.

Examples To change FRU state alert configuration:

switch:admin> fwfrucfg

The current FRU configuration:

<table>
<thead>
<tr>
<th>Alarm State</th>
<th>Alarm Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot</td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
</tr>
<tr>
<td>Fan</td>
<td></td>
</tr>
<tr>
<td>WNN</td>
<td></td>
</tr>
</tbody>
</table>

Note that the value 0 for a parameter means that
it is NOT used in the calculation

Configurable Alarm States are:
Absent-1, Inserted-2, On-4, Off-8, Faulty-16

Configurable Alarm Actions are:
Errlog-1, E-mail-16
Slot Alarm State: (0..31) [0] 3
Slot Alarm Action: (0..17) [1]
Power Supply Alarm State: (0..31) [0]
Power Supply Alarm Action: (0..17) [0]
Fan Alarm State: (0..31) [0]
Fan Alarm Action: (0..17) [0]
WNN Alarm State: (0..31) [0]
WNN Alarm Action: (0..17) [0]

Fru configuration successfully changed

See Also  fwConfigure, fwMailCfg
fwHelp

Displays Fabric Watch command information.

Synopsis   fwhelp

Description Use this command to display the commands that configure Fabric Watch.

Operands   none

Examples   To display a summary of Fabric Watch commands:

switch:user> fwhelp

fanShow  Print fan Status
fwAlarmsFilterSet  Configure alarms filtering for Fabric Watch
fwAlarmsFilterShow  Show alarms filtering for Fabric Watch
fwClassInit  Initialize all Fabric Watch classes
fwConfigure  Configure Fabric Watch
fwConfigReload  Reload Fabric Watch configuration
fwFruCfg  Configure FRU state and notification
fwMailCfg  Configure Fabric Watch Email Alert
fwPortDetailShow  Create a report with detailed port information
fwSamShow  Show availability monitor information
fwSet  Set port persistence time
fwSetToCustom  Set boundary & alarm level to custom
fwSetToDefault  Set boundary & alarm level to default
fwShow  Show thresholds monitored or port persistence time
sensorShow  Show sensor readings
switchStatusPolicySet  Set switch status policy parameters
switchStatusPolicyShow  Show switch status policy parameters
switchStatusShow  Show overall switch status
tempShow  Show switch temp readings

See Also   none
fwMailCfg

Displays and configures Fabric Watch email alerts.

Synopsis  fwMailCfg

Description Use this command to display or modify the configuration and status of the Fabric Watch email alert in the switch.

Switch elements monitored by Fabric Watch are divided into classes, and email alerts are based on the classes. Each class can configure one email address as the alert message's receiver.

For an email alert to function correctly, add the CP0 and CP1 IP addresses and hostnames to DNS and also set the domain name and name server. The ipAddrShow and dnsConfig commands can be used to set and check this information.

Notes This command requires a Fabric Watch license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To configure email settings:

    switch:admin> fwMailCfg
    1 : Show Mail Configuration Information
    2 : Disable Email Alert
    3 : Enable Email Alert
    4 : Send Test Mail
    5 : Set Recipient Mail Address for Email Alert
    6 : Relay Host IP Configuration
    7 : Quit
    Select an item => : (1..7) [7] 1

    Config Show Menu

    1 : Environment class
    2 : SFP class
    3 : Port class
    4 : Fabric class
    5 : E-Port class
    6 : F/FL Port (Optical) class
    7 : Alpa Performance Monitor class
    8 : End-to-End Performance Monitor class
    9 : Filter Performance Monitor class
    10 : Security class
    11 : Resource class
    12 : FRU Class
    13 : Quit
    Select an item => : (0..13) [11] 1

    mail configuration information

    Email Alert = disable
    Mail Recipients = NONE

    236 Fabric OS Command Reference 53-1000599-02
fwMailCfg

1 : Show Mail Configuration Information
2 : Disable Email Alert
3 : Enable Email Alert
4 : Send Test Mail
5 : Set Recipient Mail Address for Email Alert
6 : Relay Host IP Configuration
7 : Quit
Select an item => : (1..7) [7]5

Mail Config Menu
--------------------------------------
1 : Environment class
2 : SFP class
3 : Port class
4 : Fabric class
5 : E-Port class
6 : F/FL Port (Optical) class
7 : Alpa Performance Monitor class
8 : End-to-End Performance Monitor class
9 : Filter Performance Monitor class
10 : Security class
12 : FRU Class
13 : Quit
Select an item => : (0..13) [11] 1
Mail To: [NONE] JoeDoe@bogus.com

Email Alert configuration succeeded!

See Also  dnsConfig, fwConfigure, ipAddrSet, ipAddrShow
fwPortDetailShow

Displays the port information for specified user ports.

Synopsis  fwPortDetailShow [\-p portNumber] | [\-s portState]

Description  Use this command to print the overall status of a specified port. The output of this command is
different for IPv4 and IPv6 addresses. The overall status is calculated based on the following
contributors:

Port Errors:
- LFA    Number of link loss occurrences exceeded limit for time period
- LSY    Number of sync loss occurrences exceeded limit for time period
- LSI    Number of signal loss occurrences exceeded limit for time period
- PER    Number of protocol errors exceeded limit for time period
- INW    Number of invalid words exceeded limit for time period
- CRC    Number of invalid CRC errors exceeded limit for time period
- PSC    Port hardware state changed too often
- BLP    Buffer limited port

SFP Errors:
- STM    SFP temperature is out of specification
- SRX    SFP receive power is out of specification
- STX    SFP transmit power is out of specification
- SCU    SFP current is out of specification
- SVO    SFP voltage is out of specification

The overall status may be in one of the following:
- Healthy  Every contributor is healthy
- Marginal One or more contributors are in this status
- Faulty   Faulty hardware
- Offline  Port has no connectivity or is disabled

If the overall status is not healthy, the contributing factors also are listed.

Notes  This command requires a Fabric Watch license.

Port errors are not supported for virtual ports and SFP errors are not applicable for virtual ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands  This command has the following operands:
- \-p portNumber  Yields a port detail report for a specific user port.
fwPortDetailShow

--s portState

Yields a port detail report for the specified portState. Valid portState entries are:

- **h**: Report based on all healthy ports
- **m**: Report based on all marginal ports
- **f**: Report based on all faulty ports
- **o**: Report based on all offline ports

If no option is specified, all ports are displayed.

**Examples**

To retrieve a port detailed report for a switch configured with an IPv6 address:

```
switch:user> fwportdetailshow
```
```
Switch Name: switch
IP address: 1080::8:800:200C:417A
Port Exception report [by All]

--------Port-Errors------------ -----SFP-Errors----
Port# Type State Dur(H:M) LFA LSY LSI PER INW CRC PSC BLP STM SRX STX SCU SVO
--
000 U OFFLINE 080:24 - - - - - - - - - - - - -
001 E HEALTHY 073:22 - - - - - - - - - - - - -
002 L HEALTHY 080:24 - - - - - - - - - - - - -
003 U OFFLINE 080:24 - - - - - - - - - - - - -
004 U OFFLINE 002:53 - - - - - - - - - - - - -
005 U OFFLINE 080:24 - - - - - - - - - - - - -
006 U OFFLINE 080:24 - - - - - - - - - - - - -
007 U OFFLINE 080:24 - - - - - - - - - - - - -
```

To retrieve a port detailed report for a switch configured with an IPv4 address:

```
switch:user> fwportdetailshow
```
```
Switch Name: switch
IP address: 10.202.78.24
Port Exception report [by All]

--------Port-Errors------------ -----SFP-Errors----
Port# Type State Dur(H:M) LFA LSY LSI PER INW CRC PSC BLP STM SRX STX SCU SVO
--
000 U OFFLINE 080:24 - - - - - - - - - - - - -
001 E HEALTHY 073:22 - - - - - - - - - - - - -
002 L HEALTHY 080:24 - - - - - - - - - - - - -
003 U OFFLINE 080:24 - - - - - - - - - - - - -
004 U OFFLINE 002:53 - - - - - - - - - - - - -
005 U OFFLINE 080:24 - - - - - - - - - - - - -
006 U OFFLINE 080:24 - - - - - - - - - - - - -
007 U OFFLINE 080:24 - - - - - - - - - - - - -
```
To retrieve a port detailed report:

switch:user> fwportdetailshow --sh
Port Detail Report
Switch Name: switch
IP address: 192.168.163.237
Port Exception report [by Healthy]

Port# Type State Dur(H:M) LFA LSY LSI PER INW CRC BLP STM STX SCU SVO
-------------------------------------------------------------
001 F HEALTHY 409:09 - - - - - - - - - - - - - -
014 F HEALTHY 409:09 - - - - - - - - - - - - - -
015 E HEALTHY 409:09 - - - - - - - - - - - - - -

See Also switchStatusShow
fwSamShow

Generates switch availability monitor (SAM) report.

Synopsis  
fwsamshow

Description  
Use this command to display a switch availability monitor (SAM) report. This report displays uptime and downtime for each port and enables you to check if a particular port is failing more often than the others. The information displayed includes total uptime, total downtime, number of faulty occurrences, and total percent of downtime for each port.

Notes  
This command requires a Fabric Watch license.

Operands  
none

Examples  
To generate a SAM report on an eighty-port switch:

switch:user> fwsamshow

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Total Up Time (Percent)</th>
<th>Total Down Time (Percent)</th>
<th>Total Occurrence (Times)</th>
<th>Total Offline Time (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>U</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>21</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>22</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>23</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>24</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>26</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>27</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>28</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>29</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>31</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>32</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>33</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
fwSamShow

34  U  0  0  0  100
35  U  0  0  0  100
36  U  0  0  0  100
37  U  0  0  0  100
38  U  0  0  0  100
39  U  0  0  0  100
40  T  99  0  0  0
41  T  99  0  0  0
42  T  100  0  0  0
43  T  99  0  0  0
44  U  0  0  0  100
45  U  0  0  0  100
46  U  0  0  0  100
47  U  0  0  0  100
48  U  0  0  0  100
49  U  0  0  0  100
50  U  0  0  0  100
51  U  0  0  0  100
52  U  0  0  0  100
53  U  0  0  0  100
54  F  99  0  0  0
55  U  0  0  0  100
56  U  0  0  0  100
57  U  0  0  0  100
58  U  0  0  0  100
59  U  0  0  0  100
60  U  0  0  0  100
61  U  0  0  0  100
62  U  0  0  0  100
63  U  0  0  0  100
64  U  0  0  0  100
65  U  0  0  0  100
66  U  0  0  0  100
67  U  0  0  0  100
68  U  0  0  0  100
69  U  0  0  0  100
70  U  0  0  0  100
71  U  0  0  0  100
72  U  0  0  0  100
73  U  0  0  0  100
74  U  0  0  0  100
75  U  0  0  0  100
76  U  0  0  0  100
77  U  0  0  0  100
78  U  0  0  0  100
79  U  0  0  0  100

See Also  portShow, switchShow
fwSet

Sets the parameters controlled by Fabric Watch.

**Synopsis**

fwset --port --persistence seconds

**Description**

Use this command to set parameters controlled by Fabric Watch. It allows you to set the port persistence time (time in which a port must persistently be in a marginal state before being labeled as such).

**Notes**

This command requires a Fabric Watch license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

The operand is as follows:

```
--port --persistence seconds
```

Set port parameters. Currently only port persistence time can be set with this option. Port persistence time is the time period in which a port must be persistently in a state before being recognized as such.

**Examples**

To set message levels and port persistence time:

```
switch:user> fwset --port --persistence 18
```

**See Also**

fwShow
fwSetToCustom

Sets boundary and alarm levels to custom values.

Synopsis fwSetToCustom

Description Use this command to set boundary and alarm levels to custom values for all classes and areas in Fabric Watch.

Fabric Watch uses two types of settings: factory default settings and user-defined custom settings.

- Factory default settings are automatically enabled. These settings vary depending on hardware platform, and cannot be modified.
- For some settings, you can create custom threshold configurations to suit your unique environment. Refer to fwConfigure help for information on how to customize Fabric Watch settings.

The fwSetToCustom command allows you to switch from default to custom settings. The command assumes that a set of user-defined thresholds have been configured prior to executing fwSetToCustom command. If no user-defined settings exist, this command reapplies the default values.

Use the advanced configuration option provided with the fwConfigure command to view and modify custom and default values for specified classes and areas in Fabric Watch. For specific configuration procedures, refer to the Fabric Watch Administrator’s Guide.

Notes This command requires a Fabric Watch license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To set alarm levels to custom values:

switch:admin> fwSetToCustom
Committing configuration...done.

To view current temperature threshold settings: (Note that in this example, the values for custom settings are equal to the default values, which means that default values have not been modified.)

switch:admin> fwConfigure

1 : Environment class
2 : SFP class
3 : Port class
4 : Fabric class
5 : E-Port class
6 : F/FL Port (Optical) class
7 : Alpa Performance Monitor class
8 : EE Performance Monitor class
9 : Filter Performance Monitor class
10 : Security class
11 : Resource class
12 : Quit
Select a class => : (1..12) [12] 1
fwSetToCustom

1 : Temperature
2 : Fan
3 : Power Supply
4 : return to previous page
Select an area => : (1..4) [4] 1

Index ThresholdName                      Status          CurVal
LastEvent               LasteventTime         LastVal       LastState
================================================================================
1    envTemp001                     enabled         24 C
     inBetween    Thu Feb 14 01:21:36 2008         24 C     In_Range
4    envTemp004                     enabled         23 C
     inBetween    Thu Feb 14 01:21:36 2008         23 C     In_Range
5    envTemp005                     enabled         30 C
     inBetween    Thu Feb 14 01:21:36 2008         30 C     In_Range
6    envTemp006                     enabled         32 C
     inBetween    Thu Feb 14 01:21:36 2008         31 C     In_Range

1 : refresh
2 : disable a threshold
3 : enable a threshold
4 : advanced configuration
5 : return to previous page
Select choice => : (1..5) [5] 4

Index ThresholdName    BehaviorType    BehaviorInt
1    envTemp001       Triggered              1
4    envTemp004       Triggered              1
5    envTemp005       Triggered              1
6    envTemp006       Triggered              1

Threshold boundary level is set at : Custom

Default       Custom
Unit           C            C
Time base
Low            0            0
High           60           60
BufSize        10           10

Threshold alarm level is set at : Custom

Errlog-1, SnmpTrap-2, RapiTrap-8
EmailAlert-16

Valid alarm matrix is 27

Default       Custom
Changed       0            0
Below          3            3
Above          3            3
InBetween      3            3

1 : change behavior type         11 : change threshold alarm level
2 : change behavior interval     12 : change changed alarm
3 : change threshold boundary level 13 : change below alarm
4 : change custom unit           14 : change above alarm
5 : change custom time base      15 : change inBetween alarm
6 : change custom low            16 : apply threshold alarm changes
7 : change custom high           17 : cancel threshold alarm changes
fwSetToCustom

8 : change custom buffer  18 : return to previous page
9 : apply threshold boundary changes
10 : cancel threshold boundary changes
Select choice => : (1..18) [18]

See Also  fwSetToDefault, fwConfigure, fwHelp, fwShow
fwSetToDefault

Returns boundary and alarm levels to the default values.

Synopsis fwSetToDefault

Description Use this command to return boundary and alarm levels to defaults for all classes and areas in Fabric Watch.

Fabric Watch uses two types of settings: factory default settings and user-defined custom settings.

- Factory default settings are automatically enabled. These settings vary depending on hardware platform and cannot be modified.
- For some settings, you can create custom threshold configurations to suit your unique environment. Refer to fwConfigure help for information on how to customize Fabric Watch settings.

The fwSetToDefault command allows you to switch from custom to default settings. If no user-defined settings exist, this command reapplies the default values.

Use the advanced configuration option provided with the fwConfigure command to view and modify custom and default values for specified classes and areas in Fabric Watch. For specific configuration procedures, refer to the Fabric Watch Administrator's Guide.

Notes This command requires a Fabric Watch license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To return alarm levels to default values:

```
switch:admin> fwSetToDefault
Committing configuration...done.
```

To view current temperature threshold settings: (Note that in this example, the values for custom settings are equal to the default values, which means that default values have not been modified.)

```
switch:admin> fwConfigure

1 : Environment class
2 : SFP class
3 : Port class
4 : Fabric class
5 : E-Port class
6 : F/FL Port (Optical) class
7 : Alpa Performance Monitor class
8 : EE Performance Monitor class
9 : Filter Performance Monitor class
10 : Security class
11 : Resource class
12 : Quit
Select a class => : (1..12) [12] 1

1 : Temperature
2 : Fan
```
3 : Power Supply
4 : return to previous page
Select an area => : (1..4) [4] 1

Index ThresholdName                      Status   CurVal          LastEvent               LasteventTime         LastVal       LastState
================================================================================
1    envTemp001                     enabled   24 C inBetween Thu Feb 14 01:21:36 2008         24 C     In_Range
4    envTemp004                     enabled   23 C inBetween Thu Feb 14 01:21:36 2008         23 C     In_Range
5    envTemp005                     enabled   30 C inBetween Thu Feb 14 01:21:36 2008         30 C     In_Range
6    envTemp006                     enabled   32 C inBetween Thu Feb 14 01:21:36 2008         31 C     In_Range

1 : refresh
2 : disable a threshold
3 : enable a threshold
4 : advanced configuration
5 : return to previous page
Select choice => : (1..5) [5] 4

Index ThresholdName    BehaviorType    BehaviorInt
1    envTemp001       Triggered              1
4    envTemp004       Triggered              1
5    envTemp005       Triggered              1
6    envTemp006       Triggered              1

Threshold boundary level is set at : Custom

<table>
<thead>
<tr>
<th>Unit</th>
<th>Default</th>
<th>Custom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>High</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>BufSize</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Threshold alarm level is set at : Custom
Errlog-1, SnmpTrap-Z, RapiTrap-8
EmailAlert-16

Valid alarm matrix is 27

<table>
<thead>
<tr>
<th>Changed</th>
<th>Default</th>
<th>Custom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Above</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>InBetween</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1 : change behavior type
2 : change behavior interval
3 : change threshold boundary level
4 : change custom unit
5 : change custom time base
6 : change custom low
7 : change custom high
8 : change custom buffer
9 : apply threshold boundary changes
10 : change threshold boundary level
11 : change threshold alarm level
12 : change changed alarm
13 : change below alarm
14 : change above alarm
15 : change InBetween alarm
16 : apply threshold alarm changes
17 : cancel threshold alarm changes
18 : return to previous page
fwSetToDefault

10 : cancel threshold boundary changes
Select choice => : (1..18) [18]

See Also  fwSetToCustom, fwConfigure, fwHelp, fwShow
fwShow

Displays the class thresholds monitored by Fabric Watch.

Synopsis  fwshow [--port --persistence] | (--disable --port)

Description Use this command to display the thresholds monitored by Fabric Watch. This command also
displays the port persistence time and ports with all disabled thresholds.

For a description of the class thresholds supported in Fabric OS and the restrictions that apply to
some of the classes in terms of support for V/VE/VEX ports and GbE ports, refer to the help page
for fwConfigure or consult the Fabric Watch Administrator's Guide.

In Access Gateway mode, only the following class thresholds are supported. F/FL Port (Copper)
class threshold is supported only on Embedded platforms.

<table>
<thead>
<tr>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental</td>
</tr>
<tr>
<td>SFP</td>
</tr>
<tr>
<td>Port</td>
</tr>
<tr>
<td>Fabric</td>
</tr>
<tr>
<td>F/FL_Port (Optical)</td>
</tr>
<tr>
<td>F/FL_Port (Copper)</td>
</tr>
<tr>
<td>Resource</td>
</tr>
</tbody>
</table>

Notes  This command requires a Fabric Watch license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands  The operands are as follows:

--port --persistence

Displays the time (in seconds) that a port must be persistently in a state
before being marked as such.

--disable --port Displays the ports that have all associated thresholds disabled.

Examples  To display thresholds for a fan in the SFP class:

switch:user> fwshow
1 : Show class thresholds
2 : Detail threshold information
3 : Show port persistence time
4 : Quit
Select an item => : (1..4) [3] 1

1 : Environment class
2 : SFP class
3 : Port class
4 : Fabric class
5 : E-Port class
6 : F/FL Port (Optical) class
7 : Alpha Performance Monitor class
8 : End-to-End Performance Monitor class
9 : Filter Performance Monitor class
10 : Security class
11 : Resource class
12 : Quit
Select an item => : (1..12) [12] 1

1 : Temperature
2 : Fan
3 : Power Supply
4 : return to previous page
Select an area => : (1..4) [4] 2

```
===
<table>
<thead>
<tr>
<th>Name</th>
<th>Label</th>
<th>Last value</th>
</tr>
</thead>
<tbody>
<tr>
<td>envFan001</td>
<td>Env Fan 1</td>
<td>2576 RPM</td>
</tr>
<tr>
<td>envFan002</td>
<td>Env Fan 2</td>
<td>2518 RPM</td>
</tr>
<tr>
<td>envFan003</td>
<td>Env Fan 3</td>
<td>2481 RPM</td>
</tr>
</tbody>
</table>
```

switch:user> fwshow
1 : Show class thresholds
2 : Detail threshold information
3 : Show port persistence time
4 : Quit
Select an item => : (1..4) [3] 2

Enter Threshold Name : [] envFan001

```
Env Temperature 1:
Monitored for: 1283 (21 mins)
Last checked: 10:50:21 on 02/01/2000

Lower bound: 0 C
Upper bound: 75 C
Buffer Size: 10

Value history: 33 C
Disabled? No
Locked? No

Raw history: 38 C
38 C
38 C

Flags: 0x 40 TRIGGERED
Counter:
Access via: Function call
Address: 0x100155a8
Argument: 0x00000001

Previous: 0x000000026 (38)
Current: 0x000000026 (38)

Events:
Style: Triggered
Event 0 occurred 1 time, last at 16:30:17 on 12/09/2011
```
To show port persistence time:

```
switch:admin> fwshow --port --persistence
FW: current port persistence time = 18s
```

To display ports that have all thresholds disabled:

```
switch:user> fwShow --disable --port
Port Threshold Status

1 disabled
```

See Also  fwClassInit, fwConfigReload, fwConfigure, fwSet
h

Displays shell history.

Synopsis

h

history

Description

Use this command to view the shell history. The shell history mechanism is similar to the UNIX Korn shell history facility. The h command displays the 20 most recent commands typed into the shell; the oldest commands are replaced as new ones are entered.

Operands

none

Examples

To display previous shell commands:

switch:admin> h
1 version
2 switchshow
3 portdisable 2
4 portenable 2
5 switchshow

See Also

none
haDisable

Disables the High Availability feature.

Synopsis hadisable

Description Use this command to disable the High Availability (HA) feature on a switch. If the HA feature is already disabled, this command does nothing.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands none

Examples To disable the High Availability feature:

    switch:admin> hadisable
    HA is disabled

See Also haEnable
haDump

Displays High Availability status information.

Synopsis   hadump

Description Use this command to display information about the status of the High Availability (HA) feature on a switch. This command displays the following information:

- Local CP state (slot number and CP ID)
- Remote CP state (slot number and CP ID)
- Type of recovery (warm or cold)
- High Availability (enabled or disabled)
- Heartbeat (up or down)
- Health of standby CP defined as follows:
  - **Healthy**: The standby CP is running and the background health diagnostic has not detected any errors.
  - **Failed**: The standby CP is running, but the background health diagnostic has discovered a problem with the blade. The logs should be checked to determine the appropriate repair action. Failover is disabled until the standby CP is repaired. Information about the failing device in the standby CP is displayed.
  - **Unknown**: The standby CP health state is unknown due because the standby CP does not exist, heartbeat is down, or Health Monitor detects a configuration file error.
- HA synchronization status:
  - **HA State synchronized**: The system is currently fully synchronized. If a failover became necessary, it would be nondisruptive.
  - **HA State not in sync**: The system is unable to synchronize the two CPs because the standby CP is faulty, a haSyncStop command was issued, or a system error occurred. If a failover became necessary at this time, the standby CP would reboot, and the failover would be disruptive.
- IP and Fibre Channel addresses configured for the switch.
- Additional internal HA state information, subject to change.

Operands  none

Examples  To view information about the High Availability feature status:

```
switch:admin> hadump
Local CP (Slot 6, CP1): Active, Cold Recovered
Remote CP (Slot 5, CP0): Standby, Healthy
HA enabled, Heartbeat Up, HA State synchronized

SWITCH
```
haDump

Ethernet IP Address: 10.32.227.64
Ethernet Subnetmask: 255.255.240.0
Fibre Channel IP Address: 220.220.220.64
Fibre Channel Subnetmask: 255.255.240.0

CP0
Ethernet IP Address: 10.32.227.66
Ethernet Subnetmask: 255.255.240.0
Host Name: cp0
Gateway IP Address: 10.32.224.1

CP1
Ethernet IP Address: 10.32.227.67
Ethernet Subnetmask: 255.255.240.0
Host Name: cp1
Gateway IP Address: 10.32.224.1

Slot 10
eth0: 10.32.227.69/20
Gateway: 10.32.224.1

Backplane IP address of CP0: 10.0.0.5
Backplane IP address of CP1: 10.0.0.6
IPv6 Autoconfiguration Enabled: No
Local IPv6 Addresses:
  sw 0 static fec0:60:69bc:64:69ff:fee4:3a/64
  cp 0 static fec0:60:69bc:64:69ff:fee4:3a/64
  cp 1 static fec0:60:69bc:64:69ff:fee4:3a/64
FSSME registered: TRUE

[output truncated]

See Also haFailover, haShow
haEnable

Enables the High Availability feature.

Synopsis    haenable

Description Use this command to enable the High Availability (HA) feature on a switch. If the HA feature is already enabled, this command does nothing.

Note       The execution of this command is subject to Admin Domain Restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands none

Examples To enable the High Availability feature:

    switch:admin> haenable
    HA is enabled

See Also haDisable
haFailover

Forces the failover mechanism so that the standby control processor (CP) becomes the active CP.

Synopsis

hafailover

Description

Use this command to force the failover mechanism to occur so that the standby CP becomes the active CP. In case the active and standby CPs are not synchronized or the system is not in redundant mode, the command aborts.

Notes

When High Availability (HA) synchronization is enabled and the CPs are in sync, the port traffic light does not flash during the failover, even while traffic is continuing to flow.

This command is supported only on dual-CP systems.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

none

Examples

To force the failover of the active CP to the standby CP in the switch:

switch:admin> hafailover
Local CP (Slot 7, CP1): Active, Warm Recovered
Remote CP (Slot 6, CP0): Standby, Healthy
HA enabled, Heartbeat Up, HA State synchronized
Warning: This command is being run on a redundant control processor (CP) system, and this operation will cause the active CP to reset. Therefore all existing telnet sessions are required to be restarted.

Are you sure you want to fail over to the standby CP [y/n]?

See Also

haDisable, haEnable, haShow
haShow

Displays control processor (CP) status.

Synopsis  hashow

Description Use this command to display control processor status. The display includes:

- Local CP state (slot number and CP ID), warm or cold, recovering or recovered
- Remote CP state (slot number and CP ID)
- High Availability (enabled or disabled)
- Heartbeat (up or down)
- Health of standby CP defined as follows:
  - Healthy: The standby CP is running and the background health diagnostic has not detected any errors.
  - Failed: The standby CP is running, but the background health diagnostic has discovered a problem with the blade. The logs should be checked to determine the appropriate repair action. Failover is disabled until the standby CP is repaired. Information about the failing device in the standby CP is displayed.
  - Unknown: The standby CP health state is unknown because the standby CP does not exist, heartbeat is down, or Health Monitor detects a configuration file error.
- HA synchronization status:
  - “HA State synchronized”:
    - The system is currently fully synchronized. If a failover became necessary, it would be nondisruptive
  - HA State “not in sync”:
    - The system is unable to synchronize the two CPs. This may be caused by one or more of the following conditions:
      - A haFailover was issued. In this case the “HA State ‘not in sync’” state is transitory.
      - The standby CP is faulty.
      - A haSyncStop command was issued.
      - A system error occurred.
    If a failover becomes necessary while the CPs are not in sync, the standby CP reboots, and the failover is disruptive.

Note This command may not be supported on non-bladed systems.

Operands none

Examples To display CP status, first on a healthy standby CP and then on a faulty standby CP:

switch:admin> hashow
Local CP (Slot 6, CP1): Active, Cold Recovered
Remote CP (Slot 5, CP0): Non-Redundant
haShow

switch:admin> hashow
Local CP (Slot 6, CP1): Active, Warm Recovered
Remote CP (Slot 5, CP0): Standby, Failed
          Backplane PCI fail, severity: CRITICAL
          HA enabled, Heartbeat Up, HA State not in sync

See Also  haDisable, haEnable, haFailover
**haSyncStart**

Enables High Availability state synchronization.

**Synopsis**

`hasyncstart`

**Description**

Use this command to enable the High Availability (HA) state synchronization.

**Note**

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

**Examples**

To enable the HA state synchronization:

```
switch:admin> hasyncstart
HA State synchronization has started
```

**See Also**

`haFailover`, `haShow`, `haSyncStop`
haSyncStop

Disables High Availability state synchronization.

Synopsis    hasyncstop

Description Use this command to temporarily disable High Availability (HA) synchronization.

Notes       Disabling HA synchronization may cause failover to be disruptive.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands    none

Examples    To disable the HA state synchronizing process:

            switch:admin> hasyncstop

See Also    haFailover, haShow, haSyncStart
help

Displays help information for commands.

Synopsis  help [command]

Description  Use this command without an operand to display an alphabetical list of commands for which help is available. At the end of the list are some additional commands which display more lists of grouped commands for a particular subsystem; for example, diagHelp displays a list of diagnostic commands.

The list displays only commands that are available to the current user; command availability may vary depending on:

- Login user role
- License key
- Hardware platform

To access help information for a specific command, enter the command name as an operand.

Operands  This command has the following operand:

command  Specify the command name, with or without quotation marks. This operand is optional.

Examples  To display help information for the help command:

switch:admin> help help

See Also  diagHelp, fwHelp, licenseHelp, perfHelp, routeHelp, zoneHelp
historyLastShow

Displays the latest entry in the field replaceable unit (FRU) history log.

Synopsis  historyLastShow

Description Use this command to display the latest entry of the history log, which records insertion and removal events for field-replaceable units (FRUs), such as blades, power supplies, fans, and World Wide Name (WWN) cards. The type of FRU supported depends on the hardware platform.

Each history record contains three lines of information. The first line of each record contains the following:

Object type  On standalone platforms: FAN, POWER SUPPLY, WWN (WWN card), or UNKNOWN.
On enterprise-class platforms: CHASSIS, FAN, POWER SUPPLY, SW BLADE (port blade), CP BLADE (control processor), WWN (WWN card), or UNKNOWN.

Object number Slot number for blades. Unit number for all other object types.

Event type  Inserted, Removed, or Invalid

Time of the event  Format: Day Month dd hh:mm:ss yyyy

The second and third lines of a record contain the factory part number and factory serial number, if applicable:

Factory Part Number  xx-yyyyyyy-zz or Not available

Factory Serial Number  xxxxxxxxxxxx or Not available

The size of the history log depends on the HW platform. The Brocade 48000 director supports 100 history log entries. The Brocade DCX supports a maximum log size of 50 entries. Since the WWNs are completely separate FRUs in the DCX, they have redundant data in these units. All other platforms that contain FRUs support 28 history log entries.

Operands  none

Examples  To display the late FRU insertion or removal event:

switch:admin> historyLastShow

POWER SUPPLY  Unit 2    Inserted at Tue Aug 14 15:52:10 2001
Factory Part Number:    60-0001536-02
Factory Serial Number:  1013456800

Records:  11

See Also  historyShow
historyMode

Displays or sets the mode of the field replaceable unit (FRU) history log.

Synopsis  historymode [ rot | fi ]

Description Use this command to display or set the mode of the history buffer, which records the insertion and removal of FRUs on a switch or chassis.

This command supports two modes of handling new log entries once the history buffer has reached its maximum size:

Rotating mode Any new entry exceeding the maximum buffer size overwrites the oldest entry in the log.

First-in mode Any new entry exceeding the maximum buffer size is discarded. The original entries in the buffer is preserved.

The size of the history buffer depends on the HW platform: The Brocade 48000 Director supports 100 history log entries. The Brocade DCX backbone supports a maximum log size of 50 entries. Since the WWNs are completely separate FRUs in the DCX, they have redundant data in these units. All other platforms containing FRUs support 28 history log entries.

Operands When invoked without operands the command displays the mode of the history log.

Setting the mode of the history log requires root permission. The following operands are supported when the command is executed as root:

rot Set history log to rotating mode.

fi Set history log to first-in mode.

When setting the history mode, you are prompted to clear the log.

Examples To display the mode of the history log:

switch:admin> historymode

History Mode is: Rotating.

See Also historyLastShow, historyShow
historyShow

Displays the entire field replaceable unit (FRU) history log.

Synopsis  

historyshow

Description  

Use this command to display the entire history log, which records insertion and removal events for field-replaceable units (FRUs), such as blades, power supplies, fans, and World Wide Name (WWN) cards. The type of FRU supported depends on the hardware platform.

Each history record contains three lines of information. The first line of each record contains the following:

Object type  

On standalone platforms: FAN, POWER SUPPLY, WWN (WWN card), or UNKNOWN.  

On enterprise-class platforms: CHASSIS, FAN, POWER SUPPLY, SW BLADE (port blade), CP BLADE (control processor), WWN (WWN card), or UNKNOWN.

Object number  

Slot number for blades. Unit number for all other object types.

Event type  

Inserted, Removed, or Invalid

Time of the event  

Format: Day Month dd hh:mm:ss yyyy

The second and third lines of a record contain the factory part number and factory serial number, if applicable:

Factory Part Number  

xx-yyyyyyy-zz or Not available

Factory Serial Number  

xxxxxxxxxxxx or Not available

The size of the history buffer depends on the HW platform. The Brocade 48000 director supports 100 history log entries. The Brocade DCX supports a maximum log size of 50 entries. Since the WWNs are completely separate FRUs in the DCX, they have redundant data in these units. All other platforms that contain FRUs support 28 history log entries.

Operands  

none

Examples  

To display the history log of FRUs and removal events on a standalone switch:

```
switch:admin> historyshow

FAN Unit 3 Removed at Tue Aug 14 10:05:37 1970
Factory Part Number: 20-123456-12
Factory Serial Number: 1013456800

POWER SUPPLY Unit 1 Inserted at Tue Aug 14 10:52:10 1970
Factory Part Number: 60-0001536-02
Factory Serial Number: Not Available

FAN Unit 3 Inserted at Tue Aug 14 10:23:45 2001
Factory Part Number: 20-123456-12
Factory Serial Number: 1013456800

WWN Unit 1 Inserted at Tue Aug 14 11:03:45 2001
Factory Part Number: 40-0000031-03
Factory Serial Number: 1013456800
```
SW BLADE Slot 3  Removed at Tue Aug 14 12:10:09 2001
Factory Part Number: 60-0001532-03
Factory Serial Number: 1013456800

CP BLADE Slot 6  Removed at Tue Aug 14 13:45:07 2001
Factory Part Number: 60-0001604-02
Factory Serial Number: FP00X600128

SW BLADE Slot 3  Inserted at Tue Aug 14 13:53:40 2001
Factory Part Number: 60-0001532-03
Factory Serial Number: 1013456800

CP BLADE Slot 6  Inserted at Tue Aug 14 13:59:50 2001
Factory Part Number: 60-0001604-02
Factory Serial Number: FP00X600128

POWER SUPPLY Unit 2  Inserted at Tue Aug 14 15:52:10 2001
Factory Part Number: 60-0001536-02
Factory Serial Number: 1013456800

Records: 11

See Also historyLastShow
httpCfgShow

Displays the Java plug-in version.

Synopsis httpCfgShow

Description Use this command to display the version of the Java plug-in supported by Web Tools. This command also displays the URL from which the plug-in can be downloaded.

Operands none

Examples To display the Java plug-in version:

switch:admin> httpCfgShow
Current HTTP configuration
 javaplugin.version = 1,5,0,6
 javaplugin.homeURL = http://java.sun.com/update

See Also httpCfgSet
Displays a process summary.

**Synopsis**

```
i [processID]
```

**Description**

Use this command to display information about a specified process or about all processes running on the local switch. One line is displayed per process. Fields displayed with this command include those shown in Table 15.

**TABLE 15 Command field description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Process flags:</td>
</tr>
<tr>
<td>ALIGNWARN</td>
<td>001   print alignment warning messages</td>
</tr>
<tr>
<td>STARTING</td>
<td>002   being created</td>
</tr>
<tr>
<td>EXITING</td>
<td>004   getting shut down</td>
</tr>
<tr>
<td>PTRACED</td>
<td>010   set if ptrace (0) has been called</td>
</tr>
<tr>
<td>TRACESYS</td>
<td>020   tracing system calls</td>
</tr>
<tr>
<td>FORKNOEXEC</td>
<td>040  forked but did not exec</td>
</tr>
<tr>
<td>SUPERPRIV</td>
<td>100   used super-user privileges</td>
</tr>
<tr>
<td>DUMPCORE</td>
<td>200   dumped core</td>
</tr>
<tr>
<td>SIGNALED</td>
<td>400   killed by a signal</td>
</tr>
<tr>
<td>S</td>
<td>Process state codes:</td>
</tr>
<tr>
<td>D</td>
<td>uninterruptible sleep (usually IO)</td>
</tr>
<tr>
<td>R</td>
<td>runnable (on run queue)</td>
</tr>
<tr>
<td>S</td>
<td>sleeping</td>
</tr>
<tr>
<td>T</td>
<td>traced or stopped</td>
</tr>
<tr>
<td>Z</td>
<td>a defunct (&quot;zombie&quot;) process</td>
</tr>
<tr>
<td>UID</td>
<td>The effective user ID number of the process</td>
</tr>
<tr>
<td>PID</td>
<td>The process ID of the process</td>
</tr>
<tr>
<td>PPID</td>
<td>The process ID of the parent process</td>
</tr>
<tr>
<td>C</td>
<td>Processor utilization for scheduling</td>
</tr>
<tr>
<td>PRI</td>
<td>Priority number of the process; higher numbers mean lower priority</td>
</tr>
<tr>
<td>Ni</td>
<td>Nice value used in priority computation</td>
</tr>
<tr>
<td>ADDR</td>
<td>Memory address of the process</td>
</tr>
<tr>
<td>Sz</td>
<td>The total size of the process in virtual memory, in pages</td>
</tr>
<tr>
<td>WCHAN</td>
<td>The address of an event for which a process is sleeping (if blank, process is running)</td>
</tr>
<tr>
<td>TTY</td>
<td>The controlling terminal of the process (? displayed for no controlling terminal)</td>
</tr>
<tr>
<td>TIME</td>
<td>The cumulative execution time for the process</td>
</tr>
<tr>
<td>CMD</td>
<td>The command name of the process</td>
</tr>
</tbody>
</table>

**Note**

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.
Operands

This command has the following operand:

processID

Specifies the process name or process ID for the process to display.

Examples

To display information about process ID 433:

```bash
switch:admin> i 433
```

```
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
000 S 0 433 1 0 69 0 - 1283 5c64 ? 00:00:02 fabricd
```

See Also
diagHelp, routeHelp
iclCfg

Enables or disables Inter-chassis links (ICL).

Synopsis  

iclcfg --enable slot/icl_group  
iclcfg --disable slot/icl_group  
iclcfg --help

Description Use this command to enable or disable an inter-chassis link (ICL) on a Brocade DCX. The command enables or disables the ICL by enabling or disabling the ports associated with the link. This command is supported only on the Brocade DCX backbone.

Notes The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command must be executed on the active CP.

Operands The following operands are required:

slot Specifies the slot number of the ICL group to be enabled or disabled, followed by a slash (/). The slot on the DCX can be either 5 or 8.

icl_group Specifies the ICL port group to be disabled or enabled. An ICL group represents a range of ports. Specify 0 to enable or disable ports 0-15. Specify 1 to enable or disable ports 16-31.

--enable Enables the ICL for the specified port group.

--disable Disables the ICL for the specified port group.

--help Displays command usage.

Examples To disable the ICL for ports 16-31:

    switch:user> iclcfg --disable 8/1

To enable the ICL for ports 16-31:

    switch:user> iclcfg --enable 8/1
ifModeSet

Sets the link operating mode for a network interface.

Synopsis ifmodeset [*"interface"]

Description Use this command to set the link operating mode for a network interface.

An operating mode is confirmed with a y or yes at the prompt. If the operating mode selected differs from the current mode, the change is saved and the command exits.

Changing the link mode is not supported for all network interfaces or for all Ethernet network interfaces. This command is only functional for the eth0 interface.

When selecting auto-negotiation, you can choose the specific link operating modes that are advertised to the link partner. At least one common link operating mode must be advertised by both sides of the link.

When forcing the link operating mode, both sides of the link must be forced to the exact same mode. The link does not work reliably if one side is set to auto-negotiate and the other side is set to forced mode.

Exercise care when using this command. Forcing the link to an operating mode not supported by the network equipment to which it is attached might result in an inability to communicate with the system through its Ethernet interface. It is recommended that this command be used only from the serial console port. When used through an interface other than the serial console port, the command displays a warning message and prompts you for verification before continuing. This warning is not displayed and you are not prompted when the command is used through the serial console port.

For dual-CP systems, the ifModeSet command affects the CP that you are currently logged in to. To set the link operating mode on the active CP, you must issue this command on the active CP; to set the link operating mode on the standby CP, you must issue this command on the standby CP. During failover, the link operating mode is retained separately for each CP, because the physical links might be set to operate in different modes.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

"interface" Specify the name of the interface. You can specify the name with quotation marks, but using them is not required. For example, you can use either eth0 or "eth0", where eth is the network interface and 0 is the physical unit.

Examples To advertise all modes of operation, when not entering this command through the serial console port, follow this scenario for the ifModeSet command:

switch:admin> ifmodeset eth0
Exercise care when using this command. Forcing the link to an operating mode not supported by the network equipment to which it is attached may result in an inability to communicate with the system through its ethernet interface.

It is recommended that you only use this command from the serial console port.
Are you sure you really want to do this? (yes, y, no, n): [no] y
Proceed with caution.
Auto-negotiate (yes, y, no, n): [no] y
Advertise 100 Mbps / Full Duplex (yes, y, no, n): [yes] y
Advertise 100 Mbps / Half Duplex (yes, y, no, n): [yes] y
Advertise 10 Mbps / Full Duplex (yes, y, no, n): [yes] y
Advertise 10 Mbps / Half Duplex (yes, y, no, n): [yes] y
Committing configuration...done.

To force the link for the eth0 interface from auto-negotiation to 10 Mbps half-duplex operation, when entering this command through the serial console port:

switch:admin> ifmodeset eth0
Auto-negotiate (yes, y, no, n): [yes] n
Force 100 Mbps / Full Duplex (yes, y, no, n): [no] n
Force 100 Mbps / Half Duplex (yes, y, no, n): [no] n
Force 10 Mbps / Full Duplex (yes, y, no, n): [no] n
Force 10 Mbps / Half Duplex (yes, y, no, n): [no] y
Committing configuration...done.

See Also ifModeShow
ifModeShow

Displays the link operating mode and MAC address for a network interface.

Synopsis

ifmodeshow interface

Description

Use this command to display the link operating mode and MAC address for a network interface.

Operands

This command has the following operand:

interface Specify the name of the interface. You may specify the name with quotation marks, but using them is not required. For example, you can use either "eth0" or eth0, where eth is the network interface and 0 is the physical unit.

Examples

To display the link operating mode for the "eth0" Ethernet interface:

    switch:admin> ifmodeshow eth0
    Link mode: negotiated 100baseTx-HD, link ok
    MAC Address: 00:60:69:D0:24:40

See Also

ifModeSet
interfaceShow

Displays FSPF interface information.

Synopsis

```
interfaceShow [slotnumber][portnumber]
```

Description

Use this command to display the two data structures associated with FSPF interfaces (E_Ports) on the switch:

- The permanently allocated Interface Descriptor Block (IDB).
- The neighbor data structure. This data structure is allocated when a switch port becomes an E_Port. The neighbor data structure contains all the information relating to the switch that is connected to an adjacent switch.

This command displays the content of both data structures, if they have been allocated.

The following fields are displayed:

- `idbP` Pointer to IDB.
- `nghbP` Pointer to neighbor data structure.
- `ifNo` Interface number.
- `masterPort` Port number of the trunk master port, if present, of the trunk group of which this port is a part.
- `defaultCost` Default cost of sending a frame over the ISL connection to this interface.
- `cost` Cost of sending a frame over the ISL connected to this interface. A value of 1000 indicates a 1-Gbps link. A value of 500 indicates a 2-Gbps link. For links with a bandwidth greater than 2 Gbps, the cost is 500. For links with less than 1 Gbps, the cost is 2000. Refer to `linkCost` for more information.
- `delay` Conventional delay incurred by a frame transmitted on this ISL. A fixed value required by the FSPF protocol.
- `lastScn` Type of the last State Change Notification received on this interface.
- `lastScnTime` Time the last State Change Notification was received on this interface.
- `upCount` Number of times this interface came up, with respect to FSPF.
- `lastUpTime` Last time this interface came up.
- `downCount` Number of times this interface went down.
- `lastDownTime` Last time this interface went down.
- `downReason` Type of last State Change Notification that caused this interface to go down.
- `iState` Current state of this interface. The state can be UP or DOWN. An interface in DOWN state does not have an allocated neighbor data structure and cannot be used to route traffic to other switches.
- `state` Current state of this interface. This E_Port is used to route traffic to other switches only if the state is NB_ST_FULL.
- `nghbCap` Neighbor capabilities. Should be 0.
- `nghbid` Domain ID of the neighbor (adjacent) switch.
- `idbNo` IDB number. Should be equal to `port_number`. 
remPort  Port number on the remote switch connected to this port.
flags    Internal FSPF flags.
initCount Number of times this neighbor was initialized without the interface going
down.
lastInit Time of the last initializing state, NB_ST_INIT, on this interface.
firstHlo Time of the first hello sent on this interface.
nbstFull Time of the last finishing state, NB_ST_FULL, on this interface.
&dbRetransList Pointer to the database retransmission list.
&lsrRetransList Pointer to the Link State Records (LSR) retransmission list.
&lsrAckList Pointer to the Link State Acknowledgements (LSA) retransmission list.
inactTID Inactivity timer ID.
helloTID Hello timer ID.
dbRtxTID Database retransmission timer ID.
lsrRtxTID LSR retransmission timer ID.
inactTo Inactivity timeout value, in milliseconds. When this timeout expires, the
adjacency with the neighbor switch is broken and new paths are computed to
all possible destination switches in the fabric.
helloTo Hello timeout value, in milliseconds. When this timeout expires, a Hello frame
is sent to the neighbor switch through this port.
rXmitTo Retransmission timeout value, in milliseconds. It is used to transmit topology
information to the neighbor switch. If no acknowledgement is received within
this value, the frame is retransmitted.
nCmdAcc Total number of commands accepted from the neighbor switch. Number
includes Hellos, Link State Updates (LSUs), and LSAs.
nInvCmd Number of invalid commands received from the neighbor switch. Usually
commands with an FSPF version number higher than the one running on the
local switch.
nHloIn Number of Hello frames received from the neighbor switch.
nInvHlo Number of invalid Hello frames (Hello frames with invalid parameters)
received from the neighbor switch.
nLsuIn Number of LSUs received from the neighbor switch.
nLsaln Number of LSAs received from the neighbor switch.
attHloOut Number of attempted transmissions of Hello frames to the neighbor switch.
nHloOut Number of Hello frames transmitted to the neighbor switch.
attLsuOut Number of attempted transmissions of LSUs to the neighbor switch.
nLsuOut Number of LSUs transmitted to the neighbor switch.
interfaceShow 2

**Operands**

This command has the following operands:

*slotnumber*  
For bladed systems only, specify the slot number of the port to display, followed by a slash (/).

*portnumber*  
Specify the port number to display, relative to its slot for bladed systems. Use `switchShow` to list valid ports. This operand is optional; if omitted, the interface information for all ports is displayed.

When no slot number and port number are specified, this command displays the interface information for all ports on the switch (including non-E_Ports).

**Examples**

To display FSPF interface information:

```plaintext
switch:user> interfaceShow 1/4

idbP = 0x1008b3d0

Interface 4 data structure:

nghbP = 0x1008c668
ifNo = 4
masterPort = 4 (self)
defaultCost = 500
cost = 500
delay = 1
lastScn = 16
lastScnTime = Apr 02 20:01:44.458
upCount = 2
lastUpTime = Apr 02 20:01:44.458
downCount = 1
lastDownTime = Apr 02 20:01:09.050
downReason = 2
iState = UP

Neighbor 4 data structure:

state = NB_ST_FULL
lastTransition = Apr 02 20:01:44.512
nghbCap = 0x0
nghbId = 100
idbNo = 4
remPort = 52
nflags = 0xf
initCount = 1
lastInit = Apr 02 20:01:44.460
firstHlo = Apr 02 20:01:44.473
nbstFull = Apr 02 20:01:44.512
delay = 1
lastScn = 16
&dbRetransList = 0x1008c6a0
&lsrRetransList = 0x1008c6c4
&lsrAckList = 0x1008c6e8
inactTID = 0x1008c768
helloTID = 0x1008c7a0
dbRtxTID = 0x1008c7d8
```
interfaceShow

lsrRtxTID = 0x1008c848
inactTo = 80000
helloTo = 2000
rXmitTo = 5000
nCmdAcc = 7
nInvCmd = 0
nHloIn = 2
nInvHlo = 0
nLsuIn = 2
nLsaIn = 3
attHloOut = 2
nHloOut = 2
attLsuOut = 3
nLsuOut = 3
attLsaOut = 2
nLsaOut = 2

See Also  nbrStateShow, portShow, switchShow
interopMode

Enables or disables Brocade switch interoperability with McDATA switches.

Synopsis

interopmode [mode [-z McDataDefaultZone] [-s McDataSafeZone]]

Description

Use this command to enable or disable Brocade switch interoperability with McDATA switches within a Brocade fabric.

Fabric OS v6.0.0 introduces a new M-EOS-compatible McDATA Open Fabric Mode (interopMode 3) on all platforms that support McDATA Fabric Mode (interopmode 2). Open Fabric Mode is intended specifically for adding FOS-based products into M-EOS fabrics that are already using McDATA Open Fabric Mode. Fabrics comprised of only FOS switches in McDATA Open Fabric Mode are not supported, and cannot be zoned. All zoning of a mixed M-EOS and FOS fabric operating in McDATA Open Fabric Mode is performed through the M-EOS switches.

Notes

Interop Mode 1 (former "open" mode) is not supported in Fabric OS v6.0.0 or later.

The interopMode command must be executed on all Brocade switches in the fabric. The following restrictions apply when changing Fabric modes:

- Switches must be disabled (offline) and automatically reboot after executing the command for Fabric mode changes to take effect.
- Not all services are available in interop mode. Refer to the Fabric OS Administrator's Guide for details.
- Zone commands in McDATA Open Fabric Mode (3) are disabled except display commands and two set commands, cfgDisable and cfgClear, which can only be called when the switch is offline.

When changing From Brocade Native to McDATA Fabric or McDATA Open Fabric Mode:

- McDATA Fabric mode only supports a user domain ID range of 1-31, which is added to the domain offset to get the PID domain range. The domain range for McDATA Open Fabric mode is 97 to 127. The existing preferred configuration must be changed to a value within this range before the conversion is allowed. If your domain is out of range, the system makes a best estimate of what the domain should be. For example, if your domain is 0x92, going to McDATA Fabric mode (2) will end up at domain 2 (mask out upper bits). Or, when changing to McDATA Open Fabric Mode (3), your domain will end up at 0x62 (98 decimal) – mask out upper bits and add domain offset of 0x60.
- All existing zone configurations, defined and effective, will be erased. The switch assumes the zone configuration from the fabric it joins or a new configuration must be configured.

When changing from McDATA Fabric or McDATA Open Fabric Mode to Brocade Native Mode:

- All existing zone configurations, defined and effective, will be erased. The switch assumes the zone configuration from the fabric it joins or a new configuration must be configured.

When changing between McDATA Fabric mode and McDATA Open Fabric mode:

- The system reboots and the configuration is lost.
- Default zoning should be off, but there is no check that it is turned off. The configuration is reset. If you have a defined or effective configuration and default zoning is on, when you disable the switch and change to McDATA Open Fabric mode, you are informed that all configurations will be lost and that the system will reboot. Responding “yes” puts the system in McDATA Open Fabric mode with default zoning and safe zoning turned off.
In v6.0.0, when McDATA Fabric interoperability mode is turned on, the OUI portion of the switch WWN is no longer replaced with a McDATA OUI. The Brocade OUI is used. However, upgrading from Fabric OS 5.2.1_NI to Fabric OS v6.0.0 will be non-disruptive, preserving the McDATA OUI and the given interopMode. Unless the switch is taken offline, and the interopMode is changed, or the OUI is changed with the configure command, the McDATA OUI is preserved.

When interoperability mode is disabled, all configuration parameters return to their default states and can be modified using the configure command.

For information on supported hardware platforms and procedures regarding OS v5.2.1_NI to v6.0.0 migration, refer to the Fabric OS Administrator's Guide.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

When invoked without operands, the command displays the current mode and usage. The following operands are optional:

mode Specify "0" to disable interoperability mode.
      Specify "2" to enable McDATA Fabric mode.
      Specify "3" to enable McDATA Open Fabric mode

Use the following operands to set McDATA zoning features. These features are available only in McDATA Fabric Mode (interopMode 2): McDATA Default Zone and McDATA Safe Zone are fabric-wide features. If one of these features is enabled on one switch, it has to be enabled on all other switches. Otherwise the E_Port is segmented.

Enabling or disabling the McDATA Zoning does not require a reboot.

-z Default Zone
      Specify "1" to enable the McDATA default zone feature.
      Specify "0" to disable the McDATA default zone feature.

-s Safe Zone
      Specify "1" to enable the McDATA Safe Zone feature.
      Specify "0" to disable the McDATA Safe Zone feature.

Examples

To display the current interop mode and command usage:

switch:admin> interopmode
InteropMode: McDATA Fabric
      Default Zone: Off
      Safe Zone: On

usage: InteropMode [0|2|3 [-z McDataDefaultZone] [-s McDataSafeZone]]
      0: to turn interopMode off
      2: to turn McDATA Fabric mode on
      Valid McDataDefaultZone: 0 (disabled), 1 (enabled)
      Valid McDataSafeZone: 0 (disabled), 1 (enabled)
      3: to turn McDATA Open Fabric mode on
To turn Safe Zone on while in interopmode 2:

```
switch:admin> interopMode 2 -s 1
InteropMode: McDATA Fabric
 Default Zone: Off
 Safe Zone: On
```

To disable interoperability mode on a disabled switch:

```
switch:admin> interopmode 0
Interop mode is disabled
The switch effective configuration will be lost.
The system will reboot to allow the change to take effect.
Do you want to continue? (yes, y, no, n): [no] y
```

To enable McDATA Open Fabric mode on a disabled switch:

```
switch:admin> interopmode 3
McDATA Open Fabric mode is enabled
The switch effective configuration will be lost.
The system will reboot to allow the change to take effect.
Do you want to continue? (yes, y, no, n): [no]y
The configuration is being saved - a system reboot will
cause the change to take effect.
Please disable switch before changing the interop mode.
```

See Also  cfgMcdtMode, cfgSaveActiveToDefined
iodDelayReset

Resets the user-defined IOD delay settings to default values.

Synopsis

ioddelayreset domain_id

Description

Use this command to reset the user-defined IOD delay settings to default values (-1). This command resets IOD delay values for a specified domainID that was previously configured with the iodDelaySet command. When IOD delay is not configured or reset, the system uses its own internal algorithm to calculate the IOD delay.

The switch must be disabled before IOD delay can be set.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

none

Examples

To reset IOD delay to default values for domain 10:

switch:admin> ioddelayreset 10

See Also

iodSet, iodReset, iodShow, iodDelaySet, iodDelayShow
iodDelaySet

Sets the delay for the in-order delivery (IOD).

Synopsis  

ioddelayset domain_id iod_delay

Description  

Use this command to configure the IOD delay time on a switch for a specified domain. This operation reduces the frame drops during the rebalance time frame that may occur when dynamic load sharing (DLS) is set.

IOD must be enabled on the switch before you can set the IOD delay value. Enabling IOD ensures that frames are always delivered in-order, even after fabric topology changes. Setting the IOD delay to a specified value ensures that the delay in the establishment of a new path after a topology change does not exceed the specified value.

The switch must be disabled before IOD delay can be set.

Note  

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  

The following operands are required:

iod_delay  

Specifies the IOD delay in milliseconds. The valid range for this value is 10 - 500 ms. The default value is -1.

domain_id  

Specifies the domain ID to which the IOD delay applies. Valid domains should be in the range of 1 - 239.

Examples  

To set the IOD delay in domain 5 to 10 ms:

switch:admin> iodelayset 10 5

switch:admin> iodelayshow 5
Domain - Iod Delay (ms)
 5  -  10

See Also  

iodSet, iodReset, iodShow, iodDelayReset, iodDelayShow
iodDelayShow

Displays the user-defined IOD delay settings for specified domains.

Synopsis  ioddelayshow [ domain_id ]

Description Use this command to display the user-defined IOD delay settings for all domains in the fabric or for a specified domain ID. This command only displays delay values for domain IDs, for which the IOD delay parameter has been previously set with the iodDelaySet command. The command does not display defaults values.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands The following operand is optional:

domain_id Specifies the domain ID for which to display the IOD delay setting. If this operand is omitted, the command displays the IOD delay settings for all domains in the fabric.

Examples To Display the IOD delay setting for domain 5:

switch:user> ioddelayshow 5
domain - Iod Delay
 5   -    20

To display IOD settings for all domains in the fabric:

switch:user> ioddelayshow 5
domain - Iod Delay (ms)
 1   -    2
 5   -    20
10   -    20
20   -    30
21   -    23

See Also iodSet, iodReset, iodShow, iodDelaySet, iodDelayShow
iodReset

Disables the in-order delivery (IOD) option.

Synopsis

iodreset

Description

Use this command to disable in-order delivery enforcement on the local switch. IOD is disabled by
default, and can only be disabled after it has been enabled with the iodSet command.

Disabling IOD allows faster re-routing after a fabric topology change, but it may cause out-of-order
delivery of frames during fabric topology changes. As an alternative to disabling IOD, you may
consider minimizing the delay associated with IOD. Use the iodDelaySet command to configure IOD
delay values.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

none

Examples

To turn off the IOD option:

switch:admin> iodreset
switch:admin> iodshow

IOD is not set

See Also

iodSet, iodShow, iodDelaySet, iodDelayReset, iodDelayShow
iodSet

Enables the in-order delivery (IOD) option.

Synopsis iodset

Description Use this command to enforce in-order delivery of frames during a fabric topology change.

In a stable fabric, frames are always delivered in order, even when the traffic between switches is shared among multiple paths. However, when topology changes occur in the fabric (for instance, a link goes down), traffic is rerouted around the failure and some frames might be delivered out of order. This command ensures that frames are not delivered out-of-order, even during fabric topology changes.

IOD is turned off by default.

Notes This command should be used with caution, because it can cause a delay in the establishment of a new path when a topology change occurs. This command should be used only if there are devices connected to the fabric that do not tolerate occasional out-of-order delivery of frames. Use iodDelaySet to control the delay by setting it to a determined value (in ms).

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To turn on the IOD option:

switch:admin> iodset
switch:admin> iodshow

IOD is set

See Also iodReset, iodShow, iodDelaySet, iodDelayReset, iodDelayShow
iodShow

Displays the state of the in-order delivery (IOD) option setting.

Synopsis  iodshow

Description Use this command to display whether the IOD option is enabled or disabled. The default setting for IOD is disabled.

Operands none

Examples To display the current setting of the IOD option:

switch:admin> iodshow

IOD is not set

See Also iodReset, iodSet, iodDelaySet, iodDelayReset, iodDelayShow
ipAddrSet

Sets the IP address details for a switch, a control processor (CP), an intelligent blade processor (BP), or a standalone application processor (AP).

**Synopsis**

```
ipAddrSet [-cp number | -sw number]
ipAddrSet [-ipv6] [-add x:x:x:x:x:x:x/n | --delete]
ipAddrSet [-cp number | -sw number] [-ipv6] [-add x:x:x:x:x:x:x/n | --delete]
ipAddrSet [-slot number] [-eth0 | -eth1] [-add x.x.x.x | --delete]
ipAddrSet [-slot number] -gate [-add x.x.x.x | --delete]
```

**Description**

Use this command to set the IP addresses on a switch, a CP, a BP, or a standalone AP. The command supports an interactive mode, which supports only IPv4 addresses, and an alternate interface for managing IP address details, including IPv6 addresses, through command line options. Usage depends on the type of IP address and on the platform on which the command is run. Some of the platform and IP address specific features of the command are outlined below. For complete details, refer to the Fabric OS Administrator Guide.

**To set IP addresses interactively (IPv4 only):**

1. On enterprise-class platforms, if no option is provided, the command prints the usage. To set the CP IPv4 address use the `-cp` option; to set the switch IP address use the `-sw` option. When setting the switch, the command prompts for the Ethernet IP address, Ethernet subnetmask, Fibre Channel IP address, and Fibre Channel subnetmask. When setting the CP, the command prompts for the host name, Ethernet IP address, Ethernet subnetmask, and Gateway IP address. Valid switch and CP numbers depend on the platform on which the command is run. The command must be executed on the active CP.

2. On most standalone platforms (with the exception of the AP7600), `ipAddrSet` runs interactively if invoked without operands. The command prompts for the Ethernet IP address, Ethernet subnetmask, Fibre Channel IP address, Fibre Channel subnetmask and gateway IP address. In addition, the command prompts for a specification of whether DHCP should be used to acquire the Ethernet IP address, Ethernet subnetmask and Gateway IP address. Valid entries are "On" to enable DHCP and "Off" to disable it. When DHCP is enabled, any user-entered Ethernet IP address, Ethernet subnetmask or Gateway IP address is ignored.

**To set IP Addresses using the command line interface:**

The command accepts the `-ipv6` command line syntax with the `-add` or `-delete` option on all platforms that support IPv6 addresses. The `-add` option configures a single static IPv6 address and prefix for the specified managed entity (switch, CP, BP, or AP). The `-delete` option deletes a static IPv6 address and prefix for the specified managed entity. On enterprise-class platforms, the command can be executed only on the active CP.

1. When using the command line syntax to add or delete IPv6 addresses, the managed entity is identified only on enterprise-class platforms. To set the CP IPv6 address use the `-cp` option; to set the switch IP address use the `-sw` option.

2. When using the command line syntax to add or delete IPv6 addresses on standalone platforms, the implied entity is the single managed entity supported by the platform and must be left unspecified.
3. Additionally, the `eth0`, `eth1`, and `gate` command line options are available with the `--add` or `--delete` option on platforms with blade processors to set the BP Ethernet or Gateway addresses. On an enterprise-class system with a blade processor the values for the blade in slot $n$ can be set from the command line using the `--slot` option. The `--slot` option is not accepted in standalone application processors with a hidden blade, such as the AP7600.

**Note** The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands** This command has the following operands:

When used interactively to configure IPv4 addresses on an enterprise-class system:

- `--cp number` Valid options include:
  - 0 Sets the Ethernet IP address, Ethernet subnetmask, gateway IP address, and host name of CP0.
  - 1 Sets the Ethernet IP address, Ethernet subnetmask, gateway IP address, and host name of CP1.

- `--sw number` Valid options include:
  - 0 Sets the Ethernet IP address, Ethernet subnetmask, Fibre Channel IP address, and Fibre Channel subnetmask of logical switch 0.
  - 1 Sets the Ethernet IP address, Ethernet subnetmask, Fibre Channel IP address, and Fibre Channel Subnetmask of logical switch 1.

When used in command line mode, the following operands are supported:

- `--ipv6` Specifies IP address type as static IPv6.
- `--add` Specifies an address with prefix as needed.
- `--delete` Specify an address to be deleted. If no address is specified, any existing IPv6 addresses and prefixes are deleted from the specified or implied entity.

- `--cp number | --sw number` On an enterprise-class system, specify CP or logical switch. Valid values for `number` are 0 or 1.

On platforms with blade processors, the following additional command line options are supported with the `--add` or `--delete` options:

- `--eth0 | --eth1` Specify local IPv4 address of blade processor. Prefix required.
- `--gate` Specify IPv4 address of blade processor (BP) Gateway (no prefix).
- `--slot n` On a chassis with a blade processor (BP), specify the slot number. On standalone platforms with a hidden BP, such as the AP76500, this parameter is not accepted.
Examples

To set the IPv4 addresses for switch number 1 on an enterprise-class system in interactive mode:

```
switch:admin> ipaddrset -sw 1
Ethernet IP Address [192.168.166.148]:
Ethernet Subnetmask [255.255.255.0]:
Fibre Channel IP Address [none]:
Fibre Channel Subnetmask [none]:
Committing configuration...Done.
OK.
```

To enable DHCP on a standalone, non-AP platform:

```
switch:admin> ipaddrset
Ethernet IP Address [192.168.74.102]:
Ethernet Subnetmask [255.255.255.0]:
Fibre Channel IP Address [220.220.220.2]:
Fibre Channel Subnetmask [255.255.0.0]:
Gateway IP Address [192.168.74.1]:
DHCP [Off]: on
```

To configure an IPv6 address and prefix on a standalone platform:

```
switch:admin> ipaddrset -ipv6 --add fec0:60:69bc:60:260:69ff:fed0:107/64
```

To configure an IPv6 address and prefix on an enterprise-class platform:

```
switch:admin> ipaddrset -cp 0 -ipv6 --add 1080::8:800:200C:417A/64
```

To delete any existing IPv6 address and prefix on CP 0 on an enterprise-class platform:

```
switch:admin> ipaddrset cp 0 -ipv6 --delete
```

To configure a local IPv4 Ethernet address on a Brocade FC4-16E in a chassis (prefix required):

```
switch:admin> ipaddrset -slot 1 -eth0 --add 10.12.34.123/24
```

To configure a local IPv4 Ethernet address on an AP7600 with a hidden BP:

```
switch:admin>ipaddrset -eth0 --add 10.12.34.123/24
```

See Also

ipAddrShow
ipAddrShow

Displays the IP address information for a switch or control processor (CP).

Synopsis

ipaddrshow [-cp cp_number]
ipaddrshow [-sw sw_number]
ipaddrshow - slot n
ipaddrshow [-eth0 -eth1 -gate]

Description

Use this command to display the IP addresses configured in the system.

The -cp option displays the CP IP address and the -sw option displays the switch IP addresses. For
switches, the command displays the Ethernet IP address, Ethernet subnetmask, Fibre Channel IP
address, and Fibre Channel subnetmask. For CPs, the command displays the Ethernet IP address,
Ethernet subnetmask, host name, and gateway IP address.

For chassis based systems with intelligent blades the addresses configured for each slot can be
shown with the -slot option. Without any further options it shows all the addresses associated with
the slot, but this can be restricted using one of the sub options.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands

This command has the following operands:

- cp cp_number For dual-CP systems, this specifies the CP card number to display (0 or 1).
- slot n For enterprise-class systems specify the slot for a blade.
- eth0 - eth1 - gate For a slot show only the selected ethernet interface or the gateway

If no operands are specified, the command displays all the IP addresses configured in the system.
On standalone platforms, this command ignores all operands.

Examples

To display the IP address for logical switch 0:

switch:admin> ipaddrshow -sw 0
Ethernet IP Address: 192.168.166.147
Ethernet Subnetmask: 255.255.255.0
Fibre Channel IP Address: 0.0.0.0
Fibre Channel Subnetmask: 0.0.0.0

See Also

ipAddrSet
ipfilter

Manages the IP filter policies.

Synopsis

ipfilter --create policymname -type ipv4 | ipv6
ipfilter --clone policymname -from src_policymname
ipfilter --show [policymname]
ipfilter --save [policymname]
ipfilter --activate policymname
ipfilter --delete policymname
ipfilter --addrule policymname -rule rule_number -sip source IP -dp dest port -proto protocol -act permit | deny
ipfilter --delrule policymname -rule rule number
ipfilter --transabort

Description

Use this command to manage IP filter policies. The ipfilter command and command options are non-interactive, except when prompting for a confirmation.

The IP filter policy sets up a packet filtering firewall to provide access control on the management IP interface. The IPv4 and IPv6 policies are either in the defined configuration or in the active configuration.

Excluding the default policies, there can be a maximum of six policies in the defined configuration and one policy per IPv4 and IPv6 type in the active configuration.

The active policy must be the default policy or one of the policies in the defined configuration. Only the active policies are enforced. All of the ipfilter options except --show and --transabort, create a transaction owned by the management session initiating the commands.

An open transaction prevents other transactions from being created on different management sessions. The --create, --clone, --delete, --addrule, and --delrule operands modify policies in memory buffer, while operands, --save and --activate commit policies to the persistent configuration. The operands, --save and --activate, implicitly end the transaction if all policy changes are committed. The operand --transabort explicitly ends an open transaction and aborts policy changes in memory buffer. Closing the management session that owns the transaction also aborts policy changes and closes the transaction.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

policymname Specifies an IP filter policy name. The policy name is a unique string composed of a maximum of 20 alpha numeric or underscore characters. The default_ipv4 and default_ipv6 names are reserved for default IP filter policies. The policy name is case-insensitive and is always stored as lower case. The policy type identifies the policy as an IPv4 or IPv6 filter. You can create a maximum of eight IP filter policies.
--create policymame -type ipv4 | ipv6
Creates an IP filter policy with the specified name and type. The policy created is stored in a temporary buffer and is lost if the policy is not saved to the persistent configuration.

--clone policymame -from src_policymame
Creates a replica of an existing IP filter policy. The cloned policy is stored in a temporary buffer and has the same rules as the original policy.

--show [policymame]
Displays the IP filter policy content for the specified policy name or all IP filter policies if policymame is not specified. For each IP filter policy, the policy name, type, persistent state, and policy rules are displayed. The policy rules are listed by the rule number in ascending order.

Command output displays without pagination. Use command | more to display the output with page breaks. If a temporary buffer exists for an IP filter policy, the --show operand displays the content in the temporary buffer, with the persistent state set to modified defined or modified active.

--save [policymame]
Saves one or all IP filter policies persistently as the defined configuration. This operand is optional. If a policy name is specified, only the specified IP filter policy in the temporary buffer is saved; otherwise, all IP filter policies in the temporary buffer are saved. Only the CLI session that owns the updated temporary buffer can run this command. Modification to an active policy cannot be saved without being applied. Therefore, --save is blocked for the active policies; instead use --activate.

--activate policymame
Activates the specified IP filter policy. IP filter policies are not enforced until they are activated. Only one IP filter policy per IPv4 and IPv6 type can be active. If there is a temporary buffer for the policy, the policy is saved to the defined configuration and activated at the same time. If there is no temporary buffer for the policy, the policy existing in the defined configuration becomes active. The policy to be activated replaces the existing active policy of the same type. Activating the default IP filter policies returns the IP management interface to its default state. An IP filter policy without any rule cannot be activated. This operand prompts for confirmation before proceeding.

--delete policymame
Deletes the specified IP filter policy. Deleting an IP filter policy removes it from the temporary buffer. To permanently delete the policy from the persistent database, issue ipfilter --save. An active IP filter policy cannot be deleted.

--addrule policymame
Adds a new rule to the specified IP filter policy. The change made to the specified IP filter policy is not saved to the persistent configuration until saved or activated.
The following arguments are supported with the --addrule option:

- **-sip** Specifies the source IP address. For filters of type IPv4, the address must be a 32-bit address in dot notation, or a CIDR-style IPv4 prefix. For filters of type IPv6, the address must be a 128-bit IPv6 address in any format specified by RFC, or a CIDR-style IPv6 prefix.

- **-dp** Specifies the destination port number, a range of port numbers, or a service name.

- **-proto** Specifies the protocol type, for example tcp or udp.

- **-act** Specifies the permit or deny action associated with this rule.

**rule rule_number**

Adds a new rule at the specified rule index number. The rule number must be between 1 and the current maximum rule number plus one.

**--delrule** policyname -rule rule_number

Deletes a rule from the specified IP filter policy. Deleting a rule in the specified IP filter policy causes the rules following the deleted rule to shift up in rule order. The change to the specified IP filter policy is not saved to the persistent configuration until it is saved or activated.

**--transabort**

A transaction is associated with a CLI or manageability session. It is opened implicitly when running the --create, --addrule and --delrule subcommands. --transabort explicitly ends the transaction owned by the current CLI or manageability session. If a transaction is not ended, other CLI or manageability sessions are blocked on the subcommands that would open a new transaction.

**Examples**

To create an IP filter for a policy with an IPv6 address:

```bash
switch:admin> ipfilter --create ex1 -type ipv6
```

To add a new rule to the policy and specify the source IP address, destination port, and protocol, and to permit the rule:

```bash
```

To display all existing IP filter policies:

```bash
switch:admin> ipfilter --show
```

<table>
<thead>
<tr>
<th>Rule</th>
<th>Source IP</th>
<th>Protocol</th>
<th>Dest Port</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>any</td>
<td>tcp</td>
<td>22</td>
<td>permit</td>
</tr>
<tr>
<td>2</td>
<td>any</td>
<td>tcp</td>
<td>23</td>
<td>permit</td>
</tr>
<tr>
<td>3</td>
<td>any</td>
<td>tcp</td>
<td>897</td>
<td>permit</td>
</tr>
<tr>
<td>4</td>
<td>any</td>
<td>tcp</td>
<td>898</td>
<td>permit</td>
</tr>
<tr>
<td>5</td>
<td>any</td>
<td>tcp</td>
<td>111</td>
<td>permit</td>
</tr>
<tr>
<td>6</td>
<td>any</td>
<td>tcp</td>
<td>80</td>
<td>permit</td>
</tr>
<tr>
<td>7</td>
<td>any</td>
<td>tcp</td>
<td>443</td>
<td>permit</td>
</tr>
<tr>
<td>8</td>
<td>any</td>
<td>udp</td>
<td>161</td>
<td>permit</td>
</tr>
<tr>
<td>9</td>
<td>any</td>
<td>udp</td>
<td>111</td>
<td>permit</td>
</tr>
<tr>
<td>10</td>
<td>any</td>
<td>udp</td>
<td>123</td>
<td>permit</td>
</tr>
<tr>
<td>11</td>
<td>any</td>
<td>tcp</td>
<td>600 - 1023</td>
<td>permit</td>
</tr>
<tr>
<td>12</td>
<td>any</td>
<td>udp</td>
<td>600 - 1023</td>
<td>permit</td>
</tr>
</tbody>
</table>
### ipfilter

**Name: default_ipv6, Type: ipv6, State: active**

<table>
<thead>
<tr>
<th>Rule</th>
<th>Source IP</th>
<th>Protocol</th>
<th>Dest Port</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>any</td>
<td>tcp</td>
<td>22</td>
<td>permit</td>
</tr>
<tr>
<td>2</td>
<td>any</td>
<td>tcp</td>
<td>23</td>
<td>permit</td>
</tr>
<tr>
<td>3</td>
<td>any</td>
<td>tcp</td>
<td>897</td>
<td>permit</td>
</tr>
<tr>
<td>4</td>
<td>any</td>
<td>tcp</td>
<td>898</td>
<td>permit</td>
</tr>
<tr>
<td>5</td>
<td>any</td>
<td>tcp</td>
<td>111</td>
<td>permit</td>
</tr>
<tr>
<td>6</td>
<td>any</td>
<td>tcp</td>
<td>80</td>
<td>permit</td>
</tr>
<tr>
<td>7</td>
<td>any</td>
<td>tcp</td>
<td>443</td>
<td>permit</td>
</tr>
<tr>
<td>8</td>
<td>any</td>
<td>udp</td>
<td>161</td>
<td>permit</td>
</tr>
<tr>
<td>9</td>
<td>any</td>
<td>udp</td>
<td>111</td>
<td>permit</td>
</tr>
<tr>
<td>10</td>
<td>any</td>
<td>udp</td>
<td>123</td>
<td>permit</td>
</tr>
<tr>
<td>11</td>
<td>any</td>
<td>tcp</td>
<td>600 - 1023</td>
<td>permit</td>
</tr>
<tr>
<td>12</td>
<td>any</td>
<td>udp</td>
<td>600 - 1023</td>
<td>permit</td>
</tr>
</tbody>
</table>

**Name: ex1, Type: ipv6, State: defined (modified)**

<table>
<thead>
<tr>
<th>Rule</th>
<th>Source IP</th>
<th>Protocol</th>
<th>Dest Port</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fec0:60:69bc:60:260:69ff:fe80:d4a</td>
<td>tcp</td>
<td>23</td>
<td>permit</td>
</tr>
</tbody>
</table>

To activate the IP Filter policy “ex1”:

```
switch:admin> ipfilter --activate ex1
```

To display all IP Filter policies, including the activated policy:

```
switch:admin> ipfilter --show
```

**Name: default_ipv4, Type: ipv4, State: active**

<table>
<thead>
<tr>
<th>Rule</th>
<th>Source IP</th>
<th>Protocol</th>
<th>Dest Port</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>any</td>
<td>tcp</td>
<td>22</td>
<td>permit</td>
</tr>
<tr>
<td>2</td>
<td>any</td>
<td>tcp</td>
<td>23</td>
<td>permit</td>
</tr>
<tr>
<td>3</td>
<td>any</td>
<td>tcp</td>
<td>897</td>
<td>permit</td>
</tr>
<tr>
<td>4</td>
<td>any</td>
<td>tcp</td>
<td>898</td>
<td>permit</td>
</tr>
<tr>
<td>5</td>
<td>any</td>
<td>tcp</td>
<td>111</td>
<td>permit</td>
</tr>
<tr>
<td>6</td>
<td>any</td>
<td>tcp</td>
<td>80</td>
<td>permit</td>
</tr>
<tr>
<td>7</td>
<td>any</td>
<td>tcp</td>
<td>443</td>
<td>permit</td>
</tr>
<tr>
<td>8</td>
<td>any</td>
<td>udp</td>
<td>161</td>
<td>permit</td>
</tr>
<tr>
<td>9</td>
<td>any</td>
<td>udp</td>
<td>111</td>
<td>permit</td>
</tr>
<tr>
<td>10</td>
<td>any</td>
<td>udp</td>
<td>123</td>
<td>permit</td>
</tr>
<tr>
<td>11</td>
<td>any</td>
<td>tcp</td>
<td>600 - 1023</td>
<td>permit</td>
</tr>
<tr>
<td>12</td>
<td>any</td>
<td>udp</td>
<td>600 - 1023</td>
<td>permit</td>
</tr>
</tbody>
</table>

**Name: default_ipv6, Type: ipv6, State: defined**

<table>
<thead>
<tr>
<th>Rule</th>
<th>Source IP</th>
<th>Protocol</th>
<th>Dest Port</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>any</td>
<td>tcp</td>
<td>22</td>
<td>permit</td>
</tr>
<tr>
<td>2</td>
<td>any</td>
<td>tcp</td>
<td>23</td>
<td>permit</td>
</tr>
<tr>
<td>3</td>
<td>any</td>
<td>tcp</td>
<td>897</td>
<td>permit</td>
</tr>
<tr>
<td>4</td>
<td>any</td>
<td>tcp</td>
<td>898</td>
<td>permit</td>
</tr>
<tr>
<td>5</td>
<td>any</td>
<td>tcp</td>
<td>111</td>
<td>permit</td>
</tr>
<tr>
<td>6</td>
<td>any</td>
<td>tcp</td>
<td>80</td>
<td>permit</td>
</tr>
<tr>
<td>7</td>
<td>any</td>
<td>tcp</td>
<td>443</td>
<td>permit</td>
</tr>
<tr>
<td>8</td>
<td>any</td>
<td>udp</td>
<td>161</td>
<td>permit</td>
</tr>
<tr>
<td>9</td>
<td>any</td>
<td>udp</td>
<td>111</td>
<td>permit</td>
</tr>
<tr>
<td>10</td>
<td>any</td>
<td>udp</td>
<td>123</td>
<td>permit</td>
</tr>
<tr>
<td>11</td>
<td>any</td>
<td>tcp</td>
<td>600 - 1023</td>
<td>permit</td>
</tr>
<tr>
<td>12</td>
<td>any</td>
<td>udp</td>
<td>600 - 1023</td>
<td>permit</td>
</tr>
</tbody>
</table>

**Name: ex1, Type: ipv6, State: active**

<table>
<thead>
<tr>
<th>Rule</th>
<th>Source IP</th>
<th>Protocol</th>
<th>Dest Port</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fec0:60:69bc:60:260:69ff:fe80:d4a</td>
<td>tcp</td>
<td>23</td>
<td>permit</td>
</tr>
</tbody>
</table>
To create an IPv4-type IP filter policy:

```
switch:admin> ipfilter --create ex2 -type ipv4
```

To add a rule to the created policy “ex2”:

```
switch:admin> ipfilter --addrule ex2 -sip 10.32.69.99 -dp 23 -proto tcp -act permit
```

To display the IP filter policies, including the new policy:

```
switch:admin> ipfilter --show
```

```
Name: default_ipv4, Type: ipv4, State: active
Rule Source IP Protocol Dest Port Action
1 any tcp 22 permit
2 any tcp 23 permit
3 any tcp 897 permit
4 any tcp 898 permit
5 any tcp 111 permit
6 any tcp 80 permit
7 any tcp 443 permit
8 any udp 161 permit
9 any udp 111 permit
10 any udp 123 permit
11 any tcp 600 - 1023 permit
12 any udp 600 - 1023 permit
```

```
Name: ex2, Type: ipv4, State: defined (modified)
Rule Source IP Protocol Dest Port Action
1 10.32.69.99 tcp 23 permit
```

To save the IP Filter policy “ex2” (the status of the policy changes from modified to defined after the policy is saved):

```
switch:admin> ipfilter --save ex2
switch:admin> ipfilter --show
```

```
Name: default_ipv4, Type: ipv4, State: active
Rule Source IP Protocol Dest Port Action
1 any tcp 22 permit
2 any tcp 23 permit
3 any tcp 897 permit
4 any tcp 898 permit
5 any tcp 111 permit
6 any tcp 80 permit
7 any tcp 443 permit
8 any udp 161 permit
9 any udp 111 permit
10 any udp 123 permit
11 any tcp 600 - 1023 permit
12 any udp 600 - 1023 permit
```

```
Name: ex2, Type: ipv4, State: defined
Rule Source IP Protocol Dest Port Action
1 10.32.69.99 tcp 23 permit
```

**See Also**  policy, distribute
**iscsiCfg**

Configures or displays iSCSI entities.

**Synopsis**

- `iscsiCfg create auth -u username -s CHAP_secret [-h]`
- `iscsiCfg --modify auth -u username -s CHAP_secret [-h]`
- `iscsiCfg --delete auth -u username [-h]`
- `iscsiCfg --clear auth [-h]`
- `iscsiCfg --show auth [-u username] [-h]`
- `iscsiCfg --easycreate tgt [-w port_wwn] [-h]`
- `iscsiCfg --easycreate tgt -s`
- `iscsiCfg --create tgt -t target_name [-h]`
- `iscsiCfg --delete tgt -t target_name [-h]`
- `iscsiCfg --modify tgt -t target_name -a auth_method [-h]`
- `iscsiCfg --addusername tgt -t target_name -u user_list [-h]`
- `iscsiCfg --deleteusername tgt -t target_name -u user_list [-h]`
- `iscsiCfg --clear tgt [-h]`
- `iscsiCfg --show tgt [-t target_name] [-v] [-h]`
- `iscsiCfg --add lun -t target_name -w fc_wwn -l lun_map [-h]`
- `iscsiCfg --delete lun -t target_name -w fc_wwn -l lvirtual_un_list [-h]`
- `iscsiCfg --show lun [-t target_name] [-h]`
- `iscsiCfg --create dd -d dd_name -m member_list [-h]`
- `iscsiCfg --delete dd -d dd_name [-m member_list] [-h]`
- `iscsiCfg --clear dd [-h]`
- `iscsiCfg --show dd [-d dd_name] [-h]`
- `iscsiCfg --add dd -d dd_name -m member_list [-h]`
- `iscsiCfg --create ddset -n ddset_name -d dd_list [-h]`
- `iscsiCfg --add ddset -n ddset_name -d dd_list [-h]`
- `iscsiCfg --delete ddset -n ddset_name [-d dd_list] [-h]`
- `iscsiCfg --enable ddset -n ddset_name [-h]`
- `iscsiCfg --disable ddset -n ddset_name [-h]`
- `iscsiCfg --show ddset [-n ddset_name] [-v] [-h]`
- `iscsiCfg --show fabric [-h]`
- `iscsiCfg --clear initiator [-h]`
- `iscsiCfg --show initiator [-i initiator_name] [-h]`
- `iscsiCfg --abort transaction -x transaction_id [-h]`
iscsicfg --show transaction [-h]
iscsicfg --clear all [-h]
iscsicfg --commit all [-f] [-h]

Description
Use this command to configure all iSCSI entities (such as authentication (CHAP), discovery domains (DD), discovery domain sets (DDSet), iSCSI virtual targets (VT), and LUN maps). Common actions include --add, --delete, --modify, --show, --enable and --disable; however, not all actions are valid for all operands.

Use --commit all to save all entity changes to nonvolatile memory. This triggers the propagation of changes to all iSCSI-enabled switches and blades in the fabric.

Changes do not take effect until a --commit all command is issued.

Make all necessary configuration changes before issuing --commit all.

Note
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
This command has the following operands:

auth
CHAP parameters. Actions on auth include:

--create auth-u username -s CHAP_secret [-h]
Creates a CHAP entry with a CHAP secret of CHAP_secret for username.

--modify auth-u username -s CHAP_secret [-h]
Modifies the secret associated with an existing user.

--delete auth-u username [-h]
Deletes the CHAP entry associated with the specified username.

--clear auth [-h]
Deletes the entire authentication database.

--show auth [-u username] [-h]
Displays the username and status for the specified user. If username is not specified, all users in the database are displayed.

tgt
iSCSI virtual target parameters. Actions on tgt are:

--easycreate tgt [-w port_wwn] [-h]
Creates iSCSI targets with all available FC targets in one step. If port_wwn is specified, all LUNs of that target are imported into one virtual target. If no port_wwn is specified, all FC targets are imported into virtual targets. The names for the iSCSI targets are the target prefix followed by the port WWN.

--easycreate tgt -s [-h]
Shows the Node and Port WWNs which is used for any easycreate operation from this switch.

--create tgt -t target_name [-h]
Creates a target entry with the specified target_name. The target_name needs to be in IQN format.

--delete tgt -t target_name [-h]
Deletes a target entry with the specified target_name.
- **modify tgt -t** target_name -a auth_method [-h]
  Associates the authentication method auth_method with the target. Valid values for auth_method are CHAP and none. If CHAP is specified, then either one-way or mutual CHAP is enforced, based on the login frame from the host.

- **addusername tgt -t** target_name -u user_list [-h]
  Binds user names defined in AUTH database to the specific target.

- **deleteusername tgt -t** target_name -u user_list [-h]
  Unbinds user names defined in AUTH database from the specific target.

- **clear tgt [-h]**
  Clears the iSCSI target database from the fabric.

- **show tgt [-t target_name] [-v] [-h]**
  Displays the iSCSI target database entries for target_name.

**lun**

iSCSI LUN map parameters. Actions on lun include:

- **add lun -t** target_name -w fc_wwn -l lun_map [-h]
  Adds the LUN map to target_name. port_wwn specifies the port WWN of the physical FC target whose LUNs are to be mapped to the iSCSI target. lun_map specifies the LUN map. A LUN map is required that maps the specified physical LUNs to specified virtual LUNs. lun_map is specified as a pair: "virtual LUN list:physical LUN list". Either single or multiple list mapping can be specified.

- **delete lun -t** target_name -w fc_wwn -l virtual_lun_list[-h]
  Deletes the LUN map from target_name. If target_name is specified only, all LUN maps associated with target_name are deleted. If target_name and port_wwn are specified, all LUN maps associated with target_name and port_wwn are deleted. If target_name and virtual_lun_list are specified, the specified LUN map is deleted.

- **show lun [-t target_name] [-h]**
  Displays the LUN database; target_name is optional.

**dd**

Discovery Domain (DD) parameters. Actions on dd include:

- **create dd -d** dd_name -m member_list [-h]
  Creates a DD entry with the specified dd_name and member_list (iSCSI initiators and targets).

- **delete dd -d** dd_name [-m member_list] [-h]
  Deletes the member or members specified in member_list from an existing iSCSI Discovery Domain (DD). If a DD does not exist or the members specified are not a part of the specified domain, an error is returned. If, after deletion, there are no members remaining in the domain, the domain is deleted. If no members are specified, the DD is deleted. If a DD to be deleted is part of a DD set, the set is modified to reflect the missing DD. member_list has to be iSCSI entity names in a valid format. Currently, only IQN format is supported. Multiple entities may be specified as a comma-separated list. The IQN may be a maximum of 64 characters.

- **add dd -d** dd_name -m member_list [-h]
  Adds a new member to an existing DD. DD member lists also are acceptable.
iscsiCfg

--clear dd [-h]
Deletes the DD and DDset databases.

--show dd [-d dd_name] [-h]
Displays the DD database; dd_name is optional.

ddset
Discovery Domain Set parameters. Actions on ddset are:

--create ddset -n ddset_name -d dd_list [-h]
Creates a DD set entry with the specified ddset_name and dd_list. The DDs in dd_list must already exist.

--add ddset -n ddset_name -d dd_list [-h]
Adds a new DD to an existing DD set.

--delete ddset -n ddset_name [-d dd_list] [-h]
Deletes the DD set with ddset_name. If dd_list is specified, only those DDs are deleted; otherwise, the entire DD set is deleted.

--enable ddset -n ddset_name [-h]
Activates the DD set specified.

--disable ddset [-n ddset_name] [-h]
Disables an active DD set.

--show ddset [-n ddset_name] [-v] [-h]
Displays the DD set database. ddset_name is optional.

fabric
iSCSI-enabled switches and their operational states. The action is --show.

--show fabric[-h]
Displays the database iSNS client status of all iSCSI switches in the fabric. An asterisk (*) next to the switch ID denotes the local switch.

initiator
iSCSI Initiator database. Actions on initiator are:

--clear initiator [-h]
Clears the iSCSI initiator database.

--show initiator [-i initiator_name][-h]
Displays all iSCSI initiators that the switch is aware of. If an initiator has attempted discovery or logon to a target, it is displayed here. If initiator_name is specified, this command returns a list of all online iSCSI targets accessible by initiator_name.

transaction
Transaction database. Actions on transaction include:

--abort transaction -x transaction_id [-h]
Aborts the database transaction in progress with ID transaction_id.

--show transaction [-h]
Displays information about a transaction or the entire transaction database.

all
Applies to all databases. Actions include:

--clear all [-h]
Deletes auth, ddset, dd and target databases. The modifications made to the databases are not saved to nonvolatile memory until a --commit all is issued.
iscsiCfg --commit all [-f] [-h]

Commits the iSCSI configuration database to nonvolatile memory. Any modifications made to the database are not saved until an explicit `--commit all` is issued. If multiple switches in the fabric have uncommitted changes, this operation is rejected. The `-f` option needs to be used in this case to force the commit operation, in which case uncommitted changes on other switches are erased.

`-h`

Use `-h` on any command to display the help text for the action and operand combination.

**Examples**

To create a CHAP entry:

```bash
switch:admin> iscsicfg --create auth -u user1 -s abcdefg123
The operation completed successfully.
```

To modify a CHAP entry associated with an existing user:

```bash
switch:admin> iscsicfg --modify auth -u user1 -s newsecret
The operation completed successfully.
```

To display the authentication database:

```bash
switch:admin> iscsicfg --show auth
Number of records found: 1
Name Status
user1 Defined
```

To delete a CHAP entry:

```bash
switch:admin> iscsicfg --delete auth -u user1
The operation completed successfully.
```

To create a target entry:

```bash
switch:admin> iscsicfg --create tgt -t iqn.2005-10.com.brocade.tgt1
The operation completed successfully.
```

To modify the authentication method for a target:

```bash
switch:admin> iscsicfg --modify tgt -t iqn.2005-10.com.brocade.tgt1 -a CHAP
The operation completed successfully.
```

To display the target database:

```bash
switch:admin> iscsicfg --show tgt
Number of records found: 2
Name: iqn.2005-10.com.brocade.tgt1
State/Status: Offline/Defined
Name: iqn.2222-23.com.brocade:21:00:00:20:37:df:83:fc
State/Status: Online/Committed
```

To delete a target entry:

```bash
switch:admin> iscsicfg --delete tgt -t iqn.2005-10.com.brocade.tgt1
The operation completed successfully.
```
To bind user CHAP to a target:

```
switch:admin> iscsicfg --addusername tgt iqn.2005-10.com.brocade.tgt1 -u user1
The operation completed successfully.
```

To unbind user CHAP from a target:

```
switch:admin> iscsicfg --deleteusername tgt iqn.2005-10.com.brocade.tgt1 -u user1
The operation completed successfully.
```

To clear the target database:

```
switch:admin> iscsicfg --clear tgt
The operation completed successfully.
```

To create iSCSI targets with all available FC targets:

```
switch:admin> iscsicfg --easycreate tgt
This will create iSCSI targets for ALL FC targets.
This could be a long-running operation. Continue [N]: Y
Index FC WWN iSCSI Name Status
[Output truncated]
```

To add a LUN map:

```
switch:admin> iscsicfg --add lun -t iqn.2005-10.com.brocade.tgt1 -w 22:00:00:04:cf:20:5d:33 -l 0:0
The operation completed successfully.
```

```
switch:admin> iscsicfg --add lun -t iqn.2005-12.com.brocade.tgt2 -w 22:00:00:04:cf:75:5b:9a -l 2-5:5-8
The operation completed successfully.
```

To display LUN maps:

```
switch:admin> iscsicfg --show lun
Number of records found: 2

Target: iqn.2005-10.com.brocade.tgt1
Number of LUN Maps: 1
FC WWN Virtual LUN(s) Physical LUN(s)
22:00:00:04:cf:00:5d:33 0 0

Target: iqn.2222-23.com.brocade:50:06:0e:80:00:43:80:a2
Number of LUN Maps: 5
FC WWN Virtual LUN(s) Physical LUN(s)
50:06:0e:80:00:43:80:a2 0 0x0000000000000000
50:06:0e:80:00:43:80:a2 1 0x0001000000000000
50:06:0e:80:00:43:80:a2 2 0x0002000000000000
50:06:0e:80:00:43:80:a2 3 0x0009000000000000
50:06:0e:80:00:43:80:a2 4 0x003e000000000000
```

To create a DD entry with a specified name and members:

```
switch:admin> iscsicfg --create dd -d mynewdd -m iqn.2222 23.mytest1,iqn.234358.newtest1
The operation completed successfully.
```

To add a new member to an existing DD:

```
switch:admin> iscsicfg --add dd -d mynewdd -m iqn.2222-23.mytest3
The operation completed successfully.
```
To display the DD database:

```
switch:admin> iscsicfg --show dd
Number of records found: 1

Name: mynewdd
Status: Defined
Num. Members: 3
iqn.2222-23.mytest1
iqn.2343-58.newtest1
iqn.2222-23.mytest3
```

To create a DD set entry:

```
switch:admin> iscsicfg --create ddset -n myddset -d mynewdd
The operation completed successfully.
```

To add a new member to an existing DD set (the new DD, iscsidd3, must exist already)

```
switch:admin> iscsicfg --add ddset -n myddset -d iscsidd3
The operation completed successfully.
```

To enable a DD set:

```
switch:admin> iscsicfg --enable ddset -n myddset
This will enable the DDSet specified. Continue [N]: y
[Output truncated]
```

To disable a DD set:

```
switch:admin> iscsicfg --disable ddset
The operation completed successfully.
```

To display the DD set database in verbose mode:

```
switch:admin> iscsicfg --show ddset -v
Number of records found: 1

Name: myddset
State/Status: Disabled/Defined
Num. members: 1

mynewdd
iqn.2222-23.mytest1
iqn.2343-58.newtest1
iqn.2222-23.mytest3
```

To delete a DD set:

```
switch:admin> iscsicfg --delete ddset -n myddset -d mynewdd
The operation completed successfully.
```

To display the iSCSI-aware switches and their operational states (Displays switches that are capable of propagating iSCSI data base):

```
switch:admin> iscsicfg --show fabric

Switch ID Switch WWN Switch State iSNSC
* 1 10:00:00:60:69:e4:20:1e -- Disabled

Aggregated iSCSI database state for fabric: In Sync
```
To display the iSCSI initiators that attempted to log in:

```
switch:admin> iscsicfg --show initiator
```

Number of records found: 1
Name                      IP Address

```
switch:admin> iscsicfg --show initiator -i iqn.1991-05.com.brocade:initiator1
Initiator details are:
Name IP Address
No. of targets currently accessible to the specified initiator are: 4
iqn.2222-12.com.brocade:tgt1
iqn.2222-12.com.brocade:tgt2
```

To display all targets that are accessible by a specified initiator:

```
switch:admin> iscsicfg --show initiator -i iqn.1991-05.com.brocade:initiator1
The operation completed successfully.
Index iSCSI Name IP Address Type
Accessible Targets
1 iqn.2000-12.brocade.com.246:tgt-1
```

To clear the iSCSI initiator database:

```
switch:admin> iscsicfg --clear initiator
This will delete the iSCSI initiator database. Continue [N]: y
The operation completed successfully.
```

To display in-progress database transactions:

```
switch:admin> iscsicfg --show transaction
Active transaction ID is: 19359 and the owner is: CLI.
The following groups have been modified:
1. Target/LUN group.
2. DD/DDSet group.
```

To abort a database transaction:

```
switch:admin> iscsicfg --abort transaction -x 19359
The operation completed successfully.
```

To commit the changes to persistent memory:

```
switch:admin> iscsicfg --commit all
The operation completed successfully.
```

See Also  fosConfig, iscsiPortCfg, iscsiSessionCfg
iscsiChipTest

Performs functional test of components in iSCSI complex.

Synopsis

    iscsichiptest --slot slotnumber -testtype type -unit gbEports

Description

Use this command to verify the memory of the network processor and iFlipper FPGA.

Note

This command is supported only on the Brocade FR4-16IP blade. On all other platforms, this command displays the message: "Command not applicable to this platform. SKIPPED!"

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- --slot slotnumber
  Specifies the slot number for which to run the diagnostics. The default is set to 0 and designed to operate on fixed-port-count products.

- testtype type
  Selects the test type to run. By default, the command runs all tests. Valid values are:

  0  All of the following tests.

  1  BCM 1125H SRAM test.

  2  iFlipper internal register test.

- unit gbEports
  Specifies the GbE port to test. By default, all GbE ports in the specified slot slotnumber are tested. Specify a value in the range of 0 - 7 or specify 8 for all ports.

Examples

To run iscsichiptest:

    switch:admin> iscsichiptest --slot 7 -unit 1 -testtype 0
    Running iscsichiptest ............
    Test Complete: iscsichiptest Pass 1 of 1
    Duration 0 hr, 3 min & 12 sec (0:3:12:511).
    passed.

See Also

    iscsiPathTest
iscsiHelp

Displays a list of iSCSI support commands.

Synopsis iscsihelp

Description Use this command to display a list of iSCSI support commands with descriptions.

Operands none

Examples To display the list of iSCSI support commands:

switch:admin> iscsihelp
fclunquery        Display a list of LUNs of FC target(s).
fosconfig         Enable/disable FabOS services
iscsicfg           Manage/display all iscsi configuration including authentication/virtual targets/discovery domains.
iscsiportcfg      Manage/display iscsi protocol related port configuration including negotiated parameters/port statistics/current sessions.
iscsisessioncfg   Manage/display iscsi session information.
iscsiswcfg         Manage/display iscsi switch configuration parameters.
portcfg           Create/Delete a new ip interface/route/arp entry on the GigE port
portshow           Show configured ip interfaces/routes/arp entries on the GigE Port
switchshow         Display the number of sessions on each iSCSI port

See Also switchShow
iscsiPathTest

Performs functional test of components in iSCSI complex.

Synopsis  
iscsipathtest --slot slotnumber -unit number -path mode -nframes count

Description  
Use this command to verify the functions of the network processor and the iSCSI complex. The CP processor instructs the Network processor BCM1125H in each GigE port to run the tests Multiple frames or data packets are transmitted from the Network processor to designated loopback points and sent back. The command checks statistics, frame counts, data path, and hardware connections in the iSCSI complex. You can set the data path mode with the -path option.

Note  
This command is supported only on the Brocade FR4-16IP blade. On all other platforms, this command displays the message: “Command not applicable to this platform. SKIPPED!”

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  
This command has the following operands:

--slot slotnumber  Specifies the slot number on which to run the diagnostics. The default is set to 0 and designed to operate on fixed-port-count products.

-unit number  Specifies the GbE port to test. By default all the GbE ports in the specified slot slotnumber used. Specify an integer between 0 and 7 or 8 to specify all ports.

-path mode  Selects the loopback point for the test. By default, iscsiPathTest uses PHY and Central ASIC loopback. Valid values are:

1  Data packets from network processor to GbE RJ-45 loopback.
2  Data packets from network processor to GbE PHY loopback.
3  Data packets from network processor to GbE GMAC loopback.
4  FC frames from network processor to Central ASIC FC Serdes loopback.
5  FC frames from network processor to serial loopback at iFlipper FC serdes.
6  FC frames from network processor to parallel loopback at iFlipper FC serdes.
9  Data packets from network processor to loopback at network processor 8-bit FIFO.

-nframes count  Specifies the number of frames to send. The test progresses until the specified number of frames has been transmitted on each port. The default value is 100.

Examples  
To run iscsipathtest:

switch:admin> iscsipathtest --slot 2 -path 2 -nframes 10
Running iscsipathtest ..............
Test Complete: iscsipathtest Pass 10 of 10
Duration 0 hr, 3 min & 1 sec (0:3:0:630).
passed.

See Also  
iscsiChipTest
iscsiPortCfg

Displays or modifies iSCSI port parameters.

Synopsis

```
iscsiPortcfg --clearstats slot/ge port
iscsiPortcfg --default slot/ge port
iscsiPortcfg --show slot/ge port [-v]
iscsiPortcfg --modify slot/ge port options
```

Description

Use this command to display or modify the iSCSI port parameters.

The default iSCSI port settings are as follows:

**TABLE 16** Default iSCSI port settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error recovery level</td>
<td>0</td>
</tr>
<tr>
<td>Connections per session</td>
<td>1</td>
</tr>
<tr>
<td>Connections per session</td>
<td>Disabled</td>
</tr>
<tr>
<td>Header digest support</td>
<td>Disabled</td>
</tr>
<tr>
<td>Immediate data support</td>
<td>No</td>
</tr>
<tr>
<td>First burst length value</td>
<td>512</td>
</tr>
</tbody>
</table>

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

```
--modify Modifies the port parameters on the specified port. Valid options are:
 -e value Specifies the error recovery level; values are 0, 1, or 2.
 -c value Specifies the TCP of connections; values are 1 or 2.
 -d value Enables or disables data digest support; specify 0 to disable or 1 to enable.
 -a value Enables or disables header digest support; specify 0 to disable or 1 to enable.
 -i value Enables or disables immediate data support; specify 0 to disable or 1 to enable.
 -f value Specifies the first burst length value; values include 512, 1024, 2048, 4096, 8192, 16384, and 32768.
--clearstats Clears port-level iSCSI statistics on the specified port.
--default Resets the port to the default values. See the "Description" section for the list of default values.
```
iscsiPortCfg

--show Displays port-level protocol parameters, statistics, and session information on the specified port. Options include:

-v Specifies verbose mode, which displays the initiator IP, TSID, and the number of connections in addition to the other port-level information.

slot Specifies the slot number. This parameter only supports FC4-16IP blades in Brocade 48000 directors.

gport Specifies the port number of a GbE port to be configured in the specified slot.

-h Use -h on any option to display the help text for it.

Examples To modify the port parameters:

switch:admin> iscsiPortCfg --modify 7/ge2 -e 2 -c 2 -f 32768
The operation completed successfully.

To display the port information in verbose mode:

switch:admin> iscsiPortCfg --show 7/ge0
The configured port parameters for slot 7 and port ge0 are:
Header Digest:                  Off
Data Digest:                    Off
First Burst Length:             512
Error Recovery Level:           0
Immediate Data:                 Off
Connections per session:        1
Num. of active sessions on port: 1

Port Statistics:
iSCSI in PDU:                  211
iSCSI in Octet:                 32592
iSCSI out PDU:                  307
iSCSI out Octet:                77484
FCP in PDU:                     205
FCP in Octet:                   76356
FCP out PDU:                    114
FCP out Octet:                  29944
iSCSI Command:                  104
iSCSI R2T:                      11
iSCSI Data In:                  11
iSCSI Data Out:                 96
iSCSI Response:                 104
FCP Command:                    103
FC Data In:                     91
FC Data Out:                    11
FC Xfer Ready:                  11
FC Response:                    103
iSCSI Error PDU:                0
FC Error PDU:                   0
iSCSI Snack:                    0
iSCSI NOP Out:                  0
iSCSI Text:                     1
iSCSI Logout:                   1
iSCSI Task Mgmt.:               0
iSCSI TM Response:              0
iSCSI Abort Task:               0
iscsiPortCfg

iSCSI Abort Task Set: 0
iSCSI Clear ACA: 0
iSCSI Clear Task Set: 0
iSCSI LUN Reset: 0
iSCSI Target Reset: 0
iSCSI Task Reassign: 0
Non FCP in PDU: 17
Non FCP in Octet: 2576
Non FCP out PDU: 17
Non FCP out Octet: 1352

Session details:
Session Number: 1
iSCSI Session Type: Normal
Initiator Name: iqn.1991-05.com.microsoft:win-iscsi.lab
Target Name: iqn.2002-12.com.tgt:21:00:00:04:cf:5d:cf:0e
ISID: 0x40001370000

See Also fosConfig, iscsiCfg, iscsiSessionCfg
iscsiSessionCfg

Displays iSCSI session/connection details, clears the associated counters, or deletes an iSCSI session/connection.

Synopsis

iscsisessioncfg --clearstats [i initiator_iqn] [t target_iqn]
iscsisessioncfg --delete [i initiator_iqn] [t target_iqn]
iscsisessioncfg --show [i initiator_iqn] [t target_iqn]

Description

Use this command to display iSCSI session/connection details, clear the associated counters, or delete an iSCSI session/connection.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

--clearstats
Clears the counters associated with a session.

--delete
Deletes one or more iSCSI sessions.

--show
Displays the iSCSI session details. Options include:

-v
Specifies verbose mode, which displays information for all sessions, including statistics.

-i initiator_iqn
Selects only sessions that match the given initiator IQN.

-t target_iqn
Selects only sessions that match the given target IQN.

Examples

To display the iSCSI session status:

switch:admin> iscsisessioncfg --show

Number of sessions found: 1

Session 1 Details:
Target Name: iqn.2002-12.com.brocade:2f:df:00:06:2b:0d:10:b9
Session type Init. Session ID Tgt. Session ID Initiator IP Num. Conns
Normal 0x400001370000 1025 30.50.1.115 1

TCP Connection Details
Index TCP Port Leading Connection Switch Port
1 2743 Yes 8/ge4

Security Details
CHAP Username: none

FC Details
Number of FC targets: 1

FC Target Information
Index FC WWN
1 2f:df:00:06:2b:0d:10:b9

iSCSI Operating Login Parameters: Session Level
Parameter Name Self Value Peer Value
iscsiSessionCfg

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Burst Length</td>
<td>256KB</td>
<td>256KB</td>
</tr>
<tr>
<td>First Burst Length</td>
<td>512B</td>
<td>64KB</td>
</tr>
<tr>
<td>Max outstanding R2T</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Default time to retain</td>
<td>20s</td>
<td>60s</td>
</tr>
<tr>
<td>Default time to wait</td>
<td>2s</td>
<td>0s</td>
</tr>
<tr>
<td>Error recovery level</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Initial R2T</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Self Value</th>
<th>Peer Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Recv. Data Segment Length</td>
<td>56KB</td>
<td>64KB</td>
</tr>
<tr>
<td>Header Digest</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Data Digest</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Immediate Data</td>
<td>Off</td>
<td>On</td>
</tr>
</tbody>
</table>

**iSCSI Connection Statistics**

- iSCSI in PDU: 23100
- iSCSI in Octet: 855685264
- iSCSI out PDU: 851487
- iSCSI out Octet: 882055140
- FCP in PDU: 431295
- FCP in Octet: 878756240
- FCP out PDU: 425006
- FCP out Octet: 855888688
- iSCSI Command: 6787
- iSCSI R2T: 3375
- iSCSI Data In: 16313
- iSCSI Data Out: 420747
- iSCSI Response: 6659
- FCP Command: 7350
- FC Data In: 420686
- FC Data Out: 417656
- FC Xfer Ready: 3375
- FC Response: 7234
- iSCSI Error PDU: 0
- FC Error PDU: 0
- iSCSI Snack: 0
- iSCSI NOP Out: 0
- iSCSI Text: 0
- iSCSI Logout: 0
- iSCSI Task Mgmt.: 0
- iSCSI TM Response: 0
- iSCSI Abort Task: 0
- iSCSI Abort Task Set: 0
- iSCSI Clear ACA: 0
- iSCSI Clear Task Set: 0
- iSCSI LUN Reset: 0
- iSCSI Target Reset: 0
- iSCSI Task Reassign: 0
- Non FCP in PDU: 0
- Non FCP in Octet: 0
- Non FCP out PDU: 0
- Non FCP out Octet: 0

**See Also** fosConfig, iscsiCfg, iscsiPortCfg
iscsiSwCfg

Displays or configures the iSCSI switch level configuration.

Synopsis  

iscsiSwCfg --enableconn -s slot number | all  
iscsiSwCfg --disableconn -s slot number | all  
iscsiSwCfg --showconn -s slot number | all  
iscsiSwCfg --modifygw -t target name  
iscsiSwCfg --showgw

Description  

Use this command to display the iSCSI switch level configuration and to configure the iSCSI connection redirection and target name prefix.

Note  

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  

This command has the following operands:

--enableconn       Enables the connection redirection on a specific slot or all slots.
--disableconn     Disables the connection redirection on a specific slot or all slots.
--showconn        Displays the configuration of the connection redirection.
--modifygw        Specifies the IQN prefix of the target name.
--showgw          Displays the target name prefix.

Examples  

To enable the connection redirection on slot 3:

switch:admin> iscsiSwCfg --enableconn -s 3  
The operation completed successfully.

To disable the connection redirection on slot 3:

switch:admin> iscsiSwCfg --disableconn -s 3  
The operation completed successfully.

To display the connection redirection for iSCSI blades on the switch:

switch:admin> iscsiSwCfg --showconn -s all

Number of records found: 1
Slot   ICR Status
3       Disabled

To display a target name prefix:

switch:admin> iscsiSwCfg --showgw  
Target name is: iqn.2002-12.com.brocade

To change a target name prefix:

switch:admin> iscsiSwCfg --modifygw -t iqn.2002-10.com.brocade  
The operation completed successfully.
iscsiSwCfg

See Also fosConfig, iscsiCfg, iscsiPortCfg
islShow

Displays inter-switch link (ISL) information.

Synopsis

islshow

Description

Use this command to display the current connections and status of the inter-switch link (ISL) for each port on a switch. The command output includes the following information:

- Node World Wide Name (WWN)
- Domain ID
- Switch name
- ISL connection speed, if applicable
- Bandwidth
- Trunking enabled, if applicable
- QoS enabled, if applicable

Connection speed is not applicable to LE_Ports or VE_Ports. For these port types, speed displays as “sp:------”.

Operands

none

Examples

To display the ISL connections for the switch:

```
switch:user> islshow
1: 2->300 10:00:00:05:1e:43:00:00 100 neptune sp: 8.000G bw: 32.000G TRUNK QOS
2: 8-> 3 10:00:00:05:1e:41:8a:d5 30 thor sp: 4.000G bw: 16.000G TRUNK QOS
3: 19-> 10 10:00:00:05:1e:41:43:ac 50 tomahawk sp: 8.000G bw: 64.000G TRUNK
```

See Also

switchShow, trunkShow
isnsCfm

Displays or modifies the configuration state of the iSNS client operation.

Synopsis

isnsCfm --set slot | geport -s server_ip
isnsCfm --set -m -s server_ip
isnsCfm --reregister
isnsCfm --show
isnsCfm --clear

Description

Use this command to display and update the configuration state of the iSNS client daemon.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

--set
Sets the external iSNS server IP address to perform peering to populate the
FC SCSI targets and iSCSI portal.

--show
Displays the current iSNS client configuration.

--reregister
Re-registers the iSNS objects.

--clear
Clears the configured iSNS server.

-m
Specifies the management port for communication with the iSNS server.

-slot
Specifies the slot number of an iSCSI blade in a chassis.

-geport
Specifies the port number of a GbE port in an iSCSI blade. This parameter
only supports Brocade FC4-16IP blades in Brocade 48000 directors.

-s server_ip
Specifies the IP address in dotted-decimal form.

Examples

To set the IP address of an external iSNS server with an attached GbE port:

switch:admin> isnsCfm --set 7/ge0 -s 192.168.131.124
iSNS client configuration updated:
peering with iSNS server 192.168.131.124
on slot 7, port ge0

To set an external iSNS server with an attached management port:

switch:admin> isnsCfm --set -m -s 192.168.131.124
iSNS client configuration updated:
peering with iSNS server 192.168.131.124
on the management port

To display the current configuration of the iSNS client daemon

switch:admin> isnsCfm --show
iSNS client is peering with iSNS server 192.168.250.109 on
slot 7, port ge0
Operational Status: Connected to iSNS server.
To register the iSNS objects:

```
switch:admin> isnsccfg --reregister
```
Initiated re-register of iSNS objects with iSNS server

To clear the IP address of iSNS server:

```
switch:admin> isnsccfg --clear
```
Cleared iSNS server configuration.

See Also none
itemList

Lists parameter syntax information.

Synopsis

_item_list_ = element | element white _item_list_
  
element = item | item - item
  
_item = num | slot [white]/ [white] num
  
-slot = num
  
_num = hex | int
  
_int = int digit | digit
  
_hex = 0x hex digit | hex hex digit
  
digit = 0|1|2|3|4|5|6|7|8|9
  
_hex digit = digit |A|B|C|D|E|F|a|b|c|d|e|f
  
white = *["\f\r ,"]

Description

All kernel diagnostics have at least one item list parameter to specify which ports to test. The normal default value for this parameter is to select everything.

This is not a command; rather, it is a common parameter to many commands.

If you want to restrict the items to be tested to a smaller set, the parameter value is an item list with the following characteristics:

- It is a comma-separated list of items.
- Each item in the list can be a single element or a range of elements separated by a dash character or a combination of both. For example, “0,3,4-6,1”, “0,1,3,4,5,6”, and “0 3 4 - 6 1” each select items 0, 1, 3, 4, 5, 6, and 7.
- Spaces and tab stops are skipped.
- Each item might be proceeded by an optional slot number followed by a slash (“/”).

Besides the syntax rules, there are also some grammatical restrictions on the slot numbers:

- Once specified, a slot selection applies to all items to the right of the slot selections until the next slot selection or the end of the item list. For example, “1/0 - 15” and “1/0 - 1/15” are equivalent.
- If no slot number is specified, user port lists are specified by area number. For instance, “0, 16, 32” and “1/0, 2/0, 3/0” specify the same ports on a 16-port/blade system. On that same system, “1/0, 16, 32” is not a valid list: even though it is legal syntax, the ports do not exist.
- If no slot number is specified, all lists except user port lists use the default slot 0.
- No list type except for user port lists may specify multiple conflicting slot numbers. For instance, “1/0, 2/0, 3/0” is a valid user port list but is not valid for any other type of list.

In the case of conflicting settings within a single item list, an error is generated, as described earlier. In the case of multiple item list parameters, the last one on the command line overrides previous settings.
The exact type of list varies, depending on the test and the parameter; however, the most common are blade ports and user ports. A list of blade ports is most commonly used by ASIC-level tests such as `turboRamTest` and represents which ports on the current blade (specified with `--slot number`) are tested. A list of user ports is used by higher-level tests to specify which user-accessible external ports within the current switch (selected during Telnet login) are tested. When specified in an item list, user ports might be specified by either the area portion of the ports Fibre Channel address or with `slot/port` notation. For non-blade systems, the port number on the silkscreen is the area number, so the two notations are identical.

For item list parameters, the parameter type is PT_LIST and the list type is one of those shown in Table 17.

**TABLE 17** Object descriptions

<table>
<thead>
<tr>
<th>Type</th>
<th>Grouping</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPORTS</td>
<td>Blade</td>
<td>Blade ports, internal and external ports</td>
</tr>
<tr>
<td>UPORTS</td>
<td>Switch</td>
<td>User ports, ports with external connections</td>
</tr>
<tr>
<td>QUADS</td>
<td>Blade</td>
<td>Quadrants, group of (normally four) ports</td>
</tr>
<tr>
<td>CHIPS</td>
<td>Blade</td>
<td>Chips, ASICs within a blade</td>
</tr>
<tr>
<td>MINIS</td>
<td>Blade</td>
<td>Mini-switches</td>
</tr>
<tr>
<td>SLOTS</td>
<td>Chassis</td>
<td>Slots</td>
</tr>
<tr>
<td>INDEX</td>
<td>n.a.</td>
<td>Anything</td>
</tr>
</tbody>
</table>

**Operands**  none

**Examples**  none

**See Also**  `portLoopbackTest`
killTelnet

Terminates an open Telnet session.

Synopsis

killTelnet

Description

Use this command to terminate an open Telnet session. The command lists all current Telnet and serial port login sessions and information such as session number, login name, idle time, IP address of the connection, and timestamp of when the login session was opened. The command prompts you to specify the number of the session you want to terminate. The list of open sessions displayed with killTelnet includes your current session; be sure not kill your own Telnet session.

Notes

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Examples

To terminate an open Telnet connection:

```
switch:admin> killtelnet
Collecting login information....Done
List of telnet sessions (3 found)

Session No USER TTY IDLE FROM LOGIN@
~ 0 root0 ttyS0 1:17m - 5:13pm
1 admin0 pts/0 16.00s 192.168.130.29 6:29pm
2 admin0 pts/1 3.00s 192.168.130.29 6:31pm
~

Enter Session Number to terminate (q to quit) 1
Collecting process information... Done.
You have opted to terminate the telnet session:-
logged in as "admin0 ", from "192.168.130.29 ",
since " 6:29pm" and has been inactive for "16.00s ",
the current command executed being: "-rbash ".
The device entry is: "pts/0 ".
This action will effectively kill these process(es):-
USER PID ACCESS COMMAND
/dev/pts/0 root 12868 f.... login
 root 12869 f.... login
 root 12877 f.... rbash

Please Ensure (Y/[N]): y
killing session.... Done!
Collecting login information....Done

List of telnet sessions (2 found)

~

Enter Session Number to terminate (q to quit) q
```

See Also

none
IdapCfg

Maps LDAP ADir server roles to default switch roles.

Idapcfg --maprole ldaprole switchrole
Idapcfg --unmaprole ldaprole
Idapcfg --show
Idapcfg --help

Description

Use this command to map a Lightweight Directory Access Protocol (LDAP) Active Directory (AD) server role to one of the default roles available on a switch. This command also provides an option to remove an existing mapping.

This command creates an alias for a customer-defined group which allows a user belonging to that group to login to the switch with the permissions associated with the mapped switch role.

This command supports one-to-one role mapping only. For example, you might map the “SAN administrator” role on the AD server to the “admin” role on the switch, or the “SAN maintenance” role to the switch “operator” role. But the command fails if you attempt to map an already mapped AD server role.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command takes as input an action and its associated arguments. When no operand is specified, the command prints the usage.

This command has the following operands:

--maprole Maps an LDAP role to a specified switch role. The following operands are required:

ldaprole Specifies the LDAP role to be mapped to a switch role. The role must be a valid AD server role.

switchrole Specifies the switch role to which the LDAP role is mapped. Valid switch roles include the following:

• admin
• user
• switchadmin
• zoneadmin
• fabricadmin
• basicswitchadmin
• operator
• securityadmin

--unmaprole Removes the mapping between an LDAP role and a switch role. Use the --show option for a listing of existing mappings. The following operand is required:

ldaprole Specifies the LDAP AD sever role to be removed from the mapping.
ldapCfg

--show Displays a table of existing mappings between LDAP roles and their corresponding switch role.

--help Displays command usage.

Examples

To display current LDAP and switch role map:

switch:admin> ldapcfg --show
LDAP Role	Switch Role
ldapadmin | admin
ldapuser  | user
SANfabadmin | fabricadmin
SANzoneadmin | zoneadmin
SANoperator | operator
LDAPSANsecadm | securityadmin
SANuser | user
SAN01secadm | securityadmin
LD_02zoneadmin | zoneadmin

To map an LDAP ADir role to the switch role of "operator":

switch:admin> ldapcfg --maprole SANoperator operator
LDAP role SANoperator has been successfully mapped.

switch:admin> ldapcfg --unmaprole SANoperator
LDAP role SANoperator has been successfully unmapped.

See Also aaaConfig, userConfig
licenseAdd

Adds license keys to switch.

Synopsis  licenseadd "license"

Description Use this command to add license keys to the switch.

Some features of the switch and the fabric to which it is connected are optional, licensed products. Without a license installed for such products, their services are not available.

A license key is a string of approximately 16 upper- and lowercase letters and numbers. Case is significant.

The license must be entered into the system exactly as issued. If entered incorrectly, the license might be accepted but the licensed products will not function. After entering the license, use the licenseShow command to check for correct function. If no licensed products are shown, then the license is invalid.

After you enter a license, the licensed product is available immediately and the system does not need to be rebooted. An exception to this general handling is that the switch must be rebooted if a fabric license is added to a switch that lacks a fabric license. In this case, the switch must be rebooted to allow the software to recognize the license and initialize itself correctly.

Also, there is special handling required when a trunking license is added to the switch. For a trunking license to become effective, the trunk ports need to be refreshed using the commands portDisable and portEnable or the switch must be refreshed using the commands switchDisable and switchEnable.

Operands This command has the following operand:

"license" Specify a license key, in quotation marks. This operand is required.

Examples To add a license key to the switch:

switch:admin> licenseadd "aBcDeFGh12345"
adding license key "aBcDeFGh12345"

See Also licenseRemove, licenseShow
licenseHelp

Displays commands used to administer license keys.

Synopsis  licensehelp

Description  Use this command to display a list of the commands used to administer license keys.

Operands  none

Examples  To display license commands:

switch:admin> licensehelp
licenseadd  Adds license keys to switch
licensehelp  Print license help info
licenseidshow  Displays the system license ID
licenseremove  Removes a license key from this system
licenseshow  Displays current license keys

See Also  licenseAdd, licenseIdShow, licenseRemove, licenseShow
licenseldShow

Displays the system license ID.

Synopsis  licenseldshow

Description  Use this command to display the license ID of the system.

Some features of the switch and the fabric are optional, licensed products. Without a license
installed for such products, the services provided by these features are not available.

This command displays the system license ID used for both generating and validating licenses on
the system. The license ID format is eight pairs of hexadecimal values, separated by colons. Each
hexadecimal value is between 00 (0) and FF (255).

While the format of this identifier might be similar or even identical to other identifiers in the
system, no inferences should be made about the relationships between them as they are subject to
change independently of one another.

Operands  none

Examples  To display the license ID:

    switch:admin> licenseldshow
    a4:f8:69:33:22:00:ea:18

See Also  licenseAdd, licenseHelp, licenseRemove, licenseShow
licensePort

Manages the Dynamic Ports On Demand (POD) license assignment.

Synopsis

```
licensePort --release portnum
licensePort --reserve portnum
licensePort --show
licensePort --method dynamic | static
```

Description

Use this command to manage the Dynamic Ports On Demand license assignments. In the Dynamic POD method, the ports are assigned to a POD license in order to come online until they equal the number of online licensed ports. This command provides the mechanism to make adjustments to the dynamic assignments to adjust to specific site requirements. These options are used in the case where there are more online ports than the purchased POD licenses can support.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

```
--release portnum
Releases a license assignment from a port when the switch is using the Dynamic POD method. This option can only be applied to a port that is offline.

--reserve portnum
Reserves a license assignment for a port when the switch is using the Dynamic POD method. This option can only be applied to a port that is offline. The port number is the number of the port to which to assign or from which to remove a POD license.

--show
Displays the POD license assignments.

--method Selects the POD method.
dynamic Selects Dynamic POD method.
static Selects Static POD method.
```

Examples

To release and reserve a port from a Dynamic POD license assignment:

```
switch:admin> licensePort --release 5
```

To reserve a Dynamic POD license assignment for a port:

```
switch:admin> licensePort --reserve 5
```

To change the POD license method to the Dynamic method:

```
switch:admin> licensePort --method dynamic
```

To display the POD license assignments:

```
switch:admin> licensePort --show
20 ports are available in this switch
1 POD license is installed
```
Dynamic POD method is in use
15 port assignments are provisioned for use in this switch:
10 port assignments are provisioned by the base switch license
5 port assignments are provisioned by the first POD license
* 5 more assignments are added if the second POD license is installed
15 ports are assigned to installed licenses:
10 ports are assigned to the base switch license
5 ports are assigned to the first POD license
Ports assigned to the base switch license:
0, 1, 2, 3, 4, 5, 6, 7, 15, 16
Ports assigned to the first POD license:
8, 9, 17, 18, 19
Ports assigned to the second POD license:
10, 11, 12, 13, 14
[Note: these ports cannot be activated due to an insufficient number of installed POD licenses. Use licensePort -release to allow these ports to be reassigned.]
Ports not assigned to a license:
None
0 license reservations are still available for use by unassigned ports

See Also  licenseAdd, licenseRemove, licenseShow, licenseHelp
licenseRemove

Removes the license key from the system.

Synopsis

licenseRemove "license"

Description

Use this command to remove an existing license key from a switch. The existing license key must be entered exactly as shown by licenseShow, including case.

When the key has been entered, use the licenseShow command to verify that the key has been removed and the licensed product uninstalled.

After removing a license key, the switch must be rebooted. With no license key, licenseShow displays “No licenses.”

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

The following operand is required:

"license" Specify the license key, in quotation marks. This operand is required.

Examples

To remove a license key from the switch:

switch:admin> licenseRemove "bQebzbRdScRfc0iK"
removing license key "bQebzbRdScRfc0iK"

See Also

licenseAdd, licenseHelp, licensesldShow, licenseShow
licenseShow

Displays current license keys.

Synopsis   licenseShow

Description Use this command to display current license keys, along with a list of licensed products enabled by these keys. The message "No license installed on this switch" is displayed when no licenses are installed. For temporary licenses, the expiration date is shown. An expiration notice indicates expired temporary licenses. When no licenses are installed, the command displays "No license installed on this switch."

Operands none

Examples To display the license keys on a switch with permanent licenses installed:

switch:admin> licenseShow
S9ddb9SqbTAcceC:
  Fabric license
eeeRYsff0fSe:
  Remote Switch license
bzbzRcbcSc0c0SY:
  Remote Fabric license
dSeR9RcSeeTfSAq:
  Extended Fabric license
RyeSzRScycTzfT09:
  Entry Fabric license
RyeSzRScycUzfT0A:
  Fabric Watch license
RyeSzRScyczafT0G:
  Trunking license
RyeSzRScycS0fT09:
  4 Domain Fabric license
RyeSzRScycS1fT0A:
  FICON_CUP license

To display the license keys on a switch with temporary (expired) licenses installed:

switch:admin> licenseShow
33YbfZfKZ3tQKrRJReRtgmS3JDtCL99P4fYrJYQP7GffS4ASmNE:
  Enterprise Bundle license
  Expiry Date 01/16/2008
  License is expired

See Also  licenseAdd, licenseHelp, licenseIdShow, licenseRemove
linkCost

Sets or displays the Fabric Shortest Path First (FSPF) cost of a link.

Synopsis

```
linkCost [[slotnumber/]portnumber [cost]]
```

Description

Use this command to set or display the cost of an interswitch link (ISL). The cost of a link is a dimensionless positive number. The FSPF protocol compares the cost of various paths between a source switch and a destination switch by adding the costs of all the ISLs along each path. FSPF chooses the path with minimum cost. If multiple paths exist with the same minimum cost, FSPF distributes the load among these paths.

Every ISL has a default cost that is inversely proportional to its bandwidth. For a 1 Gbps ISL, the default cost is 1000. For a 2 Gbps ISL, the default cost is 500. This simple algorithm is not effective when dealing with trunking ISLs greater than 2 Gbps and less than 1 Gbps bandwidths. Link cost default values are shown in Table 18.

**TABLE 18** Link cost defaults

<table>
<thead>
<tr>
<th>Link type</th>
<th>Link cost (ISL bandwidth in Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 1 Gbps ISL</td>
<td>2000</td>
</tr>
<tr>
<td>1 Gbps ISL</td>
<td>1000</td>
</tr>
<tr>
<td>2-Gbps ISL</td>
<td>500</td>
</tr>
<tr>
<td>&gt; 2 Gbps trunks</td>
<td>500</td>
</tr>
<tr>
<td>4 Gbps ISL</td>
<td>500</td>
</tr>
<tr>
<td>8 Gbps ISL</td>
<td>500</td>
</tr>
<tr>
<td>10 Gbps ISL</td>
<td>500</td>
</tr>
</tbody>
</table>

When executed without operands, the command displays the current cost of each port on the switch, including non-ISLs. An E_PORT suffix is appended to the interface number of active ISLs. If a static cost is assigned to a port, a STATIC suffix is appended to the link cost. In this case, only the current link cost displays. Use interfaceShow to display both the default and current link costs.

Notes

This command sets a non-default, “static” cost for any port except EX/VEX ports. Use fcrRouterPortCost to configure EX/VEX ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

When invoked without operands, this command displays the cost for all ports. The following operands are optional:

- `slotnumber` For bladed systems only, specify the slot number for which to set or display the cost, followed by a slash (/).
- `portnumber` Specify the port number for which to set or display the cost, relative to its slot for bladed systems. Use switchShow to list of valid ports.
### linkCost

**cost**

Specify the static cost of the link connected to the specified port. Valid values are 0 to 65,535. Assigning a value outside this range will fail and generate an error. A value of 0 removes the static cost and the port reverts to its default link cost. If cost is not specified, the command displays the current cost of the specified port.

#### Examples

To display the link costs for all ports on a switch:

```
switch:admin> linkcost
Slot Interface Cost

 2 0 500 (STATIC)
 2 1 1000
 2 2 500 (STATIC)
 2 3 200 (STATIC)
 2 4 1000
 2 5 1000
 2 6 1000
 2 7 1000
 2 8 1000
 2 9 1000
 2 10 1000
 2 11 (E_PORT) 2000 (STATIC)
 2 12 1000
 2 13 1000
 2 14 1000
 2 15 1000
```

Type <CR> to continue, Q<CR> to stop:

To set the ISL cost on a port:

```
switch:admin> linkcost 2/4 500
```

To display the new cost value on the same port:

```
switch:admin> linkcost 2/4
Interface2/4 Cost 500 (STATIC)
```

To delete the cost value and reset to default:

```
switch:admin> linkcost 2/4 0
```

To display the change:

```
switch:admin> linkcost 2/4
Interface2/4 Cost 1000
```

#### See Also

`interfaceShow`, `IsDbShow`, `topologyShow`, `uRouteShow`, `fcrRouterPortCost`
login

Logs in as new user.

Synopsis

    login

Description

Use this command to log in to the switch with another user name and password, without first logging out from the original session. If you originally connected through a Telnet or rlogin session, that session is left open.

This command allows you to access commands that you cannot access at your current user level.

Operands none

Examples

To log in as admin from the login user:

    switch:user> login
    login:  admin
    Password:  xxxxxx

See Also

logout
logout

Logs out from a shell session.

Synopsis logout

Description Use this command to log out from a shell session. Remote login connections are closed and the local serial connections return to the login prompt. The exit command is accepted as a synonym for logout, as is Ctrl-D at the beginning of a line.

Operands none

Examples To log out from an rlogin session:

switch:admin> logout

See Also login
IsanZoneShow

Displays logical SAN zone information.

Synopsis

Isanzoneshow [-s] [-f fabricid] [-w wwn] [-z zonename]

Description

Use this command to display the inter-fabric zones or LSAN zones. These zones are normal WWN zones created in FC Router EX_Port-connected fabrics and backbone fabrics. The LSAN zones are identified by the text string “lsan_” in the zone name. Note that the string is case insensitive so “LSAN_” also is valid. The FC Router uses these zones to establish the inter-fabric device import and export policy. The LSAN zones are established by zoning administration in each EX_Port-attached fabric and backbone fabric. Inter-fabric device sharing is allowed between two devices if the LSAN zones defined in their respective fabrics both allow the two devices to communicate; for example, the intersection of LSAN zones in two fabrics define the device sharing policy.

The LSAN zones are listed by fabric. Zone membership information (information about the devices in the zone) is provided for each LSAN zone. The default output displays only WWNs of the zone members.

Search parameters -f, -w, and -z allow searching for LSAN zones based on fabric ID, WWN of an LSAN zone member, or LSAN zone name.

"No LSAN zone found" is displayed if there is no LSAN zone information available at this FC Router.

Each LSAN zone entry displays the following:

- Fabric ID
- Zone Name
- Zone Members

Fabric ID
The ID of the fabric in which the LSAN zone was created.

Zone Name
The zone name.

Zone Members
The zone members or devices. The default output displays the WWN of the zone members.

Operands

This command has the following operands:

- **-s**
  Displays state information for the device. Valid states include:
  - Configured
    Device is configured to be in an LSAN, but the device is neither imported nor exists in this fabric.
  - Initializing
    Device is in an intermediate state. It is not yet imported into the fabric.
  - EXIST
    Device exists in this fabric (the fabric of the zone entry).
  - Imported
    Device has been imported (proxy created) into this fabric.

- **-f fabricid**
  Displays LSAN zones in the specified fabric.

- **-w wwn**
  Displays LSAN zones containing the specified port WWN. The WWN format is x:xx:xx:xx:xx:xx:xx:xx.

- **-z zonename**
  Displays LSAN zones with the specified zone name. The database for zones is displayed per switch, which can differ from the database stored on the other FCR switches.
Examples

To display the LSAN zones:

```
switch:admin> lsanzoneshow
Fabric ID: 4 Zone Name: lsan_fcr10_0
 50:05:07:65:05:84:0b:83
 50:05:07:65:05:84:09:0e
 10:00:00:00:c9:2b:6a:68
 21:00:00:20:37:18:22:55
Fabric ID: 5 Zone Name: lsan_fcr11_0
 10:00:00:00:c9:2b:6a:68
 21:00:00:20:37:18:22:55
 50:05:07:65:05:84:0b:83
 50:05:07:65:05:84:09:0e
switch#
```

See Also

fcrFabricShow, fcrPhyDevShow, fcrProxyDevShow, fcrRouteShow, switchShow
lsDbShow

Displays the Fabric Shortest Path First (FSPF) link state database.

Synopsis

lsdbshow [domain]

Description

Use this command to display an FSPF link state database record for switches in the fabric, or one domain within it.

There are two types of database entries:

1. The link state database entry, which is permanently allocated.
2. The link state record (LSR), which is allocated when a switch is connected to the fabric.

The LSR describes the links between connected domains in a fabric. For a link to be reported in the LSR, the neighbor for that link must be in NB_ST_FULL state.

This command displays the content of both types of database entries, if both are present, as shown in Table 19.

**TABLE 19**  lsDbShow display fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Domain number described by this LSR. A (self) keyword after the domain number indicates that LSR describes the local switch.</td>
</tr>
<tr>
<td>lsrP</td>
<td>Pointer to LSR.</td>
</tr>
<tr>
<td>earlyAccLSRs</td>
<td>Number of LSRs accepted, even though they were not sufficiently spaced apart.</td>
</tr>
<tr>
<td>ignoredLSRs</td>
<td>Number of LSRs not accepted because they were not sufficiently spaced apart.</td>
</tr>
<tr>
<td>lastIgnored</td>
<td>Last time an LSR was ignored.</td>
</tr>
<tr>
<td>installTime</td>
<td>Time this LSR was installed in the database, in seconds since boot.</td>
</tr>
<tr>
<td>lsCapsFlags</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>uOutIfs</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>uPathCost</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>uOldHopCount</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>uHopsFromRoot</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>mOutIfs</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>parent</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>mPathCost</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>mHopsFromRoot</td>
<td>Internal variable.</td>
</tr>
<tr>
<td>lsAge</td>
<td>Age, in seconds, of this LSR. An LSR is removed from the database when its age exceeds 3,600 seconds.</td>
</tr>
<tr>
<td>reserved</td>
<td>Reserved for future use.</td>
</tr>
<tr>
<td>type</td>
<td>Type of the LSR. Always 1.</td>
</tr>
<tr>
<td>options</td>
<td>Always 0.</td>
</tr>
<tr>
<td>lsId</td>
<td>ID of this LSR. It is identical to the domain number.</td>
</tr>
</tbody>
</table>
Operands

This command has the following operand:

domain  Specify the domain number of the LSR to be displayed. This operand is optional; if omitted, the entire link state database is displayed.

Examples

To display the link state record for a switch:

```
switch:admin> lsdbshow 1
Domain = 1 (self), Link State Database Entry pointer = 0x1004d430
lsrP = 0x10053d18
earlyAccLSRs = 0
ignoredLSRs = 0
lastIgnored = Never
installTime = Apr 02 22:25:30.159
lseFlags = 0xa
uOutIfsP[0] = 0x00000000
uOutIfsP[1] = 0x00000000
uPathCost = 0
uOldHopCount = 0
mOutIfsP[0] = 0x00000000
mOutIfsP[1] = 0x00000000
parent = 0xb5
mPathCost = 0
mHopsFromRoot = 0
Link State Record:
Link State Record pointer = 0x10053d18
lsAge = 16
reserved = 0
type = 1
options = 0x0
lsId = 1
```

TABLE 19  lsDbShow display fields  (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>advertiser</td>
<td>ID (domain number) of the switch that originated this LSR.</td>
</tr>
<tr>
<td>incarn</td>
<td>Incarnation number of this LSR.</td>
</tr>
<tr>
<td>length</td>
<td>Total length, in bytes, of this LSR. Includes header and link state</td>
</tr>
<tr>
<td></td>
<td>information for all links.</td>
</tr>
<tr>
<td>checksum</td>
<td>Checksum of total LSR, with exception of lsAge field.</td>
</tr>
<tr>
<td>linkCnt</td>
<td>Number of links in this LSR. Each link represents a neighbor in</td>
</tr>
<tr>
<td></td>
<td>NB_ST_FULL state.</td>
</tr>
<tr>
<td>flags</td>
<td>Always 0.</td>
</tr>
<tr>
<td>LinkId</td>
<td>ID of this link. It is the domain number of the switch on the other side of</td>
</tr>
<tr>
<td></td>
<td>the link.</td>
</tr>
<tr>
<td>out port</td>
<td>Port number on the local switch.</td>
</tr>
<tr>
<td>rem port</td>
<td>Port number of the port on the other side of the link.</td>
</tr>
<tr>
<td>cost</td>
<td>Cost of this link. The default cost for a 1 Gbps link is 1,000.</td>
</tr>
<tr>
<td>costCnt</td>
<td>Always 0.</td>
</tr>
<tr>
<td>type</td>
<td>Always 1.</td>
</tr>
</tbody>
</table>

Fabric OS Command Reference
 workforcein "advertiser = 1
incarn = 0x80000014
length = 284
chksum = 0x8453
linkCnt = 16, flags = 0x0
LinkId = 2, out port = 16, rem port = 48, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 17, rem port = 49, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 18, rem port = 50, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 19, rem port = 51, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 24, rem port = 56, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 25, rem port = 57, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 26, rem port = 58, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 27, rem port = 59, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 32, rem port = 0, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 33, rem port = 1, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 34, rem port = 2, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 35, rem port = 3, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 44, rem port = 12, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 45, rem port = 13, cost = 500, costCnt = 0, type = 1
LinkId = 2, out port = 46, rem port = 14, cost = 500, costCnt = 0, type = 1
Link
d = 2, out port = 47, rem port = 15, cost = 500, costCnt = 0, type = 1

The local switch has sixteen links in NB_ST_FULL state, all of them are connected to switch 2.

See Also interfaceShow, nbrStateShow
memShow

Displays the amounts of free and used memory in a switch.

Synopsis  memshow [-b | -k | -m]

Description Use this command to display free and used memory in the switch, as well as the shared memory and buffers used by the kernel.

Operands This command has the following operands:

- **-b** Specify to display memory usage in bytes.
- **-k** Specify to display memory usage in kilobytes.
- **-m** Specify to display memory usage in megabytes. By default, memory usage is displayed in bytes.

Examples To view the memory usage:

```
switch:admin> memshow
Mem: 129740800 112562176 17178624 0 139264 30396416
Swap: 0 0 0

switch:admin> memshow -m
Mem: 123 107 16 0 0 28
Swap: 0 0 0
```

See Also  supportSave
miniCycle

Runs a functional test of internal and external transmit and receive paths at full speed.

Synopsis  

```
minicycle [-slot slotnumber][-nmegs count][-lb_mode mode][-spd_mode mode][-splb_mode 0 | 1] [-ports itemlist]
```

Description  

Use this command to verify the intended functional operation of an ASIC pair (miniswitch) at the maximum or selected speed by setting up the routing hardware so that frames received by port M are retransmitted by way of port N. Likewise, frames received by port N are retransmitted by way of port M. Each port M sends two frames to its partner, port N.

This test is run as a series of eight path tests. Each port on the ASIC pair is exchanging frames with one port on the adjacent ASIC in the same miniswitch. At the end of a path test, the frames are captured and the routing is changed so that each port exchanges frames with the next port on the adjacent ASIC of the same miniswitch.

A port is only exchanging frames with one other port at a time under the miniCycle command. All ports are active and exchanging frames simultaneously.

The path number being tested determines the partner port N for each port M:

- path 0: 0-8, 1-9, 2-10, 3-11, 4-12, 5-13, 6-14, 7-15
- path 1: 7-8, 0-9, 1-10, 2-11, 3-12, 4-13, 5-14, 6-15
- path 2: 6-8, 7-9, 0-10, 1-11, 2-12, 3-13, 4-14, 5-15
- path 3: 5-8, 6-9, 7-10, 0-11, 1-12, 2-13, 3-14, 4-15
- path 4: 4-8, 5-9, 6-10, 7-11, 0-12, 1-13, 2-14, 3-15
- path 5: 3-8, 4-9, 5-10, 6-11, 7-12, 0-13, 1-14, 2-15
- path 6: 2-8, 3-9, 4-10, 5-11, 6-12, 7-13, 0-14, 1-15
- path 7: 1-8, 2-9, 3-10, 4-11, 5-12, 6-13, 7-14, 0-15

The port numbers are relative to the ASIC pair. This test does not route frames from one ASIC pair to another. Ports cabled to other ports fail if port loopback mode is selected.

If port loop back mode is selected, port must have media and loopback plugs installed.

For best coverage, you should use self-loopback plugs and port loopback mode (-lb_mode 1) so that each port's external connectivity is tested.

The frames are continuously transmitted and received in all ports in parallel. The port LEDs flicker green rapidly while the test runs.

For each path, the path test performs the following steps:

1. Clears port statistics and error counters.
2. Enables ports for specified self-loopback mode.
3. Configures the routing table so that when port M receives frames, the frames are routed back to the partner port N and vice versa.
4. Transmits two frames by way of port M and two frames by way of port N. The following four patterns will be used for the four frames, one pattern each:
   a. 1000 bytes of CSPAT
   b. 480 bytes of RDRAM_PAT
   c. 2112 bytes of BYTE_LFSR
d. 200 bytes of RANDOM

5. Periodically checks for the following conditions:
   a. Each port has not died.
   b. Each port’s frames-transmitted counter is still incrementing.
   c. Each port’s statistic error counters are nonzero:
       ENC_in, CRC_err, TruncFrm, FrmTooLong, BadEOF, Enc_out, BadOrdSet, DiscC3

6. Status is checked until one of the following conditions is met:
   - The number of frames requested is met on all selected ports.
   - All ports are eventually marked bad.
   - You abort the procedure.

The path test is repeated for each path, unless it is aborted by a keyboard interrupt. The data is not read and checked as in the portLoopbackTest. There is no CPU intervention during a path test besides the periodic checks of the hardware counters. At the end of a path test, all statistics and routes are reset for the next path test.

An example of the data used is as follows:

- CSPAT:       0x7e, 0x7e, 0x7e, 0x7e, ...
- RDRAM_PAT:   0xff, 0x00, 0xff, 0x00, ...
- BYTE_LFSR:   0x69, 0x01, 0x02, 0x05, ...
- RANDOM:      0x25, 0x7f, 0x6e, 0x9a, ...

Because this test includes the media and the fibre cable loopback plug in its test path, its results combined with the results of portLoopbackTest can determine which components of the switch are faulty.

Notes

The Brocade DCX backbone cannot negotiate to 1 Gbps speed. Setting spd_mode to 1 is invalid for this platform.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands

The following operands are optional:

- **--slot slotnumber**
  Specifies the slot number for which to run the diagnostics. The ports specified are relative to this slot number. The default is set to 0 and designed to operate on fixed port-count products.

- **-nmegs count**
  Specifies the number of million frames to send per path test. The path test progresses until the specified number of frames has been transmitted on each port. The default value for count is 1, so the total number of frames sent will be at least 8 million (1 million frames * 8 paths).

- **-lb_mode mode**
  Specifies the loopback point for the test. By default, miniCycle uses external (SERDES) loopback. Valid values are:

    1  Port Loopback (loopback plugs)
    2  External (SERDES) loopback
    5  Internal (parallel) loopback
7 Backend bypass and port loopback
8 Backend bypass and SERDES loopback
9 Backend bypass and internal loopback

**-spd_mode mode** Specifies the speed mode for the test. This parameter controls the speed at which each port operates. For 1 Gbps-only products, this parameter is ignored. The exact operation of modes 5 through 8 depends on the loopback mode selected. When speed modes 5 through 8 are used with cables, they must be connected EVEN->ODD or the test fails.

0 Run test at 1 Gbps, 2 Gbps, and 4 Gbps (default).
1 Set all port speeds to lock at 1 Gbps.
2 Set all port speeds to lock at 2 Gbps.
4 Set all port speeds to lock at 4 Gbps.
8 Set all port speeds to lock at 8Gbps.

For -lb_mode set to 1, the following speed modes are available to test the speed negotiation.

3 Set speed on all even ports to auto-negotiate. Set speed on all odd ports to 1 Gbps.
4 Set speed on all even ports to auto-negotiate. Set speed on all odd ports to 2 Gbps.
5 Set speed on all odd ports to auto-negotiate. Set speed on all even ports to 1 Gbps.
6 Set speed on all odd ports to auto-negotiate. Set speed on all even ports to 2 Gbps.

For -lb_mode set to 2, the following speed modes are available to test FIFO underrun.

3,5 Set speed on all even ports to 2 Gbps. Set speed on all odd ports to 1 Gbps.
4,6 Set speed on all even ports to 1 Gbps. Set speed on all odd ports to 2 Gbps.

**-splb_mode 0 | 1** Specifies a special loopback mode for minicycle. The regular minicycle test routes two ports together and spins frames between them. In splb_mode, ports are not routed. Each port spins frames to themselves. This test resembles a spinning version of porLoopBackTest. Note that in splb_mode, the test will do one pass only on path 8.

**splb_mode** is either on (1) or off (0). The default is off (0).

**-ports itemlist** Specifies a list of blade ports to test. By default, all the blade ports in the specified slot (-slot) are used. Refer to itemlist for further details. If all ports in the ASIC pair are not specified, only paths between selected ports are tested.

ASIC-pair 0: -ports 0-15
ASIC-pair 1: -ports 16-31
ASIC-pair 2: -ports 32-47
ASIC-pair 3: -ports 48-63
**Examples**

To run a functional test on slot 1 using external (SERDES) loopback:

```bash
switch:admin> minicycle --slot 1 -lb_mode 2
```

Running minicycle ..............
One moment please ...
Path 0 ... Spinning ...
Path 1 ... Spinning ...
Path 2 ... Spinning ...
Path 3 ... Spinning ...
Path 4 ... Spinning ...
Path 5 ... Spinning ...
Path 6 ... Spinning ...
Path 7 ... Spinning ...
Test Complete: minicycle Pass 1 of 1
Duration 0 hr, 1 min & 4 sec (0:1:4:409).
passed.

To run a functional test on ports 0, 1, 2, and 8 using port loopback:

```bash
switch:admin> minicycle -ports 0,1,2,8 -lb_mode 1
```

Back Plane Loop Back mode is ON.
Running mini Cycle ..............
One moment please ...
Path 0 ... Spinning ...
Path 1 ... skipped.
Path 2 ... skipped.
Path 3 ... skipped.
Path 4 ... skipped.
Path 5 ... skipped.
Path 6 ... Spinning ...
Path 7 ... Spinning ...
Test Complete: "minicycle" Pass 1 of 1
Duration 0 hr, 0 min & 23 sec (0:0:23:100).
passed.

**Diagnostics**

If the test detects failures, it reports one or more of the following error messages:

- DATA
- EPI1_STATUS_ERR
- ERR_STATS_2LONG
- ERR_STATS_BADEOF
- ERR_STATS_BADOS
- ERR_STATS_C3DISC
- ERR_STATS_CRC
- ERR_STATS_ENCIN
- ERR_STATS_ENCOUT
- ERR_STATS_TRUNC
- ERR_STAT_2LONG
- ERR_STAT_BADEOF
- ERR_STAT_BADOS
- ERR_STAT_C3DISC
- ERR_STAT_CRC
- ERR_STAT_ENCIN
- ERR_STAT_ENCOUT
- ERR_STAT_TRUNC
- FDET_PERR
- FINISH_MSG_ERR
Refer to the Fabric OS Message Reference for more information.

See Also  itemList, portLoopbackTest
msCapabilityShow

Displays the Management Server (MS) capabilities.

Synopsis mscapabilityshow

Description Use this command to display the supported capabilities of the Management Server for each switch in the fabric. An asterisk displays next to the name of the local switch.

Notes Reliable commit service (RCS) is a fabric-wide capability and is supported only if all the switches in the fabric support the service.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To display the supported MS capabilities for each switch in the fabric:

switch:admin> mscapabilityshow

Switch WWN         Capability  Switch Name
========================   ==========  ========
10:00:00:60:69:20:15:71    0x0000008f  "switch1"*
10:00:00:60:69:00:30:05    0x0000008f  "switch2"

Capability Bit Definitions:
  Bit 0: Basic Config Service Supported.
  Bit 1: Platform Management Service Supported.
  Bit 2: Topology Discovery Service Supported.
  Bit 3: Unzoned Name Service Supported.
  Bit 4: Fabric Zone Service Supported.
  Bit 5: Fabric Lock Service Supported.
  Bit 6: Time Service Supported.
  Bit 7: RSCN Small Payload Supported.
  Bit 8: Reliable Commit Service(RCS) Supported.
  Bit 9: Access Gateway Registration/Discovery Supported.
  Bit 10: Administrative Domains(AD) Supported.
  Others: Reserved.

See Also mscConfigure, msPIMgmtActivate, msPIMgmtDeactivate, msTdDisable, msTdEnable, msTdReadConfig
msConfigure

Configures the Management Server (MS) access control list (ACL).

Synopsis  msconfigure

Description Use this command to configure the MS Access Control List (ACL). The MS allows a Storage Area Network (SAN) management application to retrieve and administer the fabric and Interconnect Elements, such as switches. This application is located at the Fibre Channel well-known address, 0xFFFFFA.

If the MS ACL is empty (default), The MS is available to all systems connected to the fabric. By populating the MS ACL with one or more World Wide Names (WWNs), you can restrict access to MS to the specified WWNs.

This command is interactive and provides the following choices:

0  Done
1  Display the access list
2  Add member based on its port/node WWN
3  Delete member based on its port/node WWN

When changing the MS ACL by adding or deleting WWNs, you are prompted to save the new configuration to nonvolatile storage. The saved MS ACL becomes effective upon reboot.

The MS ACL is implemented on a per-switch basis and should be configured on the switch to which the management application is directly connected.

Notes  When FCS policy is enabled, the MS ACL is not used. In such a case, access to MS is controlled by security by way of the MS_POLICY configuration.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is supported only in ADO and AD255 contexts.

Operands  none

Examples  To display the MS ACL:

    switch:admin> msconfigure

    0       Done
    1       Display the access list
    2       Add member based on its port/node WWN
    3       Delete member based on its port/node WWN

    select : (0..3) [1] 1

    MS Access List consists of (5): {
    20:01:00:60:69:00:60:10
    20:02:00:60:69:00:60:10
    20:03:00:60:69:00:60:10
    20:02:00:60:69:00:60:03
    20:02:00:60:69:00:60:15

}
0       Done
1       Display the access list
2       Add member based on its Port/Node WWN
3       Delete member based on its Port/Node WWN
select : (0..3) [1] 0

done ...

See Also msCapabilityShow, msPlatShow, msPIClearDB, msPIMgmtActivate, msPIMgmtDeactivate, msTdDisable, msTdEnable, msTdReadConfig, secPolicyShow
msPlatShow

Displays the Management Server (MS) platform database.

Synopsis  msplatshow

Description Use this command to display information from the MS platform database. This command displays the name of each platform object with the platform type (GATEWAY, HOST_BUS_ADAPTER, and so forth), associated management addresses, and associated node names.

Operands none

Examples To display the MS platform database for a fabric:

switch:admin> msplatshow
-----------------------------------------------------------
Platform Name: [9] "first obj"
Platform Type: 5 : GATEWAY
Number of Associated M.A.: 1
Associated Management Addresses:
Number of Associated Node Names: 1
Associated Node Names:
10:00:00:60:69:20:15:71
-------------------------------------------------------------
Platform Name: [10] "second obj"
Platform Type: 7 : HOST_BUS_ADAPTER
Number of Associated M.A.: 1
Associated Management Addresses:
Number of Associated Node Names: 2
Associated Node Names:
10:00:00:60:69:20:15:79
10:00:00:60:69:20:15:75

See Also  msCapabilityShow, msConfigure, msPlatShowDBCB, msPlClearDB, msPlMgmtActivate, msPlMgmtDeactivate
msPlatShowDBCB

Displays the Management Server (MS) platform service database control block.

Synopsis    msPlatShowDBCB

Description Use this command to display the control block fields associated with the platform database.

Operands   none

Examples  To display the MS platform service database control block:

switch:admin> msPlatShowDBCB
   Domain   Worldwide Name      Retry Count  Exchange Status
  -----------------------------
     3: 10:00:00:60:69:51:10:e6     0             0x2
  -----------------------------
  msPlDBCB.peerWwn == 00:00:00:00:00:00:00:00.
  msPlDBCB.psPeerWwn == 00:00:00:00:00:00:00:00.
  msPlDBCB.replicate == 0.
  msPlDBCB.fabMaySeg == 255.
  msPlDBCB.enabled == 1.

See Also    msCapabilityShow, msConfigure, msPlatShow, msPlClearDB, msPIMgmtActivate, msPIMgmtDeactivate
msPlClearDB

Clears the Management Server (MS) platform database on all switches in the fabric.

Synopsis

msPlClearDB

Description

Use this command to clear the MS platform database in the entire fabric. Because this operation cannot be undone, it should not be performed unless it is intended to resolve a database conflict between two joining fabrics or to establish an entirely new fabric with an empty database.

Notes

When FCS policy is enabled, this command can be issued only from the primary FCS switch.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is supported only in AD0 and AD255 contexts.

Operands

none

Examples

To clear the MS platform database:

```
switch:admin> msPlClearDB

MS Platform Service is currently enabled.
This will erase MS Platform Service Database in the entire fabric.

Would you like to continue this operation? (yes, y, no, n): [no] y

Request to MS Platform DB Clear operation in progress....

*Completed clearing MS Platform Service Database!!
```

See Also

msCapabilityShow, msConfigure, msPlatShow, msPlatShowDBCB, msPIMgmtActivate, msPIMgmtDeactivate
Activates the Management Server (MS) platform service.

Synopsis

mspImgmtactivate

Description

Use this command to activate the MS platform service throughout the fabric. This command attempts to activate the MS platform service for each switch in the fabric. The change takes effect immediately and is committed to the configuration database of each affected switch. MS activation is persistent across power cycles and reboots.

Notes

By default, the MS platform service is disabled.

Before issuing this command, run msCapabilityShow to verify that all switches in the fabric support the MS platform service; if one switch does not support the service, the command fails.

When FCS policy is enabled, this command can be issued only from the primary FCS switch.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is supported only in ADO and AD255 contexts.

Operands

none

Examples

To activate the MS platform service:

switch:admin> mspImgmtactivate

Request to activate MS Platform Service in progress......

*Completed activating MS Platform Service in the fabric!

See Also

msCapabilityShow, msPlatShow, msPlClearDB, mspImgmtDeactivate
msPlMgmtDeactivate

Deactivates the Management Server (MS) platform service.

Synopsis

msPlMgmtDeactivate

Description

Use this command to deactivate the MS platform service throughout the fabric. This command deactivates the MS platform service for each switch in the fabric and commits the change to nonvolatile storage.

Notes

When FCS policy is enabled, this command can be issued only from the primary FCS switch.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is supported only in ADO and AD255 contexts.

Operands

none

Examples

To deactivate the MS platform service on all switches in the fabric:

switch:admin> msPlMgmtDeactivate

MS Platform Service is currently enabled.

This will erase MS Platform Service configuration information as well as database in the entire fabric.

Would you like to continue this operation? (yes, y, no, n): [no] y

Request to deactivate MS Platform Service in progress......

*Completed deactivating MS Platform Service in the fabric!

See Also

msCapabilityShow, msConfigure, msPlatShow, msPlatShowDBCB, msPiclearDB, msPlMgmtActivate
msTdDisable

Disables the Management Server (MS) topology discovery service.

Synopsis  mstddisable ["ALL"]

Description Use this command to disable the management server topology discovery service on a local switch or an entire fabric. This change takes effect immediately and commits to the configuration database for all affected switches. The change is persistent across power cycles and reboots.

Notes Topology Discovery Management requires the attached devices (including attached switches) to support request node identification data (RNID) extended link service (ELS).

When FCS policy is enabled, and this command is issued with the "ALL" operand, it can be issued only from the primary FCS.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is supported only in AD0 and AD255 contexts.

Operands The following operand is optional:

"ALL" Disables the MS topology discovery service throughout the entire fabric. This operand must be enclosed in double quotation marks.

Examples To disable the MS topology discovery service on the local switch only:

switch:admin> mstddisable
This may erase all NID entries. Are you sure? (yes, y, no, n): [no] y
Request to disable MS Topology Discovery Service in progress....
done.
*MS Topology Discovery disabled locally.

To disable MS topology discovery on all the switches in the fabric:

primaryfcs:admin> mstddisable "ALL"
This may erase all NID entries. Are you sure? (yes, y, no, n): [no] y
Request to disable MS Topology Discovery Service in progress....
done.
*MS Topology Discovery disabled locally.
*MS Topology Discovery Disable Operation Complete!!

See Also  msTdEnable, msTdReadConfig
msTdEnable

Enables the Management Server (MS) topology discovery service.

Synopsis

mstdenable "["ALL"]"

Description

Use this command to enable the MS topology discovery service on the local switch or throughout the fabric. The change takes effect immediately and commits to the configuration database for all affected switches. The change is persistent across power cycles and reboots.

Notes

Topology Discovery Management requires the attached devices (including attached switches) to support request node identification data (RNID) extended link service (ELS).

When FCS policy is enabled, and this command is issued with the "ALL" operand, it can be issued only from the primary FCS.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is supported only in AD0 and AD255 contexts.

Operands

The following operand is optional:

"ALL" Enables the MS topology discovery service throughout the fabric. This operand must be enclosed in double quotation marks.

Examples

To enable the MS topology discovery service on the local switch:

switch:admin> mstdenable

Request to enable MS Topology Discovery Service in progress....
done.
*MS Topology Discovery enabled locally.

To enable MS topology discovery on all switches in the fabric:

switch:admin> mstdenable "ALL"

Request to enable MS Topology Discovery Service in progress....
done.
*MS Topology Discovery enabled locally.
*MS Topology Discovery Enable Operation Complete!!

See Also

mstdDisable, mstdReadConfig
msTdReadConfig

Displays the status of The Management Server (MS) topology discovery service.

Synopsis mstdreadconfig

Description Use this command to check whether or not the management server topology discovery service is enabled.

Operands none

Examples To display the status of the topology discovery service:

```
switch:admin> mstdreadconfig
*MS Topology Discovery is enabled.
```

See Also msCapabilityShow, msConfigure, msPIMgmtActivate, msPIMgmtDeactivate, msTdDisable, msTdEnable
myid

Displays the current login session details.

Synopsis  myid

Description Use this command to display the status of the system and the login session details. This includes IPv4 or IPv6 addresses associated with the login session.

The login session gives details of the following:
- CP/switch (or console/serial port) used to log in.
- The IP address of the current login session for Telnet or the name of the current console port or the serial port (if modem login used).
- The current CP mode (Active, Standby, or Unknown).
- The current system status (Redundant, Non-Redundant, or Unknown).

Operands none

Examples To display current login information:

switch:admin> myid
Current Switch: switch
Session Detail: switch (123.123.123.123) Active Redundant

See Also version
nbrStateShow

Displays the state of FSPF neighbors.

**Synopsis**

```
nbrstateshow [slotnumber/][portnumber]
```

**Description**

Use this command to display information about fabric shortest path first (FSPF) neighbors to the local switch or information about a neighbor to a specified port. FSPF defines a neighbor as a remote E_Port interface that is directly attached to the local switch. However, if ports are trunked, the command displays data only about the trunk master. The command displays the following fields:

- **Local Domain ID**: Domain number of local switch.
- **Local Port**: E_Port (interface) on local switch. This value is typically equal to the Area field reported in the `switchShow` command.
- **Domain**: Domain number of remote switch.
- **Remote Port**: E_Port (interface) on remote switch.
- **State**: State of the neighbor. The E_Port is used to route frames only if the neighbor is in NB_ST_FULL state.

**Operands**

This command has the following operands:

- `slotnumber`: For bladed systems only, specify the slot number of the port to display, followed by a slash (/).
- `portnumber`: Specify the port number to display, relative to its slot for bladed systems. Use `switchShow` to list valid ports. This operand is optional; if omitted, all neighbor states are displayed.

**Examples**

To display information about switches directly connected to the local switch:

```
switch:user> nbrstateshow 2/0
```

```
Local Domain ID: 1

<table>
<thead>
<tr>
<th>Local Port</th>
<th>Domain</th>
<th>Remote Port</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2</td>
<td>48</td>
<td>NB_ST_FULL</td>
</tr>
</tbody>
</table>
```

**See Also**

`interfaceShow`
nbrStatsClear

Resets FSPF interface counters.

Synopsis

nbrstatsclear [slotnumber][portnumber]

Description

Use this command to reset the counters of fabric shortest path first (FSPF) frames transmitted and received on all interswitch links (ISLs) or on a specified ISL. Use this command without operands to reset counters on all interfaces. Use interfaceShow to view the FSPF counters.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

slotnumber For bladed systems only, specify the slot number of the port to display, followed by a slash (/).

portnumber Specify the port number to display, relative to its slot for bladed systems. Use switchShow to list valid ports. This operand is optional; if omitted, FSPF statistics are reset.

Examples

To display the counters on a port:

switch:admin> interfaceshow 1/0

idbP = 0x10050a38

Interface 0 data structure:

 nghbP = 0x1004ce68
 ifNo = 0
 masterPort = 0 (self)
 defaultCost = 500
 cost = 500
 delay = 1

(output truncated)

nCmdAcc = 37
nInvCmd = 0
nHloIn = 10
nHloOut = 0
nLsuIn = 17
nLsaIn = 10
attHloOut = 11
nHloOut = 11
attLauOut = 12
nLauOut = 12
attLsaOut = 17
nLsaOut = 17
To reset the counters on a port:

```
switch:admin> nbrstatsclear 1/0
```

To verify the changes:

```
switch:admin> interfaceshow 1/0

idbP = 0x10050a38
Interface 0 data structure:

 nghbP = 0x1004ce68
 ifNo = 0
 masterPort = 0 (self)
 defaultCost = 500
 cost = 500

(output truncated)
```

See Also  interfaceShow, portShow, switchShow
nodeFind

Displays all device Name Server (NS) entries matching a given WWN, device PID, or alias.

Synopsis  

nodefind WWN | PID | ALIAS

Description  

Use this command to display the NS information for all devices in the fabric that have either a port World Wide Name (WWN) or a node WWN matching the given WWN; or have a device PID matching the given PID; or have a defined configuration alias to which the device belongs matching the given alias.

If there is no device matching the given WWN, PID, or alias, the message "No device found" is displayed.

Operands  

This command has the following operand:

WWN | PID | ALIAS

Specify the WWN, device PID, or alias that can be used to match the real device’s data. WWN must have eight colon-separated fields, each consisting of one or two hexadecimal digits between 0 and ff, with no spaces. PID must begin with 0x or 0X; otherwise, it is interpreted as an alias.

Examples  

To display all the device information matching the alias “a320”:

```
switch:user> nodefind a320
Local:
Type Pid COS PortName NodeName SCR
NL 0314d9; 3;22:00:00:04:cf:5d:dc:2d;20:00:00:04:cf:5d:dc:2d; 0
 FC4s: FCP [SEAGATE ST318452FC 0001]
 Fabric Port Name: 20:14:00:60:69:80:04:79
 Permanent Port Name: 22:00:00:04:cf:5d:dc:2d
 Device type: Physical Target
 Port Index: 20
 Share Area: No
 Device Shared in Other AD: No
 Aliases: a320
NL 0314d6; 3;22:00:00:04:cf:9f:78:7b;20:00:00:04:cf:9f:78:7b; 0
 FC4s: FCP [SEAGATE ST336605FC 0003]
 Fabric Port Name: 20:14:00:60:69:80:04:79
 Permanent Port Name: 22:00:00:04:cf:9f:78:7b
 Device type: Physical Target
 Port Index: 20
 Share Area: No
 Device Shared in Other AD: No
 Aliases: a320
NL 0314d5; 3;22:00:00:04:cf:9f:7d:e0;20:00:00:04:cf:9f:7d:e0; 0
 FC4s: FCP [SEAGATE ST336605FC 0003]
 Fabric Port Name: 20:14:00:60:69:80:04:79
 Permanent Port Name: 22:00:00:04:cf:9f:7d:e0
 Device type: Physical Target
 Port Index: 20
 Share Area: No
 Device Shared in Other AD: No
 Aliases: a320
NL 0314d4; 3;22:00:00:04:cf:9f:26:7e;20:00:00:04:cf:9f:26:7e; 0
 FC4s: FCP [SEAGATE ST336605FC 0003]
 Fabric Port Name: 20:14:00:60:69:80:04:79
```
To display all the device information matching the WWN "20:00:00:e0:8b:01:ce:d3":

```
switch:user> nodefind 20:00:00:e0:8b:01:ce:d3
```

Remote:

```
Type Pid COS PortName NodeName
NL 020eef; 3;20:00:00:e0:8b:01:ce:d3;20:00:00:e0:8b:01:ce:d3;
 Fabric Port Name: 20:0e:00:60:69:51:0b:ba
 Permanent Port Name: 20:00:00:e0:8b:01:ce:d3
Device type: Physical Target
Port Index: 14
Share Area: No
Device Shared in Other AD: No
Aliases:
```

To display all the device information matching the PID "0x020eef":

```
switch:user> nodefind 0x020eef
```

Remote:

```
Type Pid COS PortName NodeName
NL 020eef; 3;20:00:00:e0:8b:01:ce:d3;20:00:00:e0:8b:01:ce:d3;
 Fabric Port Name: 20:0e:00:60:69:51:0b:ba
 Permanent Port Name: 20:00:00:e0:8b:01:ce:d3
Device type: Physical Target
Port Index: 14
Share Area: No
Device Shared in Other AD: No
Aliases:
```

No match:

To display device information for a string for which there is no match:

```
switch:user> nodefind abcd
No device found.
```

See Also  allShow, nsAllShow, nscamShow, nsShow
nsAliasShow

Displays local Name Server (NS) information, with aliases.

Synopsis

nsaliasshow [-r -t]

Description

Use this command to display local name server information with the added feature of displaying the defined configuration aliases to which the device belongs.

The following message is displayed if there is no information in this switch:

There is no entry in the Local Name Server

The command nsAllShow displays information from all switches.

The display resulting from this command is identical to the command nsShow, with the exception of an additional line listing the aliases to which the device belongs. If there are no defined configuration aliases for that device, no alias is displayed.

Operands

This command has the following operands:

-\r Replaces the time-to-live (TTL) attribute output in the display with state change registration (SCR) information in the display. This value indicates what type of registered state change notification (RSCN) a device registers to receive. Values include:

  SCR=0 Reserved.
  SCR=1 Fabric detected registration. Register to receive all RSCN requests issued by the fabric controller for events detected by the fabric.
  SCR=2 Nx_Port detected registration. Register to receive all RSCN requests issued for events detected by the affected Nx_Port.
  SCR=3 Register to receive all RSCN requests issued. The RSCN request returns all affected N_Port_ID pages.

-\t Displays the device type. Of the two device type parts, the first part indicates the origination of the device. Currently, four originations are defined:

  - Physical - Device connected to the Nx_Port, using FLOGI to log in to the switch.
  - Virtual - Contrived device by the switch.
  - NPV - Device connected to the Nx_Port, using FDISC to log in to the switch.
  - iSCSI - Device connected to the iSCSI port.

The second part indicates the role of the device. Currently, four roles are defined:

  - Unknown (initiator/target) - Device role is not detected.
  - Initiator- An iSCSI initiator.
  - Target- An iSCSI target.
  - Initiator+Target- Both an iSCSI initiator and an iSCSI target.
Examples

To display local NS information with aliases:

```
switch:admin> nsaliasshow
{
 Type Pid COS PortName NodeName TTL(sec)
N 021200; 2,3;10:00:00:60:69:00:03:19;30:00:00:60:69:00:03:19; na
 FC4s: FCIP
 Fabric Port Name: 20:02:00:60:69:01:44:22
 Permanent Port Name: 10:00:00:60:69:00:03:19
 Aliases:
N 021300; 3;10:00:00:60:69:00:02:d6;20:00:00:60:69:00:02:d6; na
 Fabric Port Name: 20:03:00:60:69:01:44:22
 Permanent Port Name: 10:00:00:60:69:00:02:d6
 Aliases: DeviceAlias
NL 0214e2; 3;21:00:00:fa:ce:00:21:1e;20:00:00:fa:ce:00:21:1e; na
 Fabric Port Name: 20:04:00:60:69:01:44:22
 Permanent Port Name: 21:00:00:fa:ce:00:21:1e
 Aliases:
NL 0214e4; 3;21:00:00:fa:ce:00:21:1e;20:00:00:fa:ce:00:21:1e; na
 Fabric Port Name: 20:04:00:60:69:01:44:22
 Permanent Port Name: 21:00:00:fa:ce:00:21:1e
 Aliases: MyAlias1 MyAlias2
NL 0214e8; 3;21:00:00:fa:ce:00:48:3c:92:20:00:00:fa:ce:00:48:3c:92
 Fabric Port Name: 20:04:00:60:69:01:44:22
 Permanent Port Name: 21:00:00:fa:ce:00:48:3c:92
 Aliases:
NL 0214ef; 3;21:00:00:ad:bc:00:6f:70;20:00:00:ad:bc:00:6f:70; na
 Fabric Port Name: 20:04:00:60:69:01:44:22
 Permanent Port Name: 21:00:00:ad:bc:00:6f:70
 Aliases:
 The Local Name Server has 6 entries }
```

To display local NS information with aliases with the -r option:

```
switch:admin> nsaliasshow -r
{
 Type Pid COS PortName NodeName SCR
N 021200; 2,3;10:00:00:60:69:00:03:19;30:00:00:60:69:00:03:19; 3
 FC4s: FCIP
 Fabric Port Name: 20:02:00:60:69:01:44:22
 Permanent Port Name: 10:00:00:60:69:00:03:19
 Aliases:
N 021300; 3;10:00:00:60:69:00:02:d6;20:00:00:60:69:00:02:d6; 1
 Fabric Port Name: 20:03:00:60:69:01:44:22
 Permanent Port Name: 10:00:00:60:69:00:02:d6
 Aliases: DeviceAlias
NL 0214e2; 3;21:00:00:fa:ce:00:21:1e;20:00:00:fa:ce:00:21:1e; 0
 Fabric Port Name: 20:04:00:60:69:01:44:22
 Permanent Port Name: 21:00:00:fa:ce:00:21:1e
 Aliases:
NL 0214e4; 3;21:00:00:fa:ce:00:21:1e;20:00:00:fa:ce:00:21:1e; 0
 Fabric Port Name: 20:04:00:60:69:01:44:22
 Permanent Port Name: 21:00:00:fa:ce:00:21:1e
 Aliases: MyAlias1 MyAlias2
```
To display local NS information with aliases with the -r and -t options:

```
switch:admin> nsaliasshow -r -t

<table>
<thead>
<tr>
<th>Type</th>
<th>Pid</th>
<th>COS</th>
<th>PortName</th>
<th>NodeName</th>
<th>SCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>021200;</td>
<td>2,3</td>
<td>10:00:00:60:69:00:03:19;30:00:00:60:69:00:03:19;3</td>
<td>10:00:00:69:01:44:22</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>021300;</td>
<td>3</td>
<td>10:00:00:60:69:00:02:6;20:00:00:60:69:00:02:6;1</td>
<td>10:00:00:60:69:01:44:22</td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>0214e2;</td>
<td>3</td>
<td>21:00:00:fa:ce:00:21:1e;20:00:00:fa:ce:00:21:1e;0</td>
<td>21:00:00:fa:ce:00:21:1e</td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>0214e4;</td>
<td>3</td>
<td>21:00:00:fa:ce:00:21:e;20:00:00:fa:ce:00:21:e;1</td>
<td>21:00:00:fa:ce:00:21:e</td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>0214e8;</td>
<td>3</td>
<td>21:00:00:fa:ce:04:83:c9;20:00:00:fa:ce:04:83:c9;0</td>
<td>21:00:00:fa:ce:04:83:c9</td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>0214ef;</td>
<td>3</td>
<td>21:00:00:ad:bc:04:6f:70;20:00:00:ad:bc:04:6f:70;0</td>
<td>21:00:00:ad:bc:04:6f:70</td>
<td></td>
</tr>
</tbody>
</table>
```

The Local Name Server has 6 entries

See Also nsAllShow, nsShow, switchShow
nsAllShow

Displays global name server information.

Synopsis

nsallshow [type]

Description

Use this command to display the 24-bit Fibre Channel addresses of all devices in all switches in the fabric. If the type operand is supplied, only devices of specified FC-PH type are displayed. If type is omitted, all devices are displayed.

Specifying the type operand causes the switch to send out a query to every switch in the fabric. On a large fabric you should not run a script that repeatedly issues the nsAllShow command with a type operand specified.

Operands

This command has the following operand:

<table>
<thead>
<tr>
<th>type</th>
<th>Specify the FC-PH type code. This operand is optional. The valid values for this operand are 0 to 255. Following are two specific FC-PH device type codes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>FCP type device</td>
</tr>
<tr>
<td>4, 5</td>
<td>FC-IP type device</td>
</tr>
<tr>
<td>Other</td>
<td>Other FC-PH types are displayed in the format “x ports supporting FC4 code,” where x is the number of ports of a type and code is the FC-PH type code.</td>
</tr>
</tbody>
</table>

Examples

To display all devices in the fabric, followed by all type 8 (SCSI-FCP) devices and all type 5 (SCSI-FCIP) devices:

```
switch:admin> nsAllShow
{ 011000 011200 0118e2 0118e4 0118e8 0118ef 021200 021300 0214e2 0214e4 0214e8 0214ef 12 Nx_Ports in the Fabric }
switch:admin> nsAllShow 8
{ 0118e2 0118e4 0118e8 0118ef 0214e2 0214e4 0214e8 0214ef 8 FCP Ports }
switch:admin> nsAllShow 5
{ 011200 021200 2 FC-IP Ports }
```

See Also

nsShow, switchShow
nsCamShow

Displays information about remote devices in the Name Server (NS) cache.

Synopsis  nscamshow [-t]

Description Use this command to display the local NS cache information about the devices discovered in the fabric by the NS cache manager.

If the NS cache manager does not discover new switches or new devices in the fabric, the command displays the message “No Entry is found!”

For each remote switch found, this command displays the domain number, state, revision, owner, and a list of devices for that domain number. For each device found in the devices list, the following information is displayed:

Type U for unknown, N for N_Port, NL for NL_Port.

Pid The 24-bit Fibre Channel address.

COS A list of classes of service supported by the device.

PortName The device's port World Wide Name (WWN).

NodeName The device's node WWN.

Permanent Port Name

Physical N_Port or NL_Port WWN.

There might be additional lines if the device has registered FC4s, fabric port name, or port and node symbolic name.

Operands The operand is as follows:

-t Specify to display the device type. Of the two device type parts, the first part indicates the origination of the device. Currently, four originations are defined:

- Physical - Device connected to the Nx_Port, using FLOGI to log into the switch.
- Virtual - Contrived device by the switch.
- NPV - Device connected to the Nx_Port, using FDISC to log in to the switch.
- iSCSI - Device connected to the iSCSI port.

The second part indicates the role of the device. Currently, four roles are defined:

- Unknown (initiator/target) - Device role not detected.
- Initiator - An iSCSI initiator.
- Target - An iSCSI target.
- Initiator+Target - Both an iSCSI initiator and an iSCSI target.

Examples To display all switch and device entries discovered by the NS in the fabric:

switch:admin> nscamshow
nscam show for remote switches:
Switch entry for 2
  state rev owner
known  v430  0xffffffff
Device list: count 1
  Type  Pid  COS  PortName                NodeName
N  021200;  2,3;10:00:00:60:69:00:ab:ba;10:00:00:60:69:00:ab:ba;
    FC4s: FCIP
  PortSymb: [28] "SEAGATE ST318452FC 0001"
  Fabric Port Name: 20:02:00:60:69:00:68:19
  Permanent Port Name: 10:00:00:60:69:00:ab:ba

Switch entry for 4
  state  rev  owner
known  v320  0xffffffff
Device list: count 0
  No entry is found!

To display the output with the -t option:

switch:admin> nscamshow -t
nscam show for remote switches:
Switch entry for 2
  state  rev  owner
known  v430  0xffffffff
Device list: count 1
  Type  Pid  COS  PortName                NodeName
N  021200;  2,3;10:00:00:60:69:00:ab:ba;10:00:00:60:69:00:ab:ba;
    FC4s: FCIP
  PortSymb: [28] "SEAGATE ST318452FC 0001"
  Fabric Port Name: 20:02:00:60:69:00:68:19
  Permanent Port Name: 10:00:00:60:69:00:ab:ba
  Device type: Physical Initiator

Switch entry for 4
  state  rev  owner
known  v320  0xffffffff
Device list: count 0
  No entry is found!

See Also  nsAllShow, nsShow, switchShow
nsShow

Displays local Name Server (NS) information.

Synopsis  
nsshow [-r -t]

Description  
Use this command to display local NS information about devices connected to this switch. If no information is available for the switch, the command displays the message: “There is no entry in the Local Name Server.”

Use nsAllShow to display NS information for all switches in the fabric.

Each line of output displays the following information:

Type  
U for unknown, N for N_Port, NL for NL_Port.

PID  
24-bit Fibre Channel address.

COS  
List of classes of service supported by device.

PortName  
Device port World Wide Name (WWN).

NodeName  
Device node WWN.

TTL  
Time-to-live, in seconds, for cached entries or NA (not applicable) if the entry is local. This displays if the -r option is specified.

SCR  
State change registration of the device. This displays if the -r option is specified.

Device type  
Device type if -t is specified.

Permanent Port Name

Physical N_Port or NL_Port WWN.

There might be additional lines if the device has registered any of the following information (the switch automatically registers SCSI inquiry data for FCP target devices):

- FC4s supported
- IP address
- IPA
- Port and node symbolic names
- Fabric Port Name. This is the WWN of the port on the switch to which the device is physically connected.
- Hard address or port IP address

Operands

This command has the following operands:

- r  
Replaces the time-to-live (TTL) attribute output with state change registration (SCR) information in the display. This value indicates what type of RSCN a device registers to receive. Values include:

  SCR=0  
Reserved.

  SCR=1  
Fabric detected registration. Register to receive all RSCN requests issued by the fabric controller for events detected by the fabric.
**nsShow**

**SCR=2**  
Nx_Port detected registration. Register to receive all RSCN requests issued for events detected by the affected Nx_Port.

**SCR=3**  
Register to receive all RSCN request issued. The RSCN request returns all effected N_Port_ID pages.

**-t**  
Displays the device type. Of the two device type parts, the first part indicates the origination of the device. Currently, four originations are defined:

- **Physical** - Device connected to the Nx_Port, using FLOGI to login to the switch.
- **Virtual** - Device contrived by the switch.
- **NPV** - Device connected to the Nx_Port, using FDISC to log in to the switch.
- **iSCSI** - Device connected to the iSCSI port.

The second part indicates the role of the device. Currently, four roles are defined:

- **Unknown (initiator/target)** - Device role is not detected
- **Initiator** - An iSCSI initiator.
- **Target** - An iSCSI target.
- **Initiator+Target** - Both an iSCSI initiator and an iSCSI target.

Fabric OS v4.2.x or earlier does not include device type information. After a nondisruptive upgrade from those Fabric OS versions, the device type displays as “Physical Unknown(initiator/target)”.

**Examples**

To display local NS information:

```
switch:admin> nsShow
{
 Type Pid COS PortName NodeName TTL(sec)
N 010100; 3;21:00:00:e0:8b:13:08:10;20:00:00:e0:8b:13:08:10; na
 FC4s: FCP
 NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR: v9.0.0.2 (w32 IP)"
 Fabric Port Name: 20:01:00:05:1e:34:00:70
 Permanent Port Name: 21:00:00:e0:8b:13:08:10
 Port Index: 1
 Share Area: No
 Device Shared in Other AD: No
 Redirect: No
N 010e00; 3;21:00:00:e0:8b:12:8a:be;20:00:00:e0:8b:12:8a:be; na
 FC4s: FCP
 NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR: v9.0.0.2 (w32 IP)"
 Fabric Port Name: 20:0e:00:05:1e:34:00:70
 Permanent Port Name: 21:00:00:e0:8b:12:8a:be
 Port Index: 14
 Share Area: No
 Device Shared in Other AD: No
 Redirect: No
The Local Name Server has 2 entries }
```
To display local name server information with the -r option.

switch:admin> nsshow -r

{ 
  Type  Pid           COS  PortName               NodeName                 SCR  
  N     010100;      3;21:00:00:e0:8b:13:08:10;20:00:00:e0:8b:13:08:10; 1  
  FC4s: FCP
  NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR:v9.0.0.2 (w32 IP)"
  Fabric Port Name: 20:01:00:05:1e:34:00:70  
  Permanent Port Name: 21:00:00:e0:8b:13:08:10  
  Port Index: 1  
  Share Area: No  
  Device Shared in Other AD: No  
  Redirect: No  
  N     010e00;      3;21:00:00:e0:8b:12:8a:be;20:00:00:e0:8b:12:8a:be; 1  
  FC4s: FCP
  NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR:v9.0.0.2 (w32 IP)"
  Fabric Port Name: 20:0e:00:05:1e:34:00:70  
  Permanent Port Name: 21:00:00:e0:8b:12:8a:be  
  Port Index: 14  
  Share Area: No  
  Device Shared in Other AD: No  
  Redirect: No  
  The Local Name Server has 2 entries }

To display local name server information with "-r" and "-t" options.

switch:admin> nsshow -r -t

{ 
  Type  Pid           COS  PortName               NodeName                 SCR  
  N     010100;      3;21:00:00:e0:8b:13:08:10;20:00:00:e0:8b:13:08:10; 1  
  FC4s: FCP
  NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR:v9.0.0.2 (w32 IP)"
  Fabric Port Name: 20:01:00:05:1e:34:00:70  
  Permanent Port Name: 21:00:00:e0:8b:13:08:10  
  Device type: Physical Initiator  
  Port Index: 1  
  Share Area: No  
  Device Shared in Other AD: No  
  Redirect: No  
  N     010e00;      3;21:00:00:e0:8b:12:8a:be;20:00:00:e0:8b:12:8a:be; 1  
  FC4s: FCP
  NodeSymb: [41] "QLA2340 FW:v3.03.06 DVR:v9.0.0.2 (w32 IP)"
  Fabric Port Name: 20:0e:00:05:1e:34:00:70  
  Permanent Port Name: 21:00:00:e0:8b:12:8a:be  
  Device type: Physical Initiator  
  Port Index: 14  
  Share Area: No  
  Device Shared in Other AD: No  
  Redirect: No  
  The Local Name Server has 2 entries }

See Also  nsAllShow, switchShow
nsZoneMember

Displays the information of all the online devices zoned with the given device.

Synopsis

nszonemember -a | -u | pid | wwn

Description

Use this command to display information about all the online devices zoned with the given device. Issuing this command without operands displays all online devices zoned with the given device. Each line of output displays the following information:

- **Type**
  - U for unknown, N for N_Port, NL for NL_Port.
- **Pid**
  - The 24-bit Fibre Channel address.
- **COS**
  - A list of classes of service supported by the device.
- **PortName**
  - The device's port World Wide Name (WWN).
- **NodeName**
  - The device's node WWN.
- **Permanent Port Name**
  - The physical N_Port or NL_Port WWN.
- **DeviceType**
  - The device’s type.
- **Port Index**
  - The index of the port to which the device is attached.
- **Shared Area**
  - Whether or not the device shares an area with other devices.
- **Device Shared in Other AD**
  - Whether or not the device is shared in other Admin Domains.

Additional lines may display if the device has registered any of the following information (the switch automatically registers SCSI inquiry data for FCP target devices):

- FC4 supported
- IP address (node)
- IPA
- port and node symbolic name (local device only)
- fabric port name
- hard address or port IP address

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- **-a**
  - Displays each local device’s online zoned device data, including the PID and zone alias.
- **-u**
  - Displays all the unzoned devices in the entire fabric. The device data displayed includes the device PID and zone alias.
- **pid | wwn**
  - Specifies the port ID or WWN, whose zoned devices are to be viewed. This operand is required.
nsZoneMember

Examples

To display information about all the online devices zoned with the given device:

```bash
switch:admin> nszonemember 0x0416e2
3 local zoned members:
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Pid</th>
<th>COS</th>
<th>PortName</th>
<th>NodeName</th>
<th>SCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>041901;</td>
<td>2,3</td>
<td>10:00:00:00:00:c9:26:0e:ae;20:00:00:00:c9:26:0e:ae; 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabric Port Name: 20:09:00:00:69:50:06:78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanent Port Name: 10:00:00:00:c9:26:0e:ae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device type: Physical Initiator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>0416e2;</td>
<td>3;22;00:00:20:37:d9:6b:b3;20:00:00:20:37:d9:6b:b3; 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabric Port Name: 20:06:00:00:69:50:06:78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanent Port Name: 22:00:00:20:37:d9:6b:b3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device type: Physical Target</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>0416e4;</td>
<td>3;22;00:00:20:37:d9:61:ac;20:00:00:20:37:d9:61:ac; 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabric Port Name: 20:06:00:00:69:50:06:78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanent Port Name: 22:00:00:20:37:d9:61:ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device type: Physical Target</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No remote zoned members

To display information about all the online devices zoned with the given WWN:

```bash
switch:admin> nszonemember 10:00:00:00:c8:23:0b:ad
3 local zoned members:
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Pid</th>
<th>COS</th>
<th>PortName</th>
<th>NodeName</th>
<th>SCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>041901;</td>
<td>2,3</td>
<td>10:00:00:00:00:c9:26:0e:ae;20:00:00:00:c9:26:0e:ae; 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabric Port Name: 20:09:00:00:69:50:06:78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanent Port Name: 10:00:00:00:c9:26:0e:ae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device type: Physical Initiator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>0416e2;</td>
<td>3;22;00:00:20:37:d9:6b:b3;20:00:00:20:37:d9:6b:b3; 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabric Port Name: 20:06:00:00:69:50:06:78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanent Port Name: 22:00:00:20:37:d9:6b:b3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device type: Physical Target</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>0416e4;</td>
<td>3;22;00:00:20:37:d9:61:ac;20:00:00:20:37:d9:61:ac; 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabric Port Name: 20:06:00:00:69:50:06:78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanent Port Name: 22:00:00:20:37:d9:61:ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device type: Physical Target</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No remote zoned members

To display each local device’s online zoned device data:

```bash
switch:admin> nszonemember -a
Port: 4 Pid: 0xb00400 Aliases: ix360_131_201_6a
Zoned Members: 2 devices
 Pid: 0xb00400 Aliases: ix360_131_201_6a
 Pid: 0xbalee8 Aliases: trimm101b_3

Port: 12 Pid: 0xb00c01 Aliases: d1360_130159a
Zoned Members: 2 devices
 Pid: 0xb00c01 Aliases: d1360_130159a
 Pid: 0xb1b1ef Aliases: nstor4b_8

Port: 13 Pid: 0xb00d00 Aliases: ix360_131_196p5
```
Zoned Members: 2 devices
  Pid: 0xb00d00    Aliases: ix360_131_196p5
  Pid: 0xe07d00    Aliases: hds9200_6p4 hds9200_6p4

Port: 14    Pid: 0xb00e00    Aliases: d1360_130251a d1360_130251a
Zoned Members: 2 devices
  Pid: 0xb00e00    Aliases: d1360_130251a d1360_130251a
  Pid: 0xba1ae4    Aliases: trimm100a_2

To display all the unzoned devices in the fabric:

```
switch:admin> nszonemember -u
 Pid: 0xb01ea9; Aliases: trimm32b_1
 Pid: 0xb01eaa; Aliases: trimm32b_2
 Pid: 0xb01eab; Aliases: trimm32b_3
 Pid: 0xb01eac; Aliases: trimm32b_4
 Pid: 0xb01fad; Aliases: trimm32a_5
 Pid: 0xb01fae; Aliases: trimm32a_6
 Pid: 0xb01fb1; Aliases: trimm32a_7
 Pid: 0xb01fb2; Aliases: trimm32a_8
 Pid: 0xdc2800; Aliases:

Totally 9 unzoned devices in the fabric.
```

See Also  cfgShow, nscamShow, nsShow
passwd

Changes the password for a specified user.

Synopsis  

    passwd ["user account"]

Description 

Use this command to change a user account password.

Operands 

When this command is invoked without operand, the password is changed for the current user account. The following operand is optional:

"user account" Specifies the user account for which the password is to be changed. The user account must be enclosed in double quotation marks, The user account must be an existing account, either default or user-created. Only users with accounts of type "root", "factory","SecurityAdmin", or "admin" can execute this operand and have permission to change passwords for accounts other than their own.

Notes 

Passwords can be changed locally on any switch. For the password database to be distributed to other switches in the fabric, the switches must be configured to accept the password database with the fddCfg command. The password database is distributed manually with the distribute command.

If RADIUS authentication is enabled, password change is blocked for users changing their own password. Administrators with the privilege to change passwords for other accounts may do so regardless of whether RADIUS authentication is enabled; all such password changes operate on the local password database.

The passwd command cannot be run on the Standby CP. When an admin account or a securityAdmin account changes the password for other accounts, it does not prompt for the current password, unless the target account is a factory or root account.

Any chosen password must satisfy the following password strength rules:

- Password contains the minimum required number of lowercase characters.
- Password contains the minimum required number of uppercase characters.
- Password contains the minimum required number of numeric characters.
- Password contains the minimum required number of punctuation characters.
- Password must be between minlength and 40 characters long.
- Password may not contain the colon (:) character.
- Password must satisfy repeated and sequential character constraints.

The password history policy is enforced across all user accounts when the user is setting his own password. The password history policy is not enforced when an administrator sets a password for another user, but the user’s password history is preserved and the password set by the administrator is recorded in the user’s password history.

The passwd command behaves as follows:

- If you are changing your own password, you are prompted to enter the old password and, if your entry is valid, you are prompted to enter the new password.
passwd

- If you are changing another user’s password with greater privileges than your current login level, you are prompted to enter that user level’s old password and, if your entry is valid, you are prompted for a new password.
- If you are changing another user’s password, the target account’s AD member list must be a subset of your account’s AD member list.
- If you are logged in as the root user when changing another user’s password, you are not prompted to enter the old password. If you are a factory account, an admin, or securityAdmin account, you are not prompted to enter the current password unless the target account is root.
- Changing the password of any user level causes the login session of that account (if logged in) to terminate.

Examples

To change the password for the admin account while logged in as admin:

```
switch:admin> passwd
Changing password for admin
Enter new password:
Re-type new password:
Password changed.
Saving password to stable storage.
Password saved to stable storage successfully.
```

Diagnostics

The system may generate one or more of the following error messages. Refer to the Fabric OS Message Reference for more diagnostic information.

- RADIUS enabled error
  - Password change disallowed, RADIUS authentication is enabled.
- Password error
  - Password length, strength, or history policy not met.
  - "user" is not a valid user name
    - You have not specified a valid recognized user name on the system.
- Permission denied
  - You do not have permission to change the password for the specified user.
- Incorrect password
  - You have not entered the correct password when prompted for the old password.
- Password unchanged
  - You have entered the carriage return special input case, choosing not to change the password.
- Passwords do not match
  - You have not correctly verified the new password.
- Invalid length of password
  - You have entered a password length that is not between minlength and 40.
- Insufficient number of lower case letters
  - The password you entered contains less than the minimum required number of lowercase characters.
passwd

Insufficient number of upper case letters
The password you entered contains less than the minimum required number of uppercase characters.

Insufficient number of digits in password
The password you entered contains less than the minimum required number of numeric characters.

Insufficient number of punctuation characters
You have entered a password that contains less then the minimum required number of punctuation characters.

Password matches one of the previous passwords
The password you entered matches one of the previous passwords.
You must wait longer to change your password.
You cannot change the password before the minimum aging period expires.

Password contains invalid characters.
The password you entered contains invalid characters.

See Also login, logout, passwdCfg
passwdCfg

Manages the password policies.

Synopsis

passwdcfg --set options value
passwdcfg --disableadminlockout
passwdcfg --enableadminlockout
passwdcfg --setdefault
passwdcfg --showall
passwdcfg --help

Description

Use this command to manage password policies. Use --set to configure the following password policies:

- Password strength policy
- Password history policy
- Password expiration policy
- Account lockout policy

Password Strength Policy

The password strength policy enforces a set of rules that new passwords must satisfy. Configurable rules include lowercase and uppercase characters, digits, punctuation occurrences and minimum length values. It is enforced only when a new password is defined. The password strength policy is enforced across all user accounts. When a password fails more than one of the strength attributes, an error is reported for only one of the attributes at a time.

Password History Policy

The password history policy prevents reuse of a recently used password. The password history policy is enforced across all user accounts when users are setting their own password. It is not enforced when an administrator sets a password for another user, but the user’s password history is preserved and the password set by the administrator is recorded in the user’s password history.

Password Expiration Policy

The password expiration policy forces expiration of a password after a specified period of time. When a user’s password expires, the user must change the password to complete the authentication process. A warning that password expiration is approaching is displayed when the user logs in. The number of days prior to password expiration during which warnings commence is a configurable parameter. Password expiration does not disable or lock out the account. The password expiration policy is enforced across all user accounts except the root and factory accounts.

Account Lockout Policy

The account lockout policy disables a user account when the user exceeds a configurable number of failed login attempts. The mechanism can be configured to keep the account locked until explicit administrative action is taken to unlock the account or locked accounts can be automatically unlocked after a specified period. An administrator can unlock a locked account at any time. Note that the account locked state is distinct from the account disabled state. The account lockout
passwdCfg

policy is enforced across all user accounts except the root, factory, and SecurityAdmin role accounts. A separate configuration option, available to the SecurityAdmin and Admin role accounts, may be used to enable and disable applications of the account lockout policy to Admin role accounts.

A failed login attempt counter is maintained for each user on each switch instance. The counters for all user accounts are reset to zero when the account lockout policy is enabled. The counter for an individual account is reset to zero when the account is unlocked after the lock-out duration period expires.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command takes as input an operand and its associated arguments. When invoked without operands, the command prints the usage.

--showall Displays all the password configuration parameters.

--set Configures a specified password policy. The following arguments are supported:

-lowercase value Specifies the minimum number of lowercase alphabetic characters that must occur in the password. The default value is 0. The maximum value must be less than or equal to the -minlength value.

-uppercase value Specifies the minimum number of uppercase alphabetic characters that must occur in the password. The default value is 0. The maximum value must be less than or equal to the -minlength value.

-digits value Specifies the minimum number of numeric digits that must occur in the password. The default value is 0. The maximum value must be less than or equal to the -minlength value.

-punctuation value Specifies the minimum number of punctuation characters that must occur in the password. All displayable, non-alphanumeric punctuation characters, except the colon (:), are allowed. The default value is 0. The maximum value must be less than or equal to the -minlength value.

-minlength value Specifies the minimum length of the password. The minimum can be set anywhere between 8 and 40 characters. The default value is 8. The total of -lowercase, -uppercase, -digits, -punctuation must be less than or equal to -minlength value.

-history value Specifies the number of past password values that are disallowed when setting a new password. A value of 1 to 24 can be specified. The default value is 1.
passwdCfg

**-minpasswordage value**
Specifies the minimum number of days that must elapse before a password can be changed. `-minpasswordage` can be set at 0 to 999. The default value is 0. Setting this parameter to a nonzero value discourages a user from rapidly changing a password in order to defeat the password history setting to reuse a recently used password. The `minpasswordage` policy is not enforced when an administrator changes the password for another user..

**-maxpasswordage value**
Specifies the maximum number of days that can elapse before a password must be changed. This is the password expiration period. `-maxpasswordage` can be set at 0 to 999. Setting this parameter to 0 disables password expiration. The default value is 0. When `-maxpasswordage` is set to a nonzero value, `-minpasswordage` must be set to a value less than or equal to `-maxpasswordage`.

**-warning value**
Specifies the number of days prior to password expiration that a warning of password expiration is displayed. The valid range for `-warning` is 0 to 999. The default value to 0.

**-lockoutthreshold value**
Specifies the number of times a user can specify an incorrect password during login before the account is locked. The number of failed login attempts is counted from the last successful login. Values for `-lockoutthreshold` range from 0 to 999. Setting this parameter to 0 disables the lockout mechanism. The default value is 0.

**-lockoutduration value**
Specifies the time, in minutes, after which a previously locked account automatically unlocks. `lockoutduration` values range from 0 to 9999. The default value is 30. Setting this parameter to 0 disables lockout duration, requiring an administrative action to unlock the account. The lockout duration begins with the first login attempt after the lockout threshold has been reached. Subsequent failed login attempts do not extend the lockout period.

**--enableadminlockout**
Enables the admin lockout policy and sets the config parameter "passwdcfg.adminlockout" to 1. If the parameter "passwdcfg.lockoutthreshold" is set to greater than 0 and Admin Lockout policy is enabled, then, if the number of failed login attempts from the last successful login equals the "passwdcfg.lockoutthreshold", the account gets locked for the "passwdcfg.lockoutduration" duration. The particular account is unlocked manually using `userconfig --change account name-u` (requires root/factory/security admin/admin privileges) or it is automatically unlocked after "passwdcfg.lockoutduration" duration.

**-repeat value**
Specifies the length of repeated character sequences that will be disallowed. For example, if the "repeat" value is set to 3, a password "passAAAword" is disallowed because it contains the repeated sequence "AAA". A password of "passAAword" would be allowed because no repeated character sequence exceeds two characters. The range of allowed values is 1-40.
**-sequence value**

Specifies the length of sequential character sequences that will be disallowed. A sequential character sequence is defined as a character sequence in which the ASCII value of each contiguous character differs by one. The ASCII value for the characters in the sequence must all be increasing or all decreasing. For example, if the "sequence" value is set to 3, a password "passABCword" is disallowed because it contains the sequence "ABC". A password of "passABword" would be allowed because no repeated character sequence exceeds two characters. The range of allowed values is 1-40. The default value is 1.

**--disableadminlockout**

Disables the admin lockout policy if already enabled and sets the config parameter "passwdcfg.adminlockout" to 0. By default, admin lockout policy is disabled.

**--setdefault**

Resets all password policies to their default values.

**--help**

Displays command usage.

**Examples**

To display the current password configuration parameters:

```
switch:admin> passwdcfg --showall
passwdcfg.minlength: 8
passwdcfg.lowercase: 0
passwdcfg.uppercase: 0
passwdcfg.digits: 0
passwdcfg.punctuation: 0
passwdcfg.history: 1
passwdcfg.minpasswordage: 0
passwdcfg.maxpasswordage: 0
passwdcfg.warning: 0
passwdcfg.lockouthreshold: 0
passwdcfg.lockoutduration: 30
passwdcfg.status: 0
```

To set passwd configuration parameters, specifying that a password must contain at least two uppercase characters, and that passwords expire in 90 days from the date they are defined:

```
switch:admin> passwdcfg --set -uppercase 2 -maxpasswordage 90
```

**Diagnostics**

The passwdCfg command may fail for any of the following reasons:

Permission failure

You not permitted to execute the command.

Invalid command line option

An unrecognized command line option was specified.

minlength value out of range

The -minlength value must be between 8 and 40.
lowercase value out of range

The \texttt{-lowercase value} specified must be greater than or equal to \texttt{-minlength value}.

uppercase value out of range

The \texttt{-uppercase value} specified must be greater than or equal to 0 and less than or equal to \texttt{-minlength value}.

digits value out of range

The \texttt{-digits value} specified must be greater than or equal to 0 and less than or equal to \texttt{-minlength value}.

punctuation value out of range

The \texttt{-punctuation value} specified must be greater than or equal to 0 and less than or equal to \texttt{-minlength value}.

total strength specification out of range

The total of \texttt{-lowercase value}, \texttt{-uppercase value}, \texttt{-digits value}, and \texttt{-punctuation value} must be less than or equal to \texttt{-minlength value}.

history value out of range

The \texttt{-history value} must be between 1 and 24.

minpasswordage value out of range

The \texttt{-minpasswordage value} must be between 0 and 999.

maxpasswordage value out of range

The \texttt{-maxpasswordage value} must be between 0 and 999.

warning value out of range

The \texttt{-warning value} must be between 0 and 999.

invalid password expiration specification

The \texttt{-minpasswordage value} or \texttt{-warning value} must be less than or equal to \texttt{-maxpasswordage value} when \texttt{-maxpasswordage value} is nonzero.

lockoutthreshold value out of range

The \texttt{-lockoutthreshold value} must be between 0 and 999.

lockoutduration value out of range

The \texttt{-lockoutduration value} must be between 0 and 999.

repeat value out of range

The \texttt{-repeat value} must be between 1 and 40.

sequence value out of range

The \texttt{-sequence value} must be between 1 and 40.

\textbf{See Also} passwd, userConfig
pathInfo
Display routing and statistics information along a path covering multiple switches.

Synopsis  
\texttt{pathinfo} \{domain \[\texttt{src\_portnumber} \[\texttt{dst\_portnumber}\]\]} [-r]

Description  
Use this command to display detailed routing information from a source port or area on the local switch to a destination port or area on another switch. This routing information describes the exact path that a user data stream takes to go from the source port to the destination port, including all intermediate switches.

The command does not make any retry attempts if there is a timeout or failure. It might fail if a switch along the path is busy: for instance, if a switch is performing a warm recovery or if a switch along the path does not support this feature.

If the advanced performance tuning (APT) policy in effect on the intermediate switches is not a port-based policy, subsequent data streams might not take the same path as displayed in the \texttt{pathInfo} output. Refer to \texttt{aptPolicy} for more information on advanced performance tuning policies.

If you specify an inactive port or a path through a switch that does not have active routing tables to the destination, this command displays the path that would be used if the ports were active. If you specify a destination port that is not active, this command uses the embedded port as the destination.

For bladed systems, the ingress and egress points are specified as port index. For nonbladed systems, ingress and egress points are specified as ports. This agrees with the representation displayed by the \texttt{switchShow} command.

In addition, \texttt{pathInfo} can provide, upon request, statistics on every traversed interswitch link (ISL) that is part of the path. This feature is available in interactive mode only.

The routing and statistics information are provided by every switch along the path, based on the current routing-tables information and statistics calculated continuously in real-time. Each switch represents one hop of the total path.

Other options allow the collection of information on the reverse path, or on a user-selected path (source route).

For each hop, the routing information output includes the following:

- **Hop**: The hop number. The local switch is hop 0.
- **In Port**: The port or area from which the switch receives frames. For hop 0, this is \texttt{src\_portnumber}. For bladed systems, this is specified as the port index; otherwise, it is the port number.
- **Domain ID**: The domain ID of the switch.
- **Name**: The name of the switch.
- **Out Port**: The output port that the frames use to reach the next hop. For the last hop, this is \texttt{dst\_portnumber}. For bladed systems, this is specified as the area number; otherwise, it is the port number.
- **BW**: The bandwidth of the output ISL, in Gbps. It does not apply to the embedded port.
- **Cost**: The cost of the output link used by the fabric-shortest path first (FSPF) routing protocol. Only applicable if the output link is currently recognized by FSPF.
When requested, statistics are reported below the routing information for each hop. These statistics are presented for both the input and output ports, for both receive and transmit modes. These statistics are divided into basic and extended statistics, which can be individually requested in interactive mode. Statistics are not reported for the embedded port.

To collect these statistics, this command uses a special frame, the pathInfo frame, that is sent hop-by-hop from the source switch to the destination switch. To prevent such a frame to loop forever if an error occurs, a maximum number of hops for the frame to traverse is enforced. The hop count includes all hops in the direct path from source to destination, and also all the hops in the reverse path, if the tracing of the reverse path is requested. The default value for the maximum hop count is 25.

**Basic statistics**

Basic statistics report variables that give an indication of ISL congestion along the path. They include the following:

- **B/s** Bytes per second received or transmitted; reports for multiple time periods, displayed in parentheses.
- **Txcrdz** The length of time in milliseconds that the port has been prevented from transmitting frames due to lack of buffer-to-buffer credit. It is an indication of downstream congestion. This value reports for multiple time periods, displayed in parentheses. Note that other commands, such as portStatsShow, might express this value in units other than milliseconds.

**Extended statistics**

Extended statistics report variables of general interest. They include the following:

- **F/s** Frames per second received or transmitted; reports for multiple time periods, displayed in parentheses.
- **Words** Total number of 4-byte Fibre Channel words.
- **Frames** Total number of frames.
- **Errors** Total number of errors that might cause a frame not to be received correctly. This includes CRC errors, bad EOF errors, frame truncated errors, frame-too-short errors, and encoding errors inside a frame.

**Reverse path**

In general, the path from port A on switch X to port B on switch Y might be different from the path from port B to port A. The difference could be in the links traversed between the same sequence of switches, or the reverse path might even involve different switches. The -r option allows you to determine both routing and statistics information for the reverse path, in addition to those for the direct path.

**Source route**

The source route option allows you to specify a sequence of switches, ports, or areas that the pathInfo frame has to traverse to reach the destination. Therefore, the path might be different from the one used by actual traffic.

The source route is expressed as a sequence of switches, a sequence of output ports or areas, or a combination thereof. The next hop in the source route is described by either the output port or area to be used to reach the next hop, or the domain ID of the next hop.
The source route can specify a partial route from source to destination (in which case the remaining hops are chosen as the path from the input port or area on the first hop not listed in the source route to the destination), as a full route, or as an arbitrary route across the fabric. The maximum hop count is enforced.

If the source route does not specify all the switches along a section of the path, a further option allows to specify a strict versus a loose path. A strict source route requires that only the specified switches are reported in the path description. If two switches are specified back-to-back in the source route descriptor, but are not directly connected, the switches in-between are ignored. In case of a loose source route, the switches in-between are reported. The concepts of strict and loose route apply to the portions of the path described by domains, not to the part described by output ports or areas.

Switches running pre-v5.2 firmware cannot use port numbers greater than 256 as a destination port on a remote switch.

### Note
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

### Operands
The following operands are optional:

- **domain**
  - ID of the destination domain. If this operand is omitted, the command prompts for all operands, including whether basic and extended statistics should be provided.

- **src_portnumber**
  - Port or area whose path to the destination domain is sought. The default is embedded port (-1). For bladed systems, the destination is specified as the area; otherwise, it is the port. If the source port is -1 with no additional arguments, basic statistics display for the route.

- **dst_portnumber**
  - Port or area on the destination switch for each path being traced. This operand returns the state of this port or area. The default is embedded port (-1), or if a destination port is specified that is not active. For bladed systems, the destination is specified as the area; otherwise, it is the port.

- **-r**
  - Display the reverse path in addition to the forward path.

Without operands, **pathInfo** prompts for the preceding operands. The value of domain is mandatory; the values for the source and destination ports can be -1, to indicate the embedded port. Reverse-path tracing remains optional. In addition, this command prompts for the following parameters:

- **max hops**
  - The maximum number of hops that the **pathInfo** frame is allowed to traverse; default is 25.

- **basic stats**
  - Requests the reporting of basic statistics on every link; default is no.

- **extended stats**
  - Requests the reporting of extended statistics on every link; default is no.

- **source route**
  - Specifies a sequence of switches or ports that the **pathInfo** frame should traverse; the default is no. Note that if an output port (or area) to the next hop is specified, you are not prompted for the domain of the next switch, which is determined by the port (or area) specified.
**strict source rte**

Specifies that the source route must be followed strictly as indicated, skipping possible intermediate switches. When using this option, the source route hops must be specified using domain rather than the output port.

**Timeout**

The maximum time allowed to wait for the response; default is 10 seconds.

**Examples**

To display basic path information to a specific domain, using the command line (non-interactive mode):

```plaintext
switch:admin> pathinfo 91
Target port is Embedded
Hop In Port Domain ID (Name) Out Port BW Cost

0 E 9 (web226) 2 1G 1000
1 3 10 (web229) 8 1G 1000
2 8 8 (web228) 9 1G 1000
3 6 91 (web225) E - -
```

To display basic and extended statistics using interactive mode:

```plaintext
switch:admin> pathinfo
Max hops: (1..127) [25]
Domain: (1..239) [-1] 8
Source port: (0..15) [-1]
Destination port: (0..255) [-1]
Basic stats (yes, y, no, n): [no] y
Extended stats (yes, y, no, n): [no] y
Trace reverse path (yes, y, no, n): [no]
Source route (yes, y, no, n): [no]
Timeout: (1..30) [5]
```

```plaintext
Target port is Embedded
Hop In Port Domain ID (Name) Out Port BW Cost

0 E 9 (web226) 2 1G 1000
```

```plaintext
Port E 2
Tx Rx Tx Rx

B/s (ls) - - 0 0
B/s (64s) - - 1 1
Txcrdz (ls) - - 0 -
Txcrdz (64s) - - 0 -
F/s (ls) - - 0 0
F/s (64s) - - 2743 0
Words - - 2752748 2822763
Frames - - 219849 50881
Errors - - - 0
```
### pathInfo

<table>
<thead>
<tr>
<th>Hop</th>
<th>In Port</th>
<th>Domain ID (Name)</th>
<th>Out Port</th>
<th>BW</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>14</td>
<td>8 (web228)</td>
<td>E</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(output truncated)

**See Also**  
portStatsShow, switchShow
pdShow

Displays data from a panic dump file.

Synopsis  pdshow [panic_dump_file]

Description Use this command to display data from a panic dump file. The panic dump file contains information that might be useful to determine the cause of the system panic.

When executed without any arguments, this command displays output from the latest panic dump file available on the switch.

If a panic dump file is specified as an argument, the contents of that specific file are displayed.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following optional operand:

panic_dump_file Specify the full path name of a panic dump file.

Examples To examine a panic dump file by the name panic_dump located under the directory /tmp:

switch:admin> pdshow /tmp/panic_dump

*** CAUTION ***
* Host PLATFORM (current) is: 'Unknown'
* PLATFORM got from pd file is: 'SW12000'
* Some results shown may be incorrect and/or missing
* It is best if this command is run on same PLATFORM as that of pdfile
***********
* File :/core_files/panic/core.pd1038932352 *
* SECTION:PD_MISC *
-----------------------********------------------------
WatchDogRegister=0x0
Section=Startup time: Tue Dec  3 16:06:11 UTC 2002
Kernel= 2.4.19
Fabric OS= v4.1.0_j_dist_1103
Made on= Tue Dec 3 19:07:13 2002
Flash= Tue Dec 3 13:19:06 2002
BootProm= 3.2.0
Section=HA show Output

(output truncated)

See Also  portLogDump, supportSave
perfAddEEMonitor

Adds an end-to-end monitor to a port.

Synopsis  

```
perfaddemonitor [slotnumber/]portnumber SourceID DestID
```

Description  

Use this command to add an end-to-end performance monitor to a port. The performance monitor counts the number of words received, number of words transmitted, and number of CRC errors detected using either of the following two conditions:

1. For frames received at the port, the frame SID is the same as and frame DID is the same as DestID; both RX_COUNT and CRC_COUNT are updated accordingly.
2. For frames transmitted from the port, the frame DID is the same as SourceID and frame SID is the same as DestID; both TX_COUNT and CRC_COUNT are updated accordingly.

To monitor traffic from host A to device B, add a monitor on port 2, specifying 0x050200 as the SID and 0x010100 as the DID. The RX count equals the number of words from host A to device B, whereas the TX count equals the number of words from device B to host A. The CRC count equals the total number of CRC errors for both directions. Adding a monitor on port 1, specifying 0x010100 as SID and 0x050200 as the DID has a similar effect, except the RX and TX counts are interchanged.

If ISL monitoring is enabled, end-to-end monitors cannot be added to E_Ports. Existing end-to-end monitors on E_Ports are deleted.

Identical monitors cannot be added to the same port. Two monitors are considered identical if they have the same SID and DID values after applying the end-to-end mask.

Execution of this command displays a monitor number, which can be used to manipulate performance monitors.

Notes  

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  

This command has the following operands:

- `slotnumber`  
  For bladed systems only, specifies the slot number of the port on which the monitor is to be added, followed by a slash (/).

- `portnumber`  
  Specifies the number of the port on which the monitor is to be added, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports.

- `SourceID`  
  Specifies the 3-byte SID (Source ID) of the originator device. It should be in "0xDDAAPP" format, where DD is domain ID, AA is area ID and PP is AL_PA ID. For example, 0x050200 has a domain ID of 5, an area ID of 2, and an AL_PA ID of 0. SourceID and DestID both cannot be 0x000000.

- `DestID`  
  Specifies the 3-byte DID (destination ID) of the destination device. It should be in "0xDDAAPP" format, where DD is domain ID, AA is area ID and PP is AL_PA ID. For example, 0x050200 has a domain ID of 5, an area ID of 2, and an AL_PA ID of 0. SourceID and DestID both cannot be 0x000000.
Examples

To add an end-to-end monitor to blade 1 port 2:

```
switch:admin> perfaddeemonitor 1/2 "0x050200" "0x1182ef"
End-to-End monitor number 0 added.
```

See Also

perfAddIPMonitor, perfAddReadMonitor, perfAddRWMonitor, perfAddSCSIMonitor, perfAddUserMonitor, perfAddWriteMonitor, perfDelEEMonitor, perfMonitorClear, perfMonitorShow
perfAddIPMonitor

Adds a filter-based performance monitor for IP frame count.

Synopsis

    perfaddipmonitor [slotnumber/]portnumber [alias]

Description

Use this command to create a filter-based monitor that will count the number of IP traffic frames. Only frames transmitted are counted.

Execution of this command displays a numeric key that uniquely identifies the monitor. Use the perfMonitorShow command for a listing of valid keys and user-defined aliases.

Notes

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

    slotnumber    For bladed systems only, this operand specifies the slot number of the port on which the monitor is to be added, followed by a slash (/).

    portnumber    Specifies the number of the port on which the monitor is to be added, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

    alias         Specifies a name for this monitor. Names exceeding 10 characters are truncated. To accommodate spaces, the string must be surrounded by double quotation marks. Spaces count toward the character limit but are removed. This operand is optional. The default alias is "IP Frame".

Examples

To add an IP monitor to a port:

    switch:admin> perfaddipmonitor 1/4 IP_MONITOR
    IP traffic frame monitor #0 added

See Also

    perfAddEEMonitor, perfAddReadMonitor, perfAddRWMonitor, perfAddSCSIMonitor, perfAddUserMonitor, perfAddWriteMonitor
perfAddReadMonitor

Adds a filter-based performance monitor for the SCSI Read command.

Synopsis

```
perfaddreadmonitor [slotnumber/]portnumber [alias]
```

Description

Use this command to create a filter-based monitor that counts the number of SCSI FCP Read
commands in Fibre Channel frames. Only frames transmitted are counted.

Execution of this command displays a numeric key that uniquely identifies the monitor. Use the

```
perfMonitorShow
```

command for a listing of valid keys and user-defined aliases.

Notes

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and
GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands

This command has the following operands:

```
slotnumber For bladed systems only, this operand specifies the slot number of the port
 on which the monitor is to be added, followed by a slash (/).
portnumber Specifies the number of the port on which the monitor is to be added, relative
 to its slot for bladed systems. Use switchShow for a list of valid ports.
alias Specifies a name for this monitor. Strings exceeding 10 characters are
 truncated. To accommodate spaces, the string must be surrounded by
 quotation marks. Spaces count toward the character limit but are removed.
 This operand is optional. The default alias is "SCSI Read".
```

Examples

To add an SCSI read monitor to a port:

```
switch:admin> perfaddreadmonitor 2/4 SCSI_R
SCSI Read filter monitor #2 added
```

See Also

```
perfAddEEMonitor, perfAddIPMonitor, perfAddRWMonitor, perfAddSCSIMonitor,
perfAddUserMonitor, perfAddWriteMonitor
```

perfAddRWMonitor

Adds a filter-based performance monitor for the SCSI read and write commands.

**Synopsis**

```
perfaddrwmonitor [slotnumber/]portnumber [alias]
```

**Description**

Use this command to create a filter-based monitor that counts the number of SCSI FCP Read and Write commands in Fibre Channel frames. Only frames transmitted are counted.

Execution of this command displays a numeric key that uniquely identifies the monitor. Use the `perfMonitorShow` command for a listing of valid keys and user-defined aliases.

**Notes**

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

This command has the following operands:

- `slotnumber` For bladed systems only, specifies the slot number of the port on which the monitor is to be added, followed by a slash (/).
- `portnumber` Specifies the number of the port on which the monitor is to be added, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports.
- `alias` Specifies a name for this monitor. Strings exceeding 10 characters are truncated. To accommodate spaces, the string must be surrounded by quotation marks. Spaces count toward the character limit but are removed. This operand is optional. The default alias is “SCSI R/W”.

**Examples**

To add an SCSI read and write monitor to a port:

```
switch:admin> perfaddrwmonitor 2/4 SCSI_RW
SCSI Read/Write filter monitor #4 added
```

**See Also**

`perfAddEEMonitor`, `perfAddIPMonitor`, `perfAddReadMonitor`, `perfAddSCSIMonitor`, `perfAddUserMonitor`, `perfAddWriteMonitor`
perfAddSCSIMonitor

Adds a filter-based performance monitor for SCSI frame count.

Synopsis  

perfaddscsimonitor [slotnumber/]portnumber [alias]

Description  Use this command to create a filter-based monitor that counts the number of SCSI traffic frames. Only frames transmitted are counted.

Execution of this command displays a numeric key that uniquely identifies the monitor. Use the perfMonitorShow command for a listing of valid keys and user-defined aliases.

Notes  

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands  

This command has the following operands:

slotnumber  

For bladed systems only, specifies the slot number of the port on which the monitor is to be added, followed by a slash (/).

portnumber  

Specifies the number of the port on which the monitor is to be added, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

alias  

Specifies a name for this monitor. Strings exceeding 10 characters are truncated. To accommodate spaces, the string must be surrounded by quotation marks. Spaces count toward the character limit but are removed. This operand is optional. The default alias is “SCSI Frame”.

Examples  

To add a SCSI traffic frame monitor to a port:

switch:admin> perfaddscsimonitor 2/4 "SCSI FR"
SCSI traffic frame monitor #0 added

See Also  

perfAddEEMonitor, perfAddIPMonitor, perfAddReadMonitor, perfAddRWMonitor, perfAddUserMonitor, perfAddWriteMonitor
perfAddUserMonitor

Adds a user-defined filter-based performance monitor.

Synopsis  
perfaddusermonitor [slotnumber/]portnumber "grouplist" [alias]

Description  
Use this command to define a custom filter for frame offsets and values.
For every offset, each group of comparison values is evaluated using the Boolean OR operator to determine a match. If there are multiple offsets, each resulting OR function is evaluated using the AND operator to determine if the entire statement is true, thereby incrementing the counter.

Execution of this command displays a numeric key that uniquely identifies the monitor. Use the perfMonitorShow command for a listing of valid keys and user-defined aliases.

Notes  
This command requires an Advanced Performance Monitoring license.
This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  
This command has the following operands:

slotnumber  
For bladed systems only, this operand specifies the slot number of the port on which the monitor is to be added, followed by a slash (/).

portnumber  
Specifies the number of the port on which the monitor is to be added, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

"grouplist"  
Specifies up to six sets of offset, mask, and ValueList, separated by semicolons (;). The entire grouplist operand must be enclosed in quotation marks. For example: "4, 0xff, 0x22; 12, 0xff, 0x01"
The grouplist component values are as follows:

Offset  
Specifies the offset within the frame. Offset 0 is the first byte of the SOF, and offset 4 is the first byte of the frame header. The offset must be in decimal format. Valid values for offset are 0, [4-63]. Offset 0 is a special case that can be used to monitor the first four bytes SOFx frames. EOF cannot be monitored.

Mask  
Specifies the mask value to be applied (with the AND operator) to frame contents.

ValueList  
Specifies up to four values that need to be captured from frame contents. The ValueList can be either hexadecimal or decimal format.

SOFx frames are considered a special case. The Offset is specified as 0x0; ValueList values are specified with:

0  SOF
1  SOFc1
2  SOFi1
3  SOFn1
4  SOFi2
5  SOFn2
6  SOFi3
7  SOFn3

**alias**

Specifies a name for the monitor. Strings exceeding 10 characters are truncated. To accommodate spaces, the string must be surrounded by quotation marks. Spaces count toward the character limit but are removed. This operand is optional. By default, the alias is an empty string.

**Examples**

To add a filter-based monitor for all Extended Link Service requests (R_CTL=0x22 and TYPE=0x01) to a port:

```
switch:admin> perfAddUserMonitor 1/4 "4, 0xff, 0x22; 12, 0xff, 0x01"
User monitor #0 added
```

As a special case, to add a filter-based monitor for SOFi3 to a port:

```
switch:admin> perfAddUserMonitor 1/4 "0, 0xff, 6"
User monitor #1 added
```

**See Also**

perfAddEEMonitor, perfAddIPMonitor, perfAddReadMonitor, perfAddRWMonitor, perfAddSCSIMonitor, perfAddWriteMonitor
perfAddWriteMonitor

Adds a filter-based performance monitor for the SCSI write command.

Synopsis  

perfaddwritemonitor [slotnumber[/portnumber [alias]]

Description

Use this command to create a filter-based monitor that counts the number of SCSI FCP write commands in Fibre Channel frames. Only frames transmitted are counted.

Execution of this command displays a numeric key that uniquely identifies the monitor. Use the perfMonitorShow command for a listing of valid keys and user-defined aliases.

Notes

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

slotnumber  
For bladed systems only, specifies the slot number of the port on which the monitor is to be added, followed by a slash (/).

portnumber  
Specifies the number of the port on which the monitor is to be added, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

alias  
Specifies a name for this monitor. Strings exceeding 10 characters are truncated. To accommodate spaces, the string must be surrounded by quotation marks. Spaces count toward the character limit but are removed. This operand is optional. The default alias is “SCSI_Write”.

Examples

To add an SCSI Write command monitor to a port:

switch:admin> perfaddwritemonitor 2/4 SCSI_W
SCSI Write filter monitor #0 added

See Also

perfAddEEMonitor, perfAddIPMonitor, perfAddReadMonitor, perfAddRWMonitor, perfAddSCSIMonitor, perfAddUserMonitor
perfCfgClear

Clears the previously saved performance monitoring configuration settings from nonvolatile memory.

Synopsis

    perfCfgClear

Description

Use this command to clear the previously saved end-to-end and filter configuration settings of performance monitoring from nonvolatile memory.

Notes

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

    none

Examples

To clear the performance monitoring information from nonvolatile memory:

    switch:admin> perfCfgClear
    This will clear Performance Monitoring settings in FLASH.
The RAM settings won't change. Do you want to continue? (yes, y, no, n): [no] y
    Please wait ... Performance Monitoring configuration cleared from FLASH.

See Also

    perfCfgRestore, perfCfgSave
PerfCfgRestore

Restores performance monitoring configuration settings from nonvolatile memory.

Synopsis

perfCfgRestore

Description

Use this command to restore the performance monitoring configuration information from nonvolatile memory. This does not restore the information cleared by the perfCfgClear command; rather, it restores the configuration from nonvolatile memory. The perfCfgRestore command overwrites any configuration changes that were not saved.

Notes

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

none

Examples

To restore the performance monitoring configuration information from nonvolatile memory:

switch:admin> perfCfgRestore
This will overwrite current Performance Monitoring settings in RAM. Do you want to continue? (yes, y, no, n): [no] y
Please wait ...
Performance monitoring configuration restored from FLASH.

See Also

perfCfgClear, perfCfgSave
perfCfgSave

Saves performance monitoring configuration settings to nonvolatile memory.

Synopsis perfCfgSave

Description Use this command to save the current Performance Monitor configuration for end-to-end (EE) and filter configuration settings of performance monitoring into nonvolatile memory. Configurations are saved persistently across power cycles.

The number of monitors that can be saved to flash memory is limited as follows:

- 16 EE monitors
- 16 filter monitors
- A total number of 512 monitors per switch

When there are more than 512 monitors in the system, monitors are saved to the flash in the following order:

1. For each port (from 0 to MAX_PORT), the EE monitors in each port are saved to the flash first.
2. Filter monitors for each port are saved next.

When the total monitors per port or switch exceeds the limit, the following message is displayed:

“Performance monitor count has exceeded limit. some monitors have been discarded.”

Notes This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

Monitors created by Web Tools are not saved in persistent memory.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To save the current performance monitoring configuration to firmware:

switch:admin> perfCfgSave
This will overwrite previously saved Performance Monitoring settings in FLASH. Do you want to continue? (yes, y, no, n): [no] y
Please wait ...
Performance monitoring configuration saved in FLASH.

See Also perfCfgClear, perfCfgRestore
perfClearAlpaCrc

Clears the CRC error count associated with a port and arbitrated loop physical address (AL_PA).

Synopsis  

perfclearalpacrc [slotnumber/]portnumber [ALPA]

Description  

Use this command to clear a specific cyclic redundancy check (CRC) error counter associated with a specific port and AL_PA, or all such counters on a port.

Notes  

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is not supported on all platforms. Refer to the Fabric OS Administrator's Guide for specific hardware support.

Operands  

This command has the following operands:

slotnumber  

For bladed systems only, specifies the slot number of the port on which the monitor is to be added, followed by a slash (/).

portnumber  

Specifies the number of the port on which the monitor is to be added, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

ALPA  

Specifies the AL_PA address to clear the CRC error counter for a particular device. This operand is optional; if ALPA is not specified, this command clears the counters for all devices attached to the specified port.

Examples  

To clear the CRC count on a particular AL_PA on a port and then clear the CRC count for all AL_PAs on a port:

switch:admin> perfclearalpacrc 2/15 0x59
CRC error count at ALPA 0x59 on port 31 is cleared.

switch:admin> perfclearalpacrc 2/15
This will clear all ALPA CRC Counts on port 31
Do you want to continue? (yes, y, no, n) y
Please wait ...
All alpa CRC counts are cleared on port 31.

See Also  

perfShowAlpaCrc
perfDelEEMonitor

Deletes one or all end-to-end performance monitors from a port.

Synopsis

    perfdeleemonitor [slotnumber/]portnumber [monitorId]

Description

Use this command to delete an end-to-end performance monitor from a port, or all such monitors associated with a port.

Notes

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

    slotnumber  For bladed systems only, specifies the slot number of the port on which to delete the monitor, followed by a slash (/).

    portnumber  Specifies the number of the port on which the monitor is to be deleted, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

    monitorId   Specifies the numeric key of the monitor to be deleted. The key is defined when a monitor is created. Use perfMonitorShow to determine the monitor key. This operand is optional. If no operand is specified, this command deletes all end-to-end monitors associated with the port.

Examples

To delete an end-to-end monitor on a port, or all such monitors:

    switch:admin> perfdeleemonitor 7/2 5
    End-to-End monitor number 5 deleted

    switch:admin> perfdeleemonitor 7/2
    This will remove ALL EE monitors on port 2, continue? (yes, y, no, n): [no] y

See Also

    perfAddEEMonitor, perfMonitorShow
PerfDelFilterMonitor

PerfDelFilterMonitor deletes one or all filter-based performance monitors from a port.

Synopsis  
PerfDelFilterMonitor [slotnumber/]portnumber [monitorid]

Description  
Use this command to delete a filter-based performance monitor from a port, or all such monitors associated with a port.

Notes  
This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  
This command has the following operands:

slotnumber  
For bladed systems only, specifies the slot number of the port on which the monitor is to be deleted, followed by a slash (/).

portnumber  
Specifies the number of the port on which the monitor is to be deleted, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

monitorid  
Specifies the numeric key of the monitor to be deleted. The key is defined when a monitor is created and can be displayed with the PerfMonitorShow command. This operand is optional. If omitted, this command deletes all filter-based performance monitors associated with the port.

Examples  
To delete filter monitor 4 from a port, and then all filter monitors from the port:

switch:admin> PerfDelFilterMonitor 2/3 4
The specified filter-based monitor is deleted.

switch:admin> PerfDelFilterMonitor 2/3
This will remove ALL monitors on port 19, continue? (yes, y, no, n): [no] y

See Also  
PerfAddUserMonitor, PerfMonitorShow
perfHelp

Displays performance monitoring help information.

Synopsis

perfhelp

Description

Use this command to display the help commands available for performance monitoring.

Operands

none

Examples

To display commands related to performance monitoring:

    switch:admin> perfhelp

    perfAddEEMonitor          Add end-to-end monitor
    perfAddIPMonitor          Add monitor for IP traffic frame count
    perfAddReadMonitor         Add filter-based monitor - SCSI Read
    perfAddRWMonitor          Add monitor - SCSI Read and Write
    perfAddSCSIMonitor          Add monitor for SCSI frame count
    perfAddUserMonitor          Add filter-based monitor
    perfAddWriteMonitor          Add filter-based monitor - SCSI Write
    perfCfgClear             Clear Performance settings from FLASH
    perfCfgRestore          Restore Performance configuration from FLASH
    perfCfgSave             Save Performance configuration to FLASH
    perfDelEEMonitor          Delete an end-to-end monitor
    perfDelFilterMonitor         Delete filter-based monitor
    perfMonitorClear   Clear end-to-end/filter-based/ISL monitors
    perfMonitorShow   Show end-to-end/filter-based/ISL monitors
    perfSetPortEEMask          Set overall mask for end-to-end monitors
    perfShowAlpaCrc           Get ALPA CRC count by port and ALPA
    perfShowPortEEMask       Show the current end-to-end mask
    PerfTTmon                 Install Top Talker monitor

See Also

none
perfMonitorClear

Clears counters of end-to-end, filter-based, and ISL performance monitors on a port.

Synopsis   perfmonitorclear --class monitor_class [slotnumber/]portnumber [monitorId]

Description Use this command to clear counters for performance monitors on a port, specified by class. Monitor classes include end-to-end monitors (EE), filter-based monitors (FLT), and interswitch link monitors (ISL).

Issuing the portStatsClear command on a port clears all end-to-end and filter-based monitors (but not ISL monitors) for all the ports in the same quad.

Notes This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This operands are as follows:

--class monitor_class

Specifies the monitor class as one of the following: EE (end-to-end), FLT (filter-based), or ISL (interswitch link). These values are case-sensitive. This operand is required.

slotnumber For bladed systems only, specifies the slot number of the port on which the monitor counter is to be cleared, followed by a slash (/).

portnumber Specifies the number of the port on which the monitor counter is to be cleared, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

monitorId Specifies the numeric key of the monitor to be deleted. The key is defined when a monitor is created and can be displayed with the perfMonitorShow command. This operand is optional. If no operand is specified, this command clears all monitor counters of the specified monitor_class on the port. This operand does not apply to ISL monitors.

Examples To clear statistics counters for an end-to-end monitor:

switch:admin> perfmonitorclear --class EE 1/2 5
End-to-End monitor number 5 counters are cleared

switch:admin> perfmonitorclear --class EE 1/2
This will clear ALL EE monitors' counters on port 2, continue? (yes, y, no, n): [no] y

To clear statistics counters for a filter-based monitor:

switch:admin> perfmonitorclear --class FLT 1/2 4
Filter-based monitor number 4 counters are cleared

switch:admin> perfmonitorclear --class FLT 1/2
This will clear ALL filter-based monitors' counters on port 2, continue? (yes, y, no, n): [no] y

To clear statistics counters for an ISL monitor:

```
switch:admin> perfmonitorclear --class ISL 1
This will clear ISL monitor on port 1, continue? (yes, y, no, n): [no] y
```

See Also  perfAddEEMonitor, perfAddIPMonitor, perfAddReadMonitor, perfAddRWMonitor,
perfAddSCSIMonitor, perfAddUserMonitor, perfAddWriteMonitor, perfMonitorShow
perfMonitorShow

Displays end-to-end, filter-based, and inter-switch Link monitors on a port.

Synopsis

```
perfmonitorshow --class monitor_class [slotnumber/]portnumber [interval]
```

Description

Use this command to display performance monitors on a port. Monitor classes include end-to-end monitors (EE), filter-based monitors (FLT), and Inter-Switch Link monitors (ISL).

ISL monitors are automatically activated on E_Ports (not including trunk slaves). End-to-end monitors are created using perfAddEEMonitor. Filter-based monitors are created using perfAddIPMonitor, perfAddReadMonitor, perfAddRWMonitor, perfAddSCSIMonitor, perfAddUserMonitor, or perfAddWriteMonitor.

This command displays the following information:

- If `interval` is specified, the command displays a snapshot of the traffic at the specified `interval`.
- For end-to-end monitors, the command displays the following (if no interval operand is specified):
  - **Key**: The monitor number.
  - **SID**: The source Port ID.
  - **DID**: The destination Port ID.
  - **Owner_app**: The owner application: TELNET, WEB_TOOLS, or API.
  - **Tx_count**: The number of FC words transmitted.
  - **Rx_count**: The number of FC words received.
  - **Owner_ip_addr**: The IP address of the originator that created the EE monitor. Displays the IPv6 address if applications pass the IP address while adding the monitor. If the monitor is added using performance monitor CLIs, this field displays N/A.
- For filter-based monitors (if no `interval` is specified), this command displays the following:
  - **Key**: The monitor number.
  - **Alias**: The monitor alias name.
  - **Owner_app**: The owner application: TELNET, WEB_TOOLS, or API.
  - **Frame_count**: The cumulative 64-bit frame count.
  - **Owner_ip_addr**: The IP address of the originator that created the filter monitor. Displays the IPv6 address if applications pass the IP address while adding the monitor. If the monitor is added using performance monitor CLIs, this field displays N/A.
- For ISL monitors (if no `interval` is specified), this command displays the following:
  - **Tx_count**: The 64-bit cumulative ISL transmit count for the whole ISL.
  - **Num_ports**: The number of ports in this ISL (one for a standalone ISL, more for trunks).
  - **Num_domains**: The total number of domains being monitored.
  - **Domain_count**: The 64-bit cumulative transmit counter for each individual domain.

Notes

This command requires an Advanced Performance Monitoring license.
This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

This command has the following operands:

--class monitor_class

Specifies the monitor class as one of the following: EE (end-to-end), FLT (filter-based), or ISL (interswitch link). These values are case-sensitive.

.slotnumber

For bladed systems only, specifies the slot number of the port on which to display the monitor, followed by a slash (/).

.portnumber

Specifies the number of the port on which to display the monitor, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

.interval

Specifies an interval of 5 or more seconds. In the case of end-to-end monitor, Tx and Rx counts are displayed in the unit of byte when this operand is specified. This operand is optional; if the operand is not specified, this command displays cumulative counts.

**Examples**

To display filter monitors on port 8:

```
switch:admin> perfmonitorshow --class FLT 8
There are 2 filter-based monitors defined on port 8.

KEY ALIAS OWNER_APP FRAME_COUNT OWNER_IP_ADDR
------- -------- ----------- ------------- ------------
0 IPFrame TELNET 0x0000000000000000 N/A
1 SCSIRead TELNET 0x0000000000000000 N/A
```

To display end-to-end monitors on port 8

```
switch:admin> perfmonitorshow --class EE 2/8
There are 8 end-to-end monitor(s) defined on port 8.

KEY SID DID OWNER_APP TX_COUNT RX_COUNT OWNER_IP_ADDR
------- ------ ------- --------- --------- ------------
0 0xfffff1 0x000001 TELNET 0x0000000000000000 0x0000000000000000 N/A
1 0xfffff2 0x000002 TELNET 0x0000000000000000 0x0000000000000000 N/A
2 0xfffff3 0x000003 TELNET 0x0000000000000000 0x0000000000000000 N/A
3 0xfffff4 0x000004 TELNET 0x0000000000000000 0x0000000000000000 N/A
4 0xfffff5 0x000005 TELNET 0x0000000000000000 0x0000000000000000 N/A
5 0xfffff6 0x000006 TELNET 0x0000000000000000 0x0000000000000000 N/A
6 0xfffff7 0x000007 TELNET 0x0000000000000000 0x0000000000000000 N/A
7 0x000008 0x000008 TELNET 0x0000000000000000 0x0000000000000000 N/A
8 0x000000 0x1182ef TELNET 0x0000000000000000 0x0000000000000000 N/A
```

To display end-to-end monitors on a port at an interval of every 5 seconds:

```
switch:admin> perfmonitorshow --class EE 8 5
Showing EE monitors 8, 5: Tx/Rx are # of bytes

0 1 2 3 4 5 6 7
----- ----- ----- ----- ----- ----- -----
To display cumulative filter monitor information on a port:

```
switch:admin> perfmonitorshow --class FLT 8
```

There are 2 filter-based monitors defined on port 8.

```
KEY  ALIAS   OWNER_APP   FRAME_COUNT       OWNER_IP_ADDR
---------------------------------------------------------
0  IPFrame    TELNET    0x0000000000000000      N/A
1  SCSIRead   TELNET    0x0000000000000000      N/A
```

To display filter-based monitors on a port at an interval of every 6 seconds:

```
switch:admin> perfmonitorshow --class FLT 2/5 6
Showing filter monitors 2/5, 6
0        1        2        3        4        5        6
#Frames  #Frames  #Frames  #Frames  #Frames  #Frames  #Frames
---------------------------------------------------------------
0        0        0        0        0        0        0
26k     187      681      682      682      494      187
26k     177      711      710      710      534      176
26k     184      734      734      734      550      184
26k     182      649      649      649      467      182
26k     188      754      755      755      567      184
26k     183      716      716      717      534      183
26k     167      657      656      655      488      167
26k     179      749      749      749      570      179
26k     164      752      752      752      588      164
26k     190      700      700      700      510      190
26k     181      701      701      701      520      181
26k     200      750      750      751      550      201
26k     180      692      692      691      512      179
26k     179      696      696      696      517      179
26k     187      720      720      720      510      187
26k     200      722      722      722      533      200
26k     204      717      717      717      513      204
```

To display ISL monitor information on a port:

```
switch:admin> perfmonitorshow --class ISL 1/1
Total transmit count for this ISL: 1462326
Number of destination domains monitored: 3
Number of ports in this ISL: 2
Domain 97:               110379          Domain 98: 13965
Domain 99:              1337982
```

See Also perfMonitorClear, perfAddEEMonitor, perfAddIPMonitor, perfAddRWMonitor,
perfAddReadMonitor, perfAddSCSIMonitor, perfAddUserMonitor,
perfAddWriteMonitor
perfSetPortEEMask

Sets the overall mask for end-to-end (EE) performance monitors.

Synopsis

perfsetporteemask [slotnumber/]portnumber "TxSIDMsk" "TxDIDMsk" "RxSIDMsk" "RxDIDMsk"

Description

Use this command to set the mask for an end-to-end (EE) performance monitor. This command allows selecting the Fibre Channel frames for which to collect performance statistics. When setting the EE mask on a port, all existing EE monitors on that port are deleted.

This command controls all three address fields (Domain ID, Area ID, and AL_PA ID) of both the source ID and destination ID, which can be used to trigger the monitor.

The address mask is of the form "dd:aa:pp", where "dd" is the Domain ID mask, "aa" is the Area ID mask, and "pp" is AL_PA ID mask.

Specify the following values to turn a specific field on or off:

- **00**: Specifies that the field does not trigger EE monitors.
- **ff**: Specifies that the field does trigger EE monitors.

The default EE mask value is 0xffffffff.

When a mask is set (0xff), the corresponding field triggers the monitor. If the mask is unset (0x00), the corresponding field is ignored.

For example, "00:ff:00" uses only the Area ID to trigger the EE monitor.

There is only one EE mask per port. The mask is applied to all eight EE monitors available on a port. The default EE mask value upon power-on is already set. When ISL monitoring is enabled, the EE mask on E_Ports is controlled automatically and existing mask values for E_Ports are over-written.

Notes

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

On the Brocade FC4-48, the Area ID address field and the AL_PA ID address field must be masked together. On this blade, one bit of the AL_PA ID address field is used with the Area ID address field to identify the upper 32 ports. For example, ports 128 and 256 may be addressed on Domain ID "dd" with Area ID "aa" as "dd:aa:00" and "dd:aa:80" respectively. If the Area ID and AL_PA ID address fields are masked separately, the switch cannot track frames sent to the upper 32 ports deterministically, and this command returns the message that "Port is not masked together."

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- **slotnumber**: For bladed systems only, this operand specifies the slot number of the port on which the monitor is to be updated, followed by a slash (/).
- **portnumber**: Specifies the number of the port on which the EE mask is to be updated, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports.
perfSetPortEEMask

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxSIDMsk</td>
<td>Specify the transmitting source ID mask in <code>dd:aa:pp</code> format, with quotation marks, where <code>dd</code> is the domain ID mask, <code>aa</code> is the area ID mask, and <code>pp</code> is AL_PA ID mask. For example, "00:ff:00" uses only the Area ID to trigger the EE monitor. Specify the following values to turn a specific field on or off:</td>
</tr>
<tr>
<td>00</td>
<td>Specifies that the field does not trigger EE monitors.</td>
</tr>
<tr>
<td>ff</td>
<td>Specifies that the field does trigger EE monitors.</td>
</tr>
<tr>
<td>TxDIDMsk</td>
<td>Specify the transmitting Destination ID mask, in quotation marks, in <code>dd:aa:pp</code> format.</td>
</tr>
<tr>
<td>RxSIDMsk</td>
<td>Specify the receiving Source ID mask, in quotation marks, in <code>dd:aa:pp</code> format.</td>
</tr>
<tr>
<td>RxDIDMsk</td>
<td>Specify the destination ID mask, in quotation marks, in <code>dd:aa:pp</code> format.</td>
</tr>
</tbody>
</table>

Examples

To set the overall mask for end-to-end monitors on a port:

```
switch:admin> perfsetporteemask 1/6 "00:00:00" "ff:ff:ff" "00:ff:ff" "ff:00:00"
Changing EE mask for this port will cause ALL EE monitors on this port to be deleted.
continue? (yes, y, no, n): [no] y
```

The EE mask on port 6 is set and EE Monitors on this port are deleted.

See Also

perfAddEEMonitor, perfShowPortEEMask
perfShowAlpaCrc

Displays the CRC error count by port or by arbitrated loop physical address (AL_PA).

Synopsis

perfshowalpacrc [slotnumber[/]portnumber [ALPA]

Description

Use this command to display the cyclic redundancy check (CRC) error count of one or all devices attached to a port. If the AL_PA operand is specified, only the CRC count for that AL_PA device is displayed. If the AL_PA operand is not specified, the CRC count for all the AL_PA devices on a specified port are displayed.

CRC count is a 64-bit counter. The CRC count value is displayed in hexadecimal.

Notes

This command requires an Advanced Performance Monitoring license.
This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is not supported on all platforms. Refer to the Fabric OS Administrator's Guide for specific hardware support.

Operands

This command has the following operands:

slotnumber

For bladed systems only, specifies the slot number of the port to be displayed, followed by a slash (/).

portnumber

Specifies the number of the port to be displayed, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

ALPA

Specify the AL_PA address to get the CRC errors for a specific device. This operand is optional; if the operand is omitted, this command displays CRC error counts for all devices attached to the specified port.

Examples

To display the CRC error count for all AL_PA devices on a port:

switch:admin> perfshowalpacrc 2/4
ALPA CRC_ERROR_COUNT

0x01 0
0x03 0

See Also

perfClearAlpaCrc
perfShowPortEEMask

Displays the current address mask for end-to-end performance monitors on a port.

Synopsis

perfShowPortEEMask [slotnumber]/portnumber

Description

Use this command to display the current mask shared across all end-to-end (EE) performance monitors of a port. There are only two commands that can modify the value of the EE mask: perfSetPortEEMask and perfCfgRestore.

The end-to-end mask has 12 fields:

- TxSID Domain: on
- TxSID Area: on
- TxSID ALPA: on
- TxDID Domain: on
- TxDID Area: on
- TxDID ALPA: on
- RxSID Domain: on
- RxSID Area: on
- RxSID ALPA: on
- RxDID Domain: on
- RxDID Area: on
- RxDID ALPA: on

The fields that are marked “on” are used to trigger end-to-end monitors. The default value of the EE mask is all fields set to “on.”

Notes

This command requires an Advanced Performance Monitoring license.

This command is not supported on virtual FC ports (VE/VEX_Port), EX_Port, M (Mirror) ports and GbE ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operand:

- slotnumber
 For bladed systems only, this operand specifies the slot number of the port on which the monitor is to be displayed, followed by a slash (/).

- portnumber
 Specifies the number of the port on which the monitor is to be displayed, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

Examples

To display the end-to-end mask on a port:

```
switch:admin> perfshowporteemask 2/4
The EE mask on port 20 is set by application NONE

TxSID Domain: on
TxSID Area: on
TxSID ALPA: on
TxDID Domain: on
TxDID Area: on
TxDID ALPA: on
RxSID Domain: on
RxSID Area: on
```
perfShowPortEEMask

RxSID ALPA: on
RxDID Domain: on
RxDID Area: on
RxDID ALPA: on

See Also perfAddEE_MONITOR, perfDelEE_MONITOR, perfSetPortEE_Mask
perfTTmon

Installs the Top Talker monitor in the specified mode.

Synopsis

perfTTmon
Port Mode (F_Port):

perfTTmon --add egress | ingress [slotnumber/]portnumber
perfTTmon --show [slotnumber/]portnumber [number of flows] [wwn| pid]
perfTTmon --delete [slotnumber/]portnumber

Fabric Mode:

perfTTmon --add fabricmode
perfTTmon --show dom domain id [number of flows] [wwn| pid]
perfTTmon --delete fabricmode

Description

Use this command to install the Top Talker monitor. The TopTalker feature provides real-time information about the top 'n' bandwidth consuming flows from a set of a large number of flows passing through a specific point in the network (after initial stabilization).

Top Talkers can display between 1 and 32 flows depending on hardware platform. The maximum flows displayed are as follows:

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>For the Brocade 300, 5100, 5300, and FC8-xx port blades.</td>
</tr>
<tr>
<td>16</td>
<td>For the Brocade 4100, 4900, 5000, 7600, and FC4-xx port blades.</td>
</tr>
<tr>
<td>4</td>
<td>For the Brocade 7500.</td>
</tr>
</tbody>
</table>

Top Talker supports two modes, Port Mode and Fabric Mode:

- **Port Mode**, Top Talker is installed on an F_Port to measure the traffic originating from the F_Port and flowing to different destinations. The output displays the data in a sorted order based on the data rate of each flow.

- **Fabric Mode**, Top Talker measures the top "n" bandwidth using flows on a given switch. Top Talker installs only on E_Ports and measures the data rate of all the possible flows in the fabric. Flow is a pair of communicating FC addresses (SID and DID). Top Talkers in Fabric Mode and EE monitors are mutually exclusive. EE monitors must be removed from all switches before enabling fabric mode.

Notes

This command requires an Advanced Performance Monitor license.

Most platforms supported under Fabric OS v6.0.0 and later support TopTalkers. This includes Condor and Condor2 ASICs. The GoldenEye ASIC does not support Top Talker.

The execution of this command is subject to Admin Domain restrictions that may be in place. The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.
PerfTTmon 2

Operands

This command has the following operands:

- **slotnumber**: For bladed systems only, specifies the slot number of the port on which to install Top Talkers, followed by a slash (/).
- **portnumber**: Specifies the number of the port on which the Top Talker is to be installed, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports.

F_Port Top Talker commands:

- **--add**: Installs the Top Talker monitor on a specified F_Port.
 - **egress | ingress**: Used with the `--add` option to specify the direction in which the traffic is monitored as incoming or outgoing. This operand is required.
- **--show**: Displays the top talking flows on a specified port.
 - **number of top talking flows**: Specifies "n" top talking flows. Valid values are between 1 and 32. If a value greater than 32 is entered, Top Talker displays counters for only 32 flows and a warning message. This operand is optional; if omitted, the command displays the top 8 flows.
 - **wwn | pid**: Specifies the output display as either WWN or PID format. This operand is optional. If omitted, the command displays in WWN format.
- **--delete**: Deletes an existing Top Talker monitor on a specified F_Port.

Fabric Mode Top Talker commands:

- **--add fabricmode**: Installs the Top Talker monitor on all switches in the fabric. When a new switch joins the fabric, this command needs to be run again on the switch. The TT config information is not propagated automatically to the new switch.
- **--show**: Displays top talking flows on the switch, for a given domain ID.
 - **dom dom_id**: Specifies the domain ID for the flow display.
 - **number of top talking flows**: Specifies "n" top talking flows. Valid values are between 1 and 32. If a value greater than 32 is entered, Top Talker displays counters for only 32 flows and a warning message. This operand is optional; if omitted, the command displays the top 8 flows.
 - **wwn | pid**: Specifies display as either WWN or PID format. This operand is optional. If omitted, the command displays in WWN format.
- **--delete fabricmode**: Deletes the Fabric Mode Top Talker.

Examples

To add an F_Port Top Talker to blade 1 port 2 (which should be an F_Port):

```
Switch:admin> perfTTmon --add ingress 1/2
```
To display the F_Port Top Talker output:

```
Switch:admin> perfTTmon --show 1/2 pid
```

```
Src_PID   Dst_PID        MB/sec
-------------------------------
0xa90800  0xa05200       6.926
0xa90800  0xa905ef       6.872
0xa905ef  0xa05200       6.830
0xa909d5  0xa05200       6.772
```

To delete the Fabric Mode Top Talker:

```
Switch:admin> perfTTmon --del fabricmode
```

To add the Fabric Mode Top Talker:

```
Switch:admin> perfTTmon --add fabricmode
```

To display to Fabric Mode Top Talker output:

```
Switch:admin> perfTTmon --show dom 101 pid
```

```
Src_PID   Dst_PID        MB/sec
-------------------------------
0xa908ef  0xa05200       6.926
0xa05200  0xa908ef       6.872
0xa905ef  0xa05200       6.830
0xa909d5  0xa05200       6.772
```

To delete the Fabric Mode Top Talker:

```
Switch:admin> perfTTmon --del fabricmode
```

See Also none
pkiCreate

Creates public key infrastructure (PKI) objects.

Synopsis pkiCreate

Description Use this command to create PKI objects such as a pass-phrase switch private key and CSR and to install a root certificate. This command does not create the switch certificate. Switch certificate should be obtained offline from the Certificate Authority.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To create PKI objects:

 switch:admin> pkiCreate
 Installing Private Key and Csr...
 Switch key pair and CSR generated...
 Installing Root Certificate...

If PKI objects already exist, the following message is displayed:

 switch:admin> pkiCreate
 Pki objects already exist.

If you want to regenerate new objects, remove current objects by running pkiRemove command with security disabled.

 WARNING: Recertification is required with new pki objects before security can be enabled

See Also pkiRemove, pkiShow
pkiRemove

Removes existing public key infrastructure (PKI) objects.

Synopsis pkiRemove

Description Use this command to remove PKI objects including the switch private key, private key pass-phrase, CSR, root certificate, and switch certificate.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To remove PKI objects:

switch:admin> pkiRemove

WARNING!!!

Removing Pki objects will impair the security functionality of this fibre channel switch. If you want secure mode enabled, you will need to get the switch certificate again.

About to remove Pki objects.
ARE YOU SURE (yes, y, no, n): [no]
y
All PKI objects removed.

See Also pkiCreate, pkiShow
pkiShow

Displays existing public key infrastructure (PKI) objects.

Synopsis pkiShow

Description Use this command to display PKI objects, such as switch private key, private key pass-phrase, CSR, root certificate, and switch certificate.

Operands none

Examples To view PKI objects:

switch:admin> pkiShow
Passphrase : Exist
Private Key : Exist
CSR : Exist
Certificate : Empty
Root Certificate: Exist

See Also pkiCreate, pkiRemove
policy

Displays or modifies the encryption and authentication algorithms for security policies.

Synopsis

```
policy option type number [-enc method] [-auth algorithm] [-pfs value] [-dh group] [-seclife seconds]
```

Description

Use this command to display or modify the encryption and authentication algorithms for security policies. You can configure a maximum of 32 Internet key exchange (IKE) and 32 Internet protocol security (IPSec) policies.

Each FCIP tunnel is configured separately and may have the same or different IKE and IPSec policies.

Policies cannot be altered. To change the parameters associated with a current IKE or IPSec policy, that policy must be deleted and re-created with new parameters.

A policy cannot be deleted while an active FCIP tunnel is using it.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

```
option
  Specifies the action to take. Actions include:
    --create   Creates the policy.
    --delete   Deletes the policy.
    --show     Displays the policy.

type
  Specifies the policy type. Types include:
    ike         Internet key exchange.
    ipsec       Internet protocol security.

number
  Specifies the numeric ID of the policy. Valid values are 1 to 32, and ALL with the --show option.

-enc method
  Specifies the encryption algorithm. The default is AES-128. Methods include:
    3DES      Triple data encryption standard, 168-bit key.
    AES-128   Advanced encryption standard, 128-bit key.
    AES-256   Advanced encryption standard, 256-bit key.

-auth algorithm
  Specifies the authentication algorithm. The default is SHA-1. Algorithms include:
    SHA-1     Secure hash algorithm.
    MD5       Message digest 5.
    AES-XCBC  Advanced encryption standard. Valid only with IPSec.

-pfs value
  Specifies the perfect forward secrecy. This operand is valid only with IKE policies. Values are on (default) or off.
```
-dh group Specifies the Diffie-Hellman group used in PFS negotiation. This operand is valid only with IKE policies. The default is 1. Values include:

1 Fastest as it uses 768 bit values, but least secure.
14 Slowest as it uses 2048 bit values, but most secure.

-seclife seconds Security association lifetime in seconds. A new key is re-negotiated before the specified length of time expires. The valid range for seconds is 28800 to 250000000 or 0. The default is 28800.

Examples

To create a new policy:

```
switch:admin> policy --create ike 10 -enc 3des -auth md5
The following policy has been set:

IKE policy 10
-----------------------------------------
Authentication Algorithm: MD5
Encryption: 3DES
Perfect Forward Secrecy: 0
Diffie-Hellman Group: 1
SA Life (seconds): 28800
```

To display a policy setting:

```
switch:admin> policy --show ipsec 1
IPSec policy 1
-----------------------------------------
Authentication Algorithm: SHA-1
Encryption: 3DES
SA Life (seconds): 28800
```

To display all IKE policy settings:

```
switch:admin> policy --show ike all
IKE Policy 1
-----------------------------------------
Authentication Algorithm: SHA-1
Encryption: AES-128
Perfect Forward Secrecy: on
Diffie-Hellman Group: 1
SA Life (seconds): 28800

IKE Policy 29
-----------------------------------------
Authentication Algorithm: SHA-1
Encryption: AES-128
Perfect Forward Secrecy: on
Diffie-Hellman Group: 1
SA Life (seconds): 28800
```

Operation Succeeded
To display all IPSec policy settings:

```
switch:admin> policy --show ipsec all
IPSec Policy 2
-----------------------------------------
Authentication Algorithm: SHA-1
Encryption: AES-128
SA Life (seconds): 28800

IPSec Policy 29
-----------------------------------------
Authentication Algorithm: SHA-1
Encryption: AES-128
SA Life (seconds): 28800

Operation Succeeded

To change (delete and re-create) a policy:

```
switch:admin> policy ike --delete 10
This policy has been successfully deleted.

switch:admin> policy ike --create 10 -enc aes-128 -auth sha-1
The following policy has been set:

IKE policy 10

Authentication Algorithm: SHA-1
Encryption: AES-128
Perfect Forward Secrecy: 0
Diffie-Hellman Group: 1
SA Life (seconds): 28800

To delete a policy:

```
switch:admin> policy ike --delete 10
The policy has been successfully deleted.

See Also  portCfg, portCfgShow, portShow
portAlpaShow

Displays the Arbitrated Loop Physical Addresses (AL_PAs) of devices attached to a port.

Synopsis  

```
portAlpaShow [slotnumber/]portnumber
```

Description  

Use this command to display the AL_PAs of devices connected to a port, and whether these devices are public or private. If the specified port is not an active FL_Port or if no AL_PAs are present, this command prints an error.

Note  

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  

This command has the following operands:

```
slotnumber
```

For bladed systems only, specify the slot number of the port to display, followed by a slash (/).

```
portnumber
```

Specify the port number to display, relative to its slot for bladed systems. Use switchShow to list valid ports.

Examples  

To display the AL_PAs of a port:

```
switch:user> portAlpaShow 4/14
AL_PA type AL_PA type
0xe2 public 0xe4 public
```

See Also  

switchShow
portBufferShow

Displays the buffer usage information for a port group or for all port groups in the switch.

Synopsis  
portbuffershow [[slotnumber/]portnumber]

Description  
Use this command to display the current long distance buffer information for the ports in a port group. The port group can be specified by giving any port number in that group. If no port is specified, then the long distance buffer information for all of the port groups of the switch is displayed.

The following long distance information is displayed:

- **User Port**: Index number of the port.
- **Port Type**: E (E_Port), F (F_Port), G (G_Port), L (L_Port), or U (U_Port).
- **Lx Mode**: Long distance mode.  
  - L0: Link is not in long distance mode.  
  - LE: Link is up to 10 km.  
  - LD: Distance is determined dynamically.  
  - LS: Distance is determined statically by user input.

- **Max/Resv Buffers**: The maximum or reserved number of buffers that are allocated to the port based on the estimated distance (as defined by the desired_distance operand of the portCfgLongDistance command). If the port is not configured in long distance mode, certain systems might reserve buffers for the port. This field then displays the number of buffers reserved for the port.

- **Buffer Usage**: The actual number of buffers allocated to the port. In LD mode, the number is determined by the actual distance and the user-specified desired distance (as defined by the desired_distance operand of the portCfgLongDistance command).

- **Needed Buffers**: The number of buffers needed to utilize the port at full bandwidth (depending on the port configuration). If the number of Buffer Usage is less than the number of Needed Buffers, the port is operating in the buffer limited mode.

- **Link Distance**: For L0 (not in long distance mode), the command displays the fixed distance based on port speed, for instance: 10 km (1 Gbps), 5 km (2 Gbps), 2 km (4 Gbps), or 1 km (8 Gbps). For static long distance mode (LE), the fixed distance of 10 km displays. For LD mode, the distance in kilometers displays as measured by timing the return trip of a MARK primitive that is sent and then echoed back to the switch. LD mode supports distances up to 500 km. Distance measurement on a link longer than 500 km might not be accurate. If the connecting port does not support LD mode, is shows “N/A”.

- **Remaining Buffers**: The remaining (unallocated and reserved) buffers in a port group.

A hyphen in one of the display fields indicates that no relevant information is available; there may be no connection to a port, or the port is disabled, or the port is not an E_Port.

**Note**: The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.
Operands

When invoked without operands, this command displays the long distance buffer information for all the port groups of the switch.

The following operands are optional:

`slotnumber` For bladed systems only, specifies the slot number of the port group to display, followed by a slash (/).

`portnumber` Specifies the number of a port associated with the port group, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports.

Examples

To display the port buffer information for a port:

```
switch:admin> portbuffershow 17
```

<table>
<thead>
<tr>
<th>User</th>
<th>Port</th>
<th>Lx</th>
<th>Max/Resv</th>
<th>Buffer Needed</th>
<th>Link</th>
<th>Remaining Buffers</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----------</td>
<td>---------------</td>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>E</td>
<td>L1</td>
<td></td>
<td>54</td>
<td>54</td>
<td>50km</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Also

`portCfgLongDistance`
portCamShow

Displays port-based filter CAM utilization.

Synopsis  portcamshow [[slotnumber/]portnumber]

Description Use this command to display the current filter CAM utilization of all ports or one port specified at input.

The following information is displayed:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID used</td>
<td>Total number of CAM entries used by this port. Note that each CAM entry (either SID or DID CAM) can be shared among a certain number of ports, depending on the ASIC.</td>
</tr>
<tr>
<td>DID used</td>
<td>Total number of CAM entries used by this port. Note that each CAM entry (either SID or DID CAM) can be shared among a certain number of ports, depending on the ASIC.</td>
</tr>
<tr>
<td>SID entries</td>
<td>All existing source ID entries within the CAM for this port. Note that each CAM entry (either SID or DID CAM) can be shared among a certain number of ports, depending on the ASIC.</td>
</tr>
<tr>
<td>DID entries</td>
<td>All existing destination ID entries within the CAM for this port. Note that each CAM entry (either SID or DID CAM) can be among a certain number of ports, depending on the ASIC.</td>
</tr>
<tr>
<td>SID free</td>
<td>The total number of free SID CAM entries available for use by this port.</td>
</tr>
<tr>
<td>DID free</td>
<td>The total number of free DID CAM entries available for use by this port.</td>
</tr>
</tbody>
</table>

Operands This command has the following operands:

slotnumber For bladed systems only, specify the slot number of the port to display, followed by a slash (/).

portnumber Specify the port number to display, relative to its slot for bladed systems. Use switchShow to list valid ports. This operand is optional; if omitted, information for all ports is displayed.

Ports that support shared areas are divided into two ports: primary and secondary ports. Primary and secondary ports share the same area. Portcam entries displayed on the primary ports also consist of all the secondary port SIDs and DIDs as well, when both the ports are F_Ports. This is because the primary port acts as a proxy for the CAM entries of the secondary port, in this case using redirect filters.

Examples For example port 7/31 and 7/39 are shared ports and 7/31 is primary. In this case portCamShow displays the following output:

```
switch:user> portcamshow 7/39
--
Area SID used DID used SID entries DID entries
207 3 1 03b380 03cf80
034100
03cf00
--
SID free, DID free: (2044, 1020)
```
switch:admin> portcamshow 7/31

<table>
<thead>
<tr>
<th>Area</th>
<th>SID used</th>
<th>DID used</th>
<th>SID entries</th>
<th>DID entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>4</td>
<td>2</td>
<td>03b380</td>
<td>03cf80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>034100</td>
<td>03cf00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03cf00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03cf80</td>
<td></td>
</tr>
</tbody>
</table>

SID free, DID free: (2044, 1020)

The SID entry 03cf00 and DID entry 03cf80 on port 7/31 belong to port 7/39.

To display the filter CAM utilization for all ports on a switch:

switch:user> portcamshow

Ports of Slot 9

<table>
<thead>
<tr>
<th>Port</th>
<th>SID used</th>
<th>DID used</th>
<th>SID free</th>
<th>DID free</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>512</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>512</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>512</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>512</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>512</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>512</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>512</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>512</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>63</td>
<td>511</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>63</td>
<td>511</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>63</td>
<td>511</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>63</td>
<td>511</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>510</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>510</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>510</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>2</td>
<td>46</td>
<td>510</td>
</tr>
</tbody>
</table>

(output truncated)

To display the filter CAM utilization for a single port on a switch:

switch:user> portcamshow 3/2

<table>
<thead>
<tr>
<th>Area</th>
<th>SID used</th>
<th>DID used</th>
<th>SID entries</th>
<th>DID entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>3</td>
<td>1</td>
<td>350400</td>
<td>2b2200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2b1200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>220400</td>
<td></td>
</tr>
</tbody>
</table>

SID Free, DID Free: (61, 511)

See Also switchShow
portCfg

Enables or disables a port's configuration.

Synopsis  

    portcfg action [slot[/]ge]port [-range] arguments

Description  

Use this command to manage configuration parameters for ports and gigabit Ethernet (GbE) ports. The following operations can be performed with this command:

- Optionally add and delete Address resolution protocol (ARP) entries. Flush ARP table.
- Create, modify, and delete Fibre Channel over IP (FCIP) tunnels.
  - Delete, reset, and modify QoS mappings on an existing tunnel.
  - Create or modify a tunnel with VLAN tagging and Class of Service (CoS).
- Configure IP interfaces on the GbE port.
- Configure static routes on the IP interface.
- Manage registered state change notification (RSCN) suppression on the local port.
- Configure a mirror port on the local port.
- Configure the FC port for FC Fastwrite.
- Modify VLAN Tagging configuration for FCIP.
- Manage FICON emulation in an FCIP tunnel.
- Configure FTRACE feature.

Notes  

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Some of the features supported by this command may require a license.

For port configuration details and procedures, refer to the respective chapters in the Fabric OS Administrator's Guide.

Operands  

This command supports the following port options:

slot  

For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

[ge]port  

Specifies the number of the port to be configured, relative to its slot for bladed systems. For GigE ports, the ports are numbered ge0 - ge1. Use the switchShow command for a list of valid ports.

This command supports the following actions and associated arguments. If no operand is specified, the command prints the usage.

arp  

Optionally add entries to the address resolution protocol (ARP) table or delete entries from ARP table. Flush entire table. The syntax for portcfg arp is as follows:

    portcfg arp [slot[/]ge]port options arguments

Valid options and arguments for arp include:

add ipaddr macaddr
Adds static ARP entry to the ARP table. Specify IP Address and MAC address for each entry. Use `portShow arp` with the `-lmac` option to get the MAC address.

**delete ipaddr**

Deletes static ARP entry from the ARP table. Only IP address must be specified to delete the entry.

**flush**

Flushes the ARP table. Only dynamic entries can be flushed, static entries cannot be cleared.

**fciptunnel**

Creates Fibre Channel over IP (FCIP) tunnels. You can configure up to a maximum of eight FCIP tunnels per GbE port. This feature requires an FCIP license. The syntax for `portCfg fciptunnel` is as follows:

```
portcfg fciptunnel [slot/][ge]port options arguments [optional_arguments]
```

The following options and arguments for are supported with **fciptunnel**:

**create tunnel_id dest_ipaddr src_ipaddr comm_rate**

Creates FCIP tunnels, where:

- **tunnel_id** Specifies the FCIP tunnel on the GbE port. Valid values are 0-7.
- **dest_ipaddr** Specifies the IP address for the remote end of the FCIP tunnel. IPv6 addresses are supported on systems running v6.0 or later.
- **src_ipaddr** Specifies the IP address for the local end of the FCIP tunnel. IPv6 addresses are supported on systems running v6.0 or later.
- **comm_rate** Specifies the committed traffic rate on the FCIP tunnel in Kbps. Valid range is 1, 544 to 1,000,000. Specify "0" for an uncommitted tunnel. Uncommitted tunnels compete for bandwidth. Changing **comm_rate** is potentially disruptive.

Optional arguments for **fciptunnel create** include:

- **-c compression** Enables compression on the specified tunnel. By default, compression is off.
- **-f fastwrite** Enables fastwrite on the specified tunnel.
- **-k timeout** Specifies the keep alive timeout, in seconds. Timeout values are 8 to 7,200; default is 10. If tape pipelining is enabled, the minimum supported value is 80.
- **-M** Turns on default VC QoS mapping in the specified tunnel. Default is off.
  There are two ways of prioritizing network traffic over FCIP tunnels: Differentiated Services (DSCP) and Layer 2 Class of Service (L2CoS). If the **-M** option is set, the VC on the FCIP outbound frame is mapped to both a DSCP and L2CoS value. These default values can be modified on a per-FCIP tunnel basis with the **fciptunnel qosmap** option. The **-M** option can be turned on or off any time. Qosmap settings are unaffected by the **-M** option.
- **-m time** Specifies the minimum retransmit time, in milliseconds. The range is 20 to 5,000; the default is 100.
-n remote_wnn  Specifies the remote-side FC entity WWN.
-q control-dscp  Specifies the DSCP (DiffServ Code Point) Marking used for control TCP connection of the FCIP tunnel. This operand is optional. Range is 0 to 63 (inclusive). Default value is 0.
-Q data-dscp  Specifies the DSCP (DiffServ Code Point) Marking used for data TCP connection of the FCIP tunnel. This operand is optional. Range is 0 to 63 (inclusive). Default value is 0.
-r retransmissions  Specifies the maximum retransmissions. Values are 1 to 16; default is 8. If tape pipelining is enabled, the default value is calculated based on the minimum retransmit time to ensure that the TCP connection does not time out before the host times out. The specified value must be greater than the calculated value.
-s  Disables selective acknowledgement code (SACK) on the specified tunnel.
-t  Enable tape pipelining on the tunnel specified (requires fastwrite to be turned on as well).
-ike policy  Specifies the Internet Key Exchange (IKE) policy number to be used on the specified tunnel. This option must be used together with -ipsec and -key.
-ipsec policy  Specifies the Internet Protocol security (IPSec) policy number to be used on the specified tunnel. This option must be used together with -ike and -key.
-key preshared-key  Specifies the preshared key to be used during IKE authentication. Specify a double quoted string of alphanumeric characters between 12 and 32 bytes in length. This argument must be used together with -ike and -ipsec.

NOTE: Only a single IPSec-enabled tunnel can be configured on a port. No other tunnels (IPSec or otherwise) can be configured on the same port. Jumbo frames are not supported on secure tunnels. Only a single route is supported on an interface with a secure tunnel.

-v vlan_id  Creates an FCIP tunnel with VLAN Tagging and Class of Service (CoS). Specify a vlan_id in the range between 1 and 4094. There is no default. If any other VLAN option is specified, this must also be specified.

The following operands are optional with VLAN tagging:

-p Control L2 CoS  Specifies the pL2_Class_of_Service/Priority, as defined by IEEE 802.1p, for the FCIP control connection. Range is 0-7. Default is 0.
-P L2 CoS  Specifies the PL2 Class of Service/Priority, as defined by IEEE 802.1p, for the FCIP data connection. Range is 0-7. Default is 0.
**modify** **tunnel_id** [arguments]

Modifies the properties of the existing FCIP tunnel. This disrupts the traffic on the specified FCIP tunnel for a brief period of time. If IPsec is enabled on the FCIP tunnel, the tunnel cannot be modified. To change it, you must delete and re-create the tunnel.

Optional arguments for **fc iptunnel modify** include:

- **-b comm_rate**
  Specifies the committed traffic rate on the FCIP tunnel in Kbps. Valid range is 1,544 to 1,000,000. Specify "0" for an uncommitted tunnel. Uncommitted tunnels compete for bandwidth. Changing **com_rate** is potentially disruptive.

- **-c 0|1**
  Disable (0) or enable (1) compression on the existing tunnel.

- **-f 0|1**
  Disable (0) or enable (1) fastwrite on the existing tunnel.

- **-k timeout**
  Specifies the keep alive timeout, in seconds, for the existing tunnel. Valid **timeout** values are 8 to 7,200; default is 10. If tape pipelining is enabled, minimum value is 80.

- **-q control_dscp**
  DSCP (DiffServ Code Point) Marking for a tunnel’s TCP control connection. Valid range is from 0 to 63 (inclusive). Default value is 0.

- **-Q data_dscp**
  DSCP(DiffServ Code Point) Marking for a tunnel's TCP control connection. Valid range is from 0 to 63 (inclusive). Default value is 0.

- **-M**
  Turns on default QoS mapping in the specified tunnel. Default is off. There are two ways of prioritizing network traffic over FCIP tunnels: Differentiated Services (DSCP) and Layer 2 Class of Service (L2CoS). If the **-M** option is set, the VC on the FCIP outbound frame is mapped to both a DSCP and L2CoS value. These default values can be modified on a per-FCIP tunnel basis with the **fc iptunnel qosmap** option. The **-M** option can be turned on or off at anytime. Qosmap settings are unaffected by the **-M** option.

- **-m time**
  Specifies the minimum retransmit time, in milliseconds, for the existing tunnel. Valid **time** values are 20 to 5,000; default is 100.

- **-r retransmissions**
  Specifies the maximum retransmissions for the existing tunnel. Values are 1 to 16; default is 8. If tape pipelining is enabled, the default value is calculated based on the minimum retransmit time to ensure that the TCP connection does not time out before the host times out. When changing this value, the value specified must be greater than the calculated value.

- **-s 0|1**
  Disable (0) or enable (1) selective acknowledgement (SACK) on the existing tunnel.

- **-t 0|1**
  Disable (0) or enable (1) tape pipelining on the existing tunnel (requires fast write to be turned on as well).
-p Control L2 CoS

Specifies the PL2_Class_of_Service/ Priority, as defined by IEEE 802.1p, for the FCIP control connection. Range is 0-7. Default is 0.

-P L2 CoS

Specifies the PL2 Class of Service/ Priority, as defined by IEEE 802.1p, for the FCIP data connection. Range is 0-7. Default is 0.

delete tunnel_id

Deletes specified FCIP tunnel.

qosmap tunnel_id arguments

Modifies (or resets to default), the VC to QoS mapping for a particular FCIP tunnel. This table can be modified at any time without bringing down the tunnel.

However, the FCIP tunnel must be configured with the fciptunnel create/modify -M option before the actual mapping occurs.

The following operands are supported with fciptunnel qosmap:

_tunnel_id

Specifies the tunnel_id. Range is 0-7.

-default

Resets/sets VC QoS map to default values.

-delete

Deletes associated QoS map configuration file. Delete QoS mappings before downgrading to pre-v6.0.0 firmware versions that do not support QoS mapping. It removes the file from the config flash memory only. The file is automatically reset to defaults if later used or modified.

-vc_num

When modifying the VC QoS map, specifies the virtual channel ID for which the qosmap is modified. Valid values are 0 - 15.

When specifying vc_num, either the -Q or the -P option or both must be specified.

-Q dscp

Specifies the Differentiated Services Code Point (DSCP) value to be modified. Use the portShow fciptunnel geport all -qosmap command to display current values. Supported range is 0-63.

-P l2cos

Specifies the L2 Class Of Service (COS) Tagging value. Use the portShow fciptunnel geport all -qosmap command to display current values. Supported range is 0-7.

ipif

Defines the IP interface for both ports of a tunnel. Up to eight IP interfaces per GbE port are supported. The IP network connection between two 7500 routers or two FC4-18i blades is configured by defining IP interfaces for origin and destination virtual ports, and then defining one or more IP routes to connect them. IPv6 addresses are supported on switches running v6.0 or later. The syntax for portCfg ipif is as follows:

portcfg ipif [slot/][ge]port option arguments
Valid options and arguments for `ipif` are:

**create src_ipaddr mtu_size**

Creates IP interfaces. Specify the following:

- **src_ipaddr**: Specifies source IP address in either IPv6 or IPv4 format:
  - `src_IPv6_addr/prefix_len`
    - Specifies the source IPv6 address of the virtual port if IPv6 is used. The address must be an IPv6 global, unicast address, followed by a prefix. This is used for IPv6 addresses instead of a netmask. The `prefix_len` operator is required.
  - `src_IPv4_addr netmask`
    - Specifies the source IPv4 address of the virtual port, if IPv4 is used. If an IPv4 address is used, the subnet mask must be specified as well (in a.b.c.d. format.)

- **mtu_size**: Specifies the maximum transmission unit size. The range allowed is 1260 to 2348 KB. This operand is required.

**delete ipaddr**

Deletes IP interfaces. Specify the IPv6 or IPv4 address of the virtual port.

**iproute**

Defines static IP routes on a GbE port. After defining the IP interface of the remote switch, you can define destination routes on an interface. A maximum of 32 routes per GbE port are supported. IPv6 addresses are supported on platforms running v6.0.0 or later. The syntax for `portcfg iproute` is as follows:

```
portcfg iproute [slot/]ge]port option arguments
```

Valid options and arguments for `iproute` are:

**create dest_ipaddr [gateway_router] metric**

Creates IP routes, where:

- **dest_ipaddr**: Specifies the destination IP address in either IPv6 or IPv4 format:
  - `dest_IPv6_addr/prefix_len`
    - Specifies the destination IPv6 address of the virtual port, if IPv6 is used. The address must be an IPv6 global, unicast address, followed by a prefix. This is used for IPv6 addresses instead of a netmask. The `prefix_len` operand is required.
  - `dest_IPv4_addr netmask`
    - Specifies the destination IPv4 address of the virtual port, if IPv4 is used. If an IPv4 address is used, the subnet mask must be specified as well. Use a.b.c.d. format.

- **gateway_router**: Specifies the IP address of an IP router that can route packets to the destination virtual port IP address. The gateway address must be on the same IP subnet as one of the port IP addresses. This operand is optional with IPv6 addresses. If not specified, the `gateway_router` learned from the Neighbor Discovery protocol is used.

- **metric**: Specifies the link metric associated with the route. Valid values are 0-255. The default value is 0. A low value encourages the use of the route, and a high value discourages the use of a route.
Delete IP routes for specified IPv4 or IPv6 address.

Specifies IP address in either IPv6 or IPv4 format:

IPv6_addr/prefix_len
Specifies the IPv6 address of the virtual port, if IPv6 is used. The address must be an IPv6 global, unicast address, followed by a prefix. The prefix_len operand is required.

dest_IPv4_addr netmask
Specifies the destination IPv4 address of the virtual port, if IPv4 is used. If an IPv4 address is used, the subnet mask must be specified as well. Use a.b.c.d. format.

Manages Registered State Change Notification (RSCN) suppression on the local port. RSCN suppression is configurable for both FC and GbE ports; however, configuration options are dependent on the protocol. The syntax for portCfg rscnsupr is as follows:

portcfg rscnsupr [slot/][ge]port [-range] mode

The following operands are supported with the rscnsupr option:

-range Specifies a range of ports in the same slot to which to apply the configuration. This operand is optional.

Valid modes for rscnsupr are:

--disable Disables the configuration. When disabled, device changes on the port generate an RSCN to another end device that is zoned with this one. By default, RSCN suppression is disabled on all ports.

--enable Enables the configuration. When enabled, any device changes on the port will not generate an RSCN to any other end device.

Configure mirror port on the local port. The port mirroring feature re-routes data frames between two devices to the mirror port. Port mirroring can aid in troubleshooting common FC end-to-end communication problems. The command prompts for confirmation that the specified port be enabled as a mirror port. Once a port is configured as a mirror port, the port can only be used as part of a mirror connection. The syntax for portCfg mirrorport is as follows:

portcfg mirrorport [slot/][ge]port mode

Valid modes for mirrorport are:

--disable Disables the configuration. When disabled, a port cannot be a mirror port.

--enable Enables the configuration. When mirrorport is enabled to a port, a mirror connection can use this port to mirror traffic.

Configures the FC port for FC Fastwrite. Enables or disables FC Fastwrite between two Brocade 7500 routers or two Brocade 48000 directors with FR4-18i blades connected by Fibre Channel ISLs. FastWrite mitigates latency effects on SCSI writes, and improves throughput over a high-latency link. The
blade first should be enabled for FC fastwrite using `fastWriteCfg`. This command can also be used to list all ports configured for FC fastwrite. This feature requires a Brocade license. The syntax for `portcfg fastwrite` is as follows:

```
portcfg fastwrite [slot/]port mode
```

Valid modes for fastwrite are:

- `--enable` Enables FC fastwrite on the specified port.
- `--disable` Disables FC fastwrite on the specified port.

**vlantag**

Use this command to maintain the VLAN tag table associated with a particular network interface. This table is mainly used by ingress processing to filter VLAN tagged frames. If a VLAN tagged frame is received from the network and there is no entry for the VLAN ID, the frame is discarded. There is no ingress filtering on the destination IP address. There can be multiple VLAN IDs per IP interface; however, there cannot be two entries to the same destination, including 0.0.0.0. On egress, this table is used to determine whether to tag a frame that is not already marked as tagged. Egress frames already marked as VLAN tagged (i.e. FCIP) takes precedence over entries in this table.

**NOTE:** This command supports `--add` and `--delete` options only. To modify a table entry it must first be deleted, then added with different configuration parameters. The syntax for `portcfg vlantag` is as follows:

```
portcfg vlantag [slot/]port mode arguments
```

Valid modes for vlantag are:

- `--add` ipif_addr vlan_id L2 CoS [dst_ipaddr]
  Adds an entry to the VLAN tag table.
- `--delete` ipif_addr vlan_id [dst_ipaddr]
  Deletes an entry from the VLAN tag table.

Valid arguments for `mode` are:

- `ipif_addr` Specifies the locally defined interface address in IPv6 or IPv4 format.
- `vlan_id` Specifies the VLAN ID used for this tag. Range is 1-4094.
- `L2 CoS` Specifies L2 Class of Service/Priority, as defined by IEEE 802.1p. Range is 0-7.
- `dst_ipaddr` Optional destination IP address (IPv4 or IPv6). All packets destined for this IP address are tagged accordingly. If a destination IP Address is not specified, all packets not already tagged will be tagged. Default is 0.0.0.0.
portCfg ficon

Use this command to enable or disable FICON emulation in an FCIP tunnel and modify associated parameters on an FCIP tunnel on a 'virtual' E_Port. This command is supported only on a Brocade 7500/FR4-18 platform. A feature key is required to enable any of the FICON emulation processing. The tunnel must be down or disabled to issue and process the FICON commands. The result of executed commands are persistent. The syntax for `portCfg ficon` is as follows:

```
portCfg ficon [slot]Ge_Port tunnel_Id config | delete [FeatArgs] [ParamArgs]
```

This command has the following operands:

- `tunnel_Id`: Specifies the tunnel ID for the configuration change. Range 0-7.
- `config`: Creates or modifies a FICON configuration.
- `delete`: Deletes an existing FICON configuration.

The following optional feature arguments are supported with the `config` and `delete` options. These configurations are persistent.

1. `-x 1|0`: Enables or disables XR C emulation. 1 is enabled, 0 is disabled. FICON XRC Emulation allows XRC (IBM eXtendedRemote Copy, also known as IBM z/OS Global Mirroring) to operate effectively at extended distances.
2. `-w 1|0`: Enables or disables Tape Write Pipelining. This feature improves the performance of certain applications when writing to tape over extended distances. 1 is enabled, 0 is disabled.
3. `-r 1|0`: Enables or disables Tape Read Pipelining. This feature improves performance for certain applications when reading from FICON tape over extended distances. 1 is enabled, 0 is disabled.
4. `-t 1|0`: Enables or disables TIN/TIR emulation. This feature enhances recovery when a TIN/TIR exchange occurs as part of a channel recovery operation during tape emulation. 1 is enabled, 0 is disabled.
5. `-l 1|0`: Enables or disables Device Level Acknowledgement emulation. This feature is applicable to both FICON Disk and Tape configurations. The feature removes one network round trip for exchanges that end with a Device Level Acknowledgement frame from the device. 1 is enabled, 0 is disabled.
6. `-i 1|0`: Enables or disables FICON Tape Read Block ID. This feature permits FICON write channel programs containing embedded read block ID commands (Cadres) with a byte count of exactly four bytes to be processed as emulated commands during write emulation processes. 1 is enabled, 0 is disabled.

The following optional parameter specific arguments are supported with the `config` and `delete` options.

```
-a | --wrtMaxPipe value
```

Defines the maximum number of tape write channel commands (CCWs) that can enter the write pipeline for a single device whether all the CCWs are bundled in a single channel program or in multiple channel programs. The setting has significance only for host (channel) initiated operations at this side and does not affect tape write operations initiated...
by hosts (channels) attached at the opposite side. Too small of a value results in poor performance. The value should be chosen based upon the typical tape channel program that requires optimum performance. The default value is 32. The range is 1-100.

-b | --rdMaxPipe value

Defines the maximum number of tape read channel commands (CCWs) that can enter the read pipeline for a single device whether all the CCWs are bundled in a single channel program or in multiple channel programs. The setting has significance only for host (channel) initiated operations at this side and does not affect tape write operations initiated by hosts (channels) attached at the opposite side. Too small of a value results in poor performance. The value should be chosen based upon the typical tape channel program that requires optimum performance. The default value is 32. The range is 1-100.

-c | --wrtMaxDevs value

Defines the maximum number of concurrent emulated tape write operations. As concurrency increases, the value of emulation decreases. Excessive concurrency has the potential to oversubscribe packet data memory. The setting has significance only for host (channel) initiated operations at this side and does not affect tape write operations initiated by hosts (channels) attached. The default value is 16. The range is 1-32.

-g | --rdMaxDevs value

Defines the maximum number of concurrent emulated tape read operations. As concurrency increases, the value of emulation decreases. Excessive concurrency has the potential to oversubscribe packet data memory. The setting has significance only for host (channel) initiated operations at this side and does not affect tape read operations initiated by hosts (channels) attached at the opposite side. The default value is 16. The range is 1-32.

-e | --wrtTimer value

Defines a time limit for pipeline write chains. This value is specified in milliseconds (ms). If a pipeline write chain takes longer than this value to complete, the ending status for the next write chain is withheld from the channel. This limits processing to what the network and device can support. Too small a value limits pipelining performance. Too large a value results in too much data being accepted for one device on a path. The default value is 300 milliseconds (ms). The range is 100-1500.

-n | --wrtMaxChains value

Defines the maximum amount of data that can be contained in a single CCW chain. If this value is exceeded, emulation is suspended. The default value is 3 (3000000 bytes) The range is 1 Mb-5 Mb.

-o | --oxidBase value

Defines the base value of an entry pool of 256 OXIDs supplied to emulation-generated exchanges. It should fall outside the range used by FICO channels and devices to avoid conflicts. The default value is 0x1000. The range is 0x0000 to 0xF000.
-f | --dbgFlags value

Defines optional debug flags. The default is 0xF7C80000. This parameter is primarily for use by technical support personnel.

ftrace

FTRACE is a debug tool primarily for Tech Support personnel. It is implemented as a subcomponent of the VEnEmulation feature. It includes the ability to freeze ntraces on certain events and to retain the trace information for future examination. All FC frames that are routed through the VE port provided by an FCIP tunnel can be traced. The syntax for the portCfg ftrace command is as follows:

```bash
portCfg ftrace [slot/]/Ge_Port tunnel_Id cfg | del [FeatureArgs]
```

This command has the following operands:

tunnel_Id

Specifies the tunnel ID for the FTRACE configuration. The range is 0-7.

cfg

Creates or modifies the FTRACE configuration.

del

Deletes an existing FTRACE configuration.

The following optional feature arguments are supported with the cfg and del options. These configurations are persistent.

- -a 1|0 Enables or disables ACO. 1 is enabled, 0 is disabled. The default value is 0.
- -b Specifies the number of buffers. The range is 0-8. The default value is 0.
- -e 1|0 Enables or disables FTRACE. 1 is enabled, 0 is disabled. The default value is 0.
- -i value Displays the mask value. The range is 00000000 to FFFFFFFF. The default is FFFFFFFF.
- -p value Specifies the post trigger percentage value. The range is 0 to 100. The default is 5.
- -r value Specifies the number of records. The range is 0 to 1,677,721. The default is 200000.
- -s value Specifies the trigger mask value. The range is 00000000 to FFFFFFFF. The default is 00000003.
- -t value Specifies the trace mask value. The range is 00000000 to FFFFFFFF. The default is 800000C7B.
- -z value Specifies the trace record size in bytes. The range is 80 to 240 bytes. The default is 80 bytes.
Examples

To add an ARP entry:

```
switch:admin> portcfg arp ge0 add 192.168.255.25 00:01:02:03:04:60
Operation Succeeded
```

To create an FCIP tunnel using IPV4:

```
switch:admin> portcfg fcip tunnel ge0 create 2 192.168.255.2 192.168.255.20 100000
Operation Succeeded
```

To create an FCIP tunnel using IPV6:

```
switch:admin> portcfg fcip tunnel 8/ge0 create 0 4000::1234 2000::800:3333:1234 0
Operation Succeeded
```

To modify an FCIP tunnel:

```
switch:admin> portcfg fcip tunnel 3/ge0 modify 6 -b 100000 -c 1
Operation Succeeded
```

To create an FCIP tunnel with VC QoS mapping (default) turned on:

```
switch:admin> portcfg fcip tunnel ge1 create 1 192.168.200.109 192.168.200.108 0 -M
```

To modify the default VC QoS map settings for VC 1:

```
switch:admin> portcfg fcip tunnel ge1 qosmap 1 3 -Q 29
switch:admin> portcfg fcip tunnel ge1 qosmap 1 4 -Q 28 -P 7
switch:admin> portcfg fcip tunnel ge1 qosmap 1 4 -P 2
```

To return the VC QoS map settings to default values:

```
switch:admin> portcfg fcip tunnel ge1 qosmap 1 -default
```

To create an FCIP tunnel with VLAN tagging:

```
switch:admin> portcfg fcip tunnel8/ge0 create 1 192.168. 10.1 192.168.20.1 0 -m 20 -v 100 -p 3 -P 7
Operation Succeeded
```

To modify an existing FCIP tunnel with VLAN tagging:

```
switch:admin> portcfg fcip tunnel8/ge0 modify 1 192.168.10.1 192.168.20.1 0 -m 20 -v 100
```

To create an IP interface using IPv4:

```
switch:admin> portcfg ipif 4/ge0 create 192.168.100.50 255.255.255.0 1500
Operation Succeeded
```

To create an IP interface using IPv6 with a prefix:

```
switch:admin> portcfg ipif 8/ge0 create 2000::800:3333:1234/64 1500
Operation Succeeded
```

To create a static IP route using IPv4:

```
switch:admin> portcfg iproute ge0 create 172.16.123.231.255.255.0.0 192.168.255.25 1
Operation Succeeded
```

To create a static IP route using IPv6:

```
switch:admin> portcfg iproute 8/ge0 create 3000:4444:800::3456/64 1080::8:800:200C:1234
```
To create a mirror port:

```
switch:admin> portcfg mirrorport 2/4 --enable
Please confirm enable of Mirror Port (Y,y,N,n): [n] y
```

To configure a range of ports as RSCN-suppressed:

```
switch:admin> portcfg rscnsupr 2/4-7 --enable
```

To add an entry to the VLAN tag table:

```
switch:admin> portcfg vlantag8/ge0 add 192.168.10.1 100 3
```

To delete the entry from the VLAN tag table:

```
switch:admin> portcfg vlantag8/ge0 delete 192.168.10.1 100
```

To configure an FCIP Tunnel 1 with FICON XRC and FICON Tape Write Pipelining Emulation features enabled using all default parameter arguments:

```
switch:admin> portcfg ficon ge0 1 -x 1 -w 1
```

To configure FTRACE with ACo disabled and FTRACE enabled on port ge0/tunnel 3:

```
switch:admin> portcfg ftrace ge0 3 cfg -a 0 -e 1 -p 5 -s 00000003 -t ffffffff
```

To delete the FTRACE on the same port/tunnel:

```
switch:admin> portcfg ftrace ge0 3 del
```

See Also  portCfgShow, portCmd, portShow, switchShow, configure, fastWriteCfg
portCfgAlpa

Configures the AL_PA offset on a specified port or range of ports.

Synopsis

portcfgalpa [slot/]port, mode

Description

Use this command to set the Arbitrated Loop Physical Address (AL_PA) offset on a port or a range of ports to either 0x0 (default) or 0x13.

Changes made by this command are persistent across switch reboots and power cycles.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

When invoked without operands, this command displays the usage. The following operands are supported:

slot

For bladed systems only, specify the slot number of the port to be configured, followed by a slash (/).

port

Specify the number of the port to be configured, relative to its slot for bladed systems. Use the switchShow command for a list of valid ports.

mode

Specify a value of 1 to set the AL_PA to 0x13. A value of 0 sets the default AL_PA to 0x0. This operand is required.

Examples

To configure a port with AL_PA 0x0 (default):

switch:admin> portcfgalpa 1/3 0

To configure a port with AL_PA 0x13:

switch:admin> portcfgalpa 1/3 1

See Also

portCfgShow
portCfgCreditRecovery

Enables or disables credit recovery on a port.

Synopsis portcfgcreditrecovery --disable | --enable [slot[/]port

Description Use this command to enable or disable credit recovery on a port.

The credit recovery feature enables credits or frames to be recovered. Only ports configured as long distance ports can utilize the credit recovery feature. The default credit recovery configuration is enabled.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:
--disable Disables credit recovery configuration on the specified port.
--enable Enables credit recovery configuration on the specified port.
--help Displays command usage.

Examples To enable credit recovery on a port:
switch:admin> portcfgcreditrecovery --enable 3/15

To disable credit recovery on a port:
portcfgcreditrecovery --disable 3/15

See Also portCfgShow
portCfgDefault

Restores the port configuration to factory default values.

Synopsis  portcfgdefault [slot/][ge]port

Description Use this command to reset any special port configuration values to their factory defaults. This command persistently disables ports capable of routing, which is the factory default value. You can view the current port configuration using the portCfgShow command.

This command does not change the state of a port. To bring an E_Port go back online state, use either switchDisable/switchEnable or portDisable/portEnable.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

slot For bladed systems only, specify the slot number of the port to be reset to default, followed by a slash (/).

port Specify the number of the port to be reset to default, relative to its slot for bladed systems. Use switchShow to list valid ports.

Examples To reset a port to factory defaults:

switch:admin> portcfgdefault 1/3

To reset a GbE port to factory defaults:

switch:admin> portcfgdefault 8/ge1

See Also portCfgEPort, portCfgGPort, portCfgLongDistance, portCfgLPort, portCfgPersistentDisable, portCfgPersistentEnable, portCfgShow, portCfgSpeed, portCfgTrunkPort
portCfgEPort

Enables or disables E_Port capability on a port.

Synopsis  portCfgEPort [slot/]port,mode

Description Use this command to enable or disable E_Port capability on a port. E_Port capability is enabled by
default. When an inter-switch link (ISL) is connected to a port and the port's E_Port capability is
disabled, the ISL is segmented. No data traffic between two switches is routed through this port.
Fabric management data, such as zoning information, are not exchanged through this port either.
Regardless of how many E_Ports are connected between two switches, the maximum routing paths
are limited to 16 E_Ports.

Notes Changes made by this command are persistent across switch reboots or power cycles.
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands This command has the following operands:

slot For bladed systems only, specify the slot number of the port to be configured,
followed by a slash (/).

port Specify the number of the port to be configured, relative to its slot for bladed
systems. Use switchShow to display a list of valid ports.

mode Specify 1 to enable the port as an E_Port. This is the default port state.
Specify 0 to disable E_Port capability. Mode must be preceded by a comma.

Examples To disable E_Port capability on a port:

switch:admin> portCfgEPort 1/3, 0

To enable E_Port capability on a port:

switch:admin> portCfgEPort 1/3, 1

See Also portShow, switchShow
portCfgEXPort

Sets a port to be an EX_Port, and sets and displays EX_Port configuration parameters.

Synopsis

portcfgexport [slotnumber/]portnumber

portcfgexport [-a admin]

portcfgexport [-f fabricid]

portcfgexport [-r ratov]

portcfgexport [-e edtov]

portcfgexport [-d domainid]

portcfgexport [-p pidformat]

portcfgexport [-t fabric_parameter]

portcfgexport [-m port mode]

portcfgexport [-i mode]

Description

Use this command to allow a port to be configured as an EX_Port, to display the port’s EX_Port configuration, or to change the configuration. If no optional parameter is specified, the command displays the currently configured values; otherwise, it sets the specified attribute to its new value. The port must be disabled prior to setting EX_Port attributes. The port must be enabled before the port can become active following EX_Port parameter changes. Use portDisable and portEnable to disable or enable the port.

IPFC over FCR allows the routing of IPFC traffic between different EX_Ports where EX_Ports are connected to an edge fabric that has IPFC-capable devices. IPFC traffic is routed between EX and VEX Ports. IPFC traffic can be related to the same edge fabric or to different edge fabrics. When the port is not active, the preferred domain ID is configurable. The preferred domain ID is used by the EX_Port’s front phantom domain to request a domain ID from the principal switch. The domain ID received becomes the subsequent preferred domain ID, which is persistent and is displayed.

Notes

The fabric ID must be the same for every router port connected to the same edge fabric, and different for every edge fabric. If two ports are connected to the same fabric but have been assigned different fabric IDs, one of them will be disabled due to a fabric ID oversubscription. If two fabrics have been assigned the same fabric ID, one of them will be disabled due to a fabric ID conflict.

When a port is changed from FL_Port to EX_Port, the topology is implicitly changed to point-to-point.

The front domain WWN field displays the WWN of the front domain. If the port is enabled and the state is “OK”, the edge fabric principal switch’s domain ID and WWN also are displayed.

If the Fabric Parameter value is “Auto Negotiate”, the port ID format, R_A_TOV, and E_D_TOV values display the negotiated values indicated by “(N)” next to them. The negotiated values are what the edge switch specifies in the ELP request. If the state is “Not OK”, the R_A_TOV and E_D_TOV display “Not Applicable”. By default, all EX_Ports are auto-ELP enabled.

If the Fabric Parameter attribute value is “User configured”, the port ID format R_A_TOV and E_D_TOV values display the configured values.
A configuration change that would result in an invalid domain ID for McDATA Open Fabric mode or McDATA Fabric mode causes the preferred domain ID to be set to the minimum valid McDATA mode domain ID of 1. The exception to this is if the configuration change includes setting the preferred domain ID, in which case the configuration change does not take place and a corresponding error message is displayed.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

When invoked without operands, this command displays the usage. The following operands are supported:

- **slotnumber**  
  Specifies the slotnumber on enterprise-class platforms, followed by a slash (/).

- **portnumber**  
  Specifies the portnumber. Use `switchShow` for a list of valid ports. When executed with `slotnumber|portnumber` only, the command displays the current port configuration.

- **-a admin**  
  Enables or disables the specified port as an EX_Port. Valid values are 1 (enable as EX_Port), 2 (disable as EX_Port and enable as non-EX_Port). `portCfgDefault` may also be used to disable EX_Ports.

- **-f fabricid**  
  Specifies the fabric ID. Valid values are 1-128.

- **-r ratov**  
  Specifies the R_A_TOV used for port negotiation. Valid values are 2000 - 120000. This operand is only applicable if the "Fabric Parameter" attribute value is not "Auto Negotiate".

- **-e edtov**  
  Specifies the E_D_TOV used for port negotiation. Valid values are 1000 - 60000. This operand is only applicable if the "Fabric Parameter" attribute value is not "Auto Negotiate".

- **-d domainid**  
  Specifies the preferred domain ID. For Brocade native mode (-m 0) or McDATA Open Fabric mode (-m 1), valid values are 1-239. For McDATA Fabric mode (-m 2), valid values are 1-31.

- **-p pidformat**  
  Specifies the Port ID format. Valid values are 0-native, 1-core, 2-extended edge. This operand is applicable only when port mode is set to 0 (native mode). If port mode is not "Brocade Native", the Port ID format displays as "Not applicable".

- **-t fabric_parameter**  
  Enables or disables negotiation of the fabric parameters. Valid values are 1 for enable and 2 for disable.

- **-m port mode**  
  Specifies the Port mode. The -m option enforces the same port mode for all the ports connected to the same edge fabric. If -m option is selected, the port mode is compared against the online ports. If the modes are different, an error message is posted, and the command fails. Valid values are as follows:

  0  
  Brocade Native mode.

  1  
  McDATA Open Fabric mode.

  2  
  McDATA Fabric mode.

Note that this mapping between mode values and modes is NOT the same as the mapping used when setting interoperability modes with the `interopMode` command.
-i mode

Enables or disables Insistent Domain Id (IDID) for the specified EX_Port. Specify 1 to enable IDID, specify 2 to disable IDID. This command must be issued from a McDATA edge switch attached to a single or dual FCR configuration.

Examples

To set the fabric ID of port 2/1 to 5 and the port ID format to core:

```
switch:admin> portcfgexport 2/1 -f 5 -p 1
```

To configure port 2/0 to be an EX_Port and set the fabric ID to 4:

```
switch:admin> portcfgexport 2/0 -a 1 -f 4
```

To disable fabric parameter negotiation on port 2/0 of an EX_Port:

```
switch:admin> portcfgexport 2/0 -t 2
```

To enable IDID on port 2:

```
switch:admin> portcfgexport 2 -i 1
```

To display the configuration on port 2:

```
switch:admin> portcfgexport 2
 Port 2 info
 Admin: enabled
 State: NOT OK
 Pid format: Not Applicable
 Operate mode: Open
 Edge Fabric ID: 70
 Preferred Domain ID: 109
 Insistent Domain ID Mode: enabled
 Front WWN: 50:00:51:e3:76:0e:4e:46
 Fabric Parameters: Auto Negotiate
 R_A_TOV: Not Applicable
 E_D_TOV: Not Applicable
 Authentication Type: None
 DH Group: N/A
 Hash Algorithm: N/A
 Edge fabric's primary wwn: N/A
 Edge fabric's version stamp: N/A
```

See Also  portCfgVEXPort, portDisable, portEnable, portShow, portCfgDefault, fcrbCastConfig
portCfgGPort

Designates a port as a G_Port; removes G_Port designation.

Synopsis portcfggport [slot/]/port,mode

Description Use this command to designate a port as a G_Port. After successful execution of this command, the switch attempts to initialize the specified port as an F_Port only, and does not attempt loop initialization (FL_Port) on the port. A port designated as a G_Port can become an E_Port. This configuration can be cleared but not set on VE/VEX_Ports. Changes made by this command are persistent across switch reboots or power cycles.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

slot For bladed systems only, specify the slot number of the port to be configured, followed by a slash (/).

port Specify the port to be configured, relative to its slot for bladed systems. Use switchShow to display a list of valid ports.

mode Specify a value of 1 to designate the port as a G_Port or specify a value of 0 to remove the G_Port designation from the port. A value of 0 is the default port state. Mode must be preceded by a comma. This operand is required.

Examples To configure port as a locked G_Port:

switch:admin> portcfggport 1/3, 1

See Also configure, portCfgLPort, portShow, switchShow
portCfslMode

Enables or disables ISL R_RDY mode on a port.

Synopsis

portcfgislmode [slot/]port,mode

Description

Use this command to enable or disable inter-switch link read-ready (ISL R_RDY) mode on a port. Use the portCfslShow command to determine whether ISL R_RDY mode is enabled on a port.

In ISL R_RDY mode, the port sends a primitive signal that the port is ready to receive frames. The port sends an exchange link parameter (ELP) with flow control mode 02. If a port is ISL R_RDY enabled, it can only receive an ELP with flow control mode 02. A received ELP with flow control mode 01 will segment the fabric.

This mode cannot detect any inconsistencies in fabric operating mode parameters, such as the PID format of connected ports. Before enabling ISL R_RDY mode, ensure that all fabric-wide parameters are consistent for every switch in the fabric.

Use configshow fabric.ops to view a complete listing of fabric operating mode parameters on the switch.

The following E_Port configurations are not applicable to a port configured for ISL R_RDY mode. If configured, these port configuration parameters are ignored during E_Port initialization:

- Trunk port
- VC link init

The portCfslMode and portCfslLongDistance levels LE, LD, or LS only can be enabled at the same time. Such an ISL uses R_RDY mode of flow control over the long distance link. This feature is not backward compatible with firmware versions that do not support it.

Notes

The long distance modes L0.5, L1, and L2 are no longer supported in v5.3.0 or later.

Changes made by portCfslMode are persistent across switch reboots and power cycles.

This configuration can be cleared but not set on VE/VEX_Ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

slot

For bladed systems only, specify the slot number of the port to display, followed by a slash (/).

port

Specify the port to display, relative to its slot for bladed systems. Use switchShow to list valid ports.

mode

Specify 1 to enable ISL R_RDY mode. Specify 0 to disable ISL R_RDY mode.

Examples

To enable ISL R_RDY mode on a port:

switch:admin> portcfgislmode 1/3, 1
ISL R_RDY Mode is enabled for port 3. Please make sure the PID formats are consistent across the entire fabric.
To disable ISL R_RDY mode on a port:

switch:admin> portcfgislmode 1/3, 0

See Also configure, portCfgLongDistance, portCfgShow
portCfgLongDistance

Configures a port to support long distance links.

Synopsis

    portcfglongdistance [slot] port [distance_level] [vc_translation_link_init] [desired_distance]

Description

Use this command to allocate sufficient numbers of full size frame buffers on a particular port or to support a long distance link up to 500 km. The port can only be used as an E_Port. Changes made by this command are persistent across switch reboots and power cycles. This configuration can be cleared but not set on VE/VEX_Ports.

Long distance configuration allows native FC ports to run WAN/LAN connections. It ensures that the full bandwidth of a link or trunk can be utilized for a particular long distance configuration. The receiving port must have sufficient buffers available, so that the transmitting port can stuff the link with enough frames to fill the entire length of the link. As the distance between switches and the link speed increases, additional buffer-to-buffer credits are required to maintain maximum performance. If a port is configured as a long distance port, the remaining ports of that port group could be disabled, fail to initialize, or move to “buffer limited” mode due to a lack of frame buffer credits.

The number of credits reserved for a port depends on the switch model and on the extended fabric mode for which it is configured. Not all distance modes are supported by all platforms. For example, the FC10-6 only supports L0 and LS up to 120 km at 10 Gbps. Refer to the Fabric OS Administrator’s Guide for details on platform-specific buffer credit models, long distance mode support, and maximum distance supported for specific hardware configurations.

Notes

This command requires an Extended Fabrics license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

The long distance modes L0.5, L1, and L2 are no longer supported in v5.3.0 and later.

A long-distance link can also be configured to be part of a trunk group. Refer to portCfgTrunkPort help for details.

When a port is configured as a long-distance port, the output of portShow and switchShow displays the long-distance level. Refer to portShow help and switchShow help for details.

The portCfgISLMode and portCfgLongDistance LE, LD, or LS levels y can be enabled at the same time. Such an ISL uses R_RDY mode of flow control over the long distance link. While using R_RDY mode flow control, an E_Port cannot form trunk groups of long-distance links even if the trunking is enabled. This feature is not backward compatible with firmware versions that do not support it.

Ctrl-D cancels the configuration update.

Operands

This command has the following operands:

    slot          Specify the slot number (for bladed systems only), followed by a slash (/).
    port          Specify the number of the port to be configured relative to its slot for bladed systems. Use switchShow to display a list of valid ports. This operand is required.
    distance_level Specify a long distance level (the numerical value representing each distance_level is shown in parentheses):
Specify LO to configure the port as a regular port. A total of 20 full-size frame buffers are reserved for data traffic, regardless of the port’s operating speed; therefore, the maximum supported link distance is up to 10 km at 1 Gbps, up to 5 km at 2 Gbps, up to 2 km at 4 Gbps and up to 1 km at 8 Gbps.

Specify LE mode to configure an E_Ports distance greater than 5 km and up to 10 km. A total of 5, 10, 20, or 40 full-size frame buffers are reserved for data traffic at port speeds of 1 Gbps, 2 Gbps, 4 Gbps, or 8 Gbps. LE does not require an Extended Fabrics license.

Specify LD for automatic long-distance configuration. The buffer credits for the given E_Port are automatically configured based on the actual link distance. Up to a total of 1452 full-size frame buffers are reserved depending on the distance measured during E_Port initialization. Fabric OS v6.0 or later supports up to 500 km at 1 Gbps, up to 250 km at 2 Gbps, and up to 100 km at 4 Gbps and 8 Gbps. If a value for desired_distance is specified, it is used as the upper limit to the measured distance.

Specify LS mode to configure a static long distance link with a fixed buffer allocation greater than 10 km. Up to a total of 1452 full-size frame buffers are reserved for data traffic, depending on the specified desired_distance value.

Specify 1 to activate a long distance link initialization sequence. Specify 0 to deactivate this mode. When the command is run without specifying a value, 1 is assigned automatically for the long-distance link in VC_RDY flow control; otherwise, 0 is assigned. For a long-distance link not configured for ISL R_RDY mode, this parameter must be set to 1; otherwise, it must be reset to 0. This operand is optional.

This parameter is required when a port is configured as an LD or an LS mode link. In LD mode, the value of desired_distance is the upper limit of the link distance and is used to calculate buffer availability for other ports in the same port group. When the measured distance exceeds the value of desired_distance, this value is used to allocate the buffers. In this case, the port operates in degraded mode instead being disabled due to insufficient buffers. In LS mode, the actual link distance is not measured, instead the desired_distance is used to allocate the buffers required for the port.

To configure a switch port 63 to support a 100 km link and be initialized using the long distance link initialization protocol:

```
switch:admin> portcfglongdistance 4/15 LS 1 100
switch:admin> portshow 4/15
portCFlags: 0x1
portFlags: 0x20001 PRESENT LED
portType: 1.1
portState: 2 Offline
portPhys: 4 No_Light
portScn: 0
portId: 013f00
portWwn: 20:3f:00:60:69:00:02:48
Distance: super long <= 100km
portSpeed: 2Gbps
Interrupts: 9 Link_failure: 0 Frjt: 0
```
portCfgLongDistance

Unknown: 0  Loss_of_sync: 0  Fbsy: 0
Lli: 9  Loss_of_sig: 9
Proc_rqrd: 0  Protocol_err: 0
Timed_out: 0  Invalid_word: 0
Rx_flushed: 0  Invalid_crc: 0
Tx_unavail: 0  Delim_err: 0
Free_buffer: 0  Address_err: 0
Overrun: 0  Lr_in: 0
Suspended: 0  Lr_out: 0
Parity_err: 0  Ols_in: 0
2_parity_err: 0  Ols_out: 0
CMI_bus_err: 0

See Also  configure, portCfgISLMode, portCfgTrunkPort, portCfgShow, portShow, switchShow
portCfgLPort

Configures a port as an L_Port.

Synopsis portCfgLPort [[slot[/port]] locked_mode [private_mode] [duplex_mode]]

Description Use this command to designate a port as an L_Port, and to configure its behavior. When a port is designated as an L_Port, the switch attempts to initialize that port as a fabric L_Port (FL_Port). The switch will never attempt a point-to-point (F_Port) initialization on the port. By default the L_Port will be a public L_Port. It can be configured as a private L_Port, in which case it will reject fabric login (FLOGI).

Notes This configuration can be cleared but not set on VE/VEX_Ports.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands When invoked without operands, this command reports the L_Port conditions for all ports present. The following operands are supported:

- **slot** For bladed systems only, specify the slot number of the port to be configured, followed by a slash (/).

- **port** Specify a port number to be configured, relative to its slot for bladed systems. Use switchShow to display a list of valid ports. This operand is optional; if omitted, this command displays the L_Port conditions for all ports.

- **locked_mode** Specify 1 to configure the specified port as a locked L_Port. Specify 0 to remove the locked L_Port configuration from the port (default). This operand is required if **port** is specified.

- **private_mode** Specify 1 to configure the L_Port as a private L_Port. Specify 0 to configure the L_Port as a regular public L_Port. This operand is optional; if omitted; the default value of 0 is used. Private devices are supported only on Brocade enterprise-class platforms with FC2-16 and FC2-16 blades. On all other platforms, option 1 is blocked.

- **duplex_mode** Specify 2 to configure the specified port as a full-duplex L_Port with fairness. Specify 1 to configure the L_Port as a half-duplex L_Port with fairness. Specify 0 to configure the L_Port as a full-duplex L_Port. This operand is optional; if omitted, the default value of 0 is used.

Examples To configure ports 8, 14, and 15 as locked L_Ports:

```
switch:admin> portCfgLPort 4/8 4/14-15, 1

switch:admin> portCfgShow

[output from other slots suppressed]

Ports of Slot 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-----------------+--+--+--+--+----+--+--+--+----+--+--+--+----+--+--+--
Speed AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN
AL_PA Offset 13
Trunk Port ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON
Long Distance
```


<table>
<thead>
<tr>
<th>VC Link Init</th>
<th>Locked L_Port</th>
<th>Locked G_Port</th>
<th>Disabled E_Port</th>
<th>ISL R_RDY Mode</th>
<th>RSCN Suppressed</th>
<th>Persistent Disable</th>
<th>NPIV capability</th>
<th>QOS E_Port</th>
<th>EX Port</th>
<th>Mirror Port</th>
<th>Rate Limit</th>
<th>Credit Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
</tr>
</tbody>
</table>

where AN:AutoNegotiate, ..:OFF, ??:INVALID.

To display the L_Port conditions:

```
switch:admin> portcfglport
```

[output from other slots suppressed]

| Ports of Slot 4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|-----------------+----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|
Locked L_Port	..	..	..	..	..	..	..	..	..	..	..	..	..	..	ON	ON
Private L_Port	..	..	..	..	..	..	ON	..	..	..	..	..	..	..	..	..
Locked Loop HD	..	..	..	..	..	..	..	..	..	..	..	..	..	..	..	..
Loop Fairness	..	..	..	..	..	..	..	..	..	..	..	..	..	..	..	..

See Also configure, portShow, switchShow
portCfgNPIVPort

Enables or disables N_Port ID virtualization (NPIV) functionality on a port.

Synopsis  

[slot/]port, mode

Description Use this command to enable or disable NPIV functionality on a port. NPIV is only applicable to F_Ports.

The following conditions must be met for a switch port to respond to NPIV requests from an NPIV device:

**NPIV capable:** NPIV capability is a switch blade or port attribute that is required for NPIV functionality to operate. Some blades within a switch, or some ports within a switch or blade, might not have NPIV capability. NPIV functionality cannot be enabled on such ports and they do not respond to NPIV requests.

**NPIV enabled:** NPIV functionality must be enabled on a port for it to respond to NPIV requests. By default, NPIV is enabled on all Condor and Golden-eye-based ports. It can be selectively enabled or disabled on switch ports using this command.

**NPIV HA:** For a redundant control processor (CP) system to enable NPIV functionality, it must be running NPIV-enabled firmware versions on both the active and standby CPs. This requirement does not apply to single CP systems.

Up to a maximum of 255 virtual port IDs are allocated per NPIV port. The maximum number of virtual IDs can be configured from 0 to 255 per port. The default value is 126 per port. The number of virtual port IDs per switch can be configured with the `configure` command.

Note Changes made by this command are persistent across switch reboots and power cycles.

Use the `portCfgShow` command to determine whether NPIV is enabled on a port. Use the `portCfgDefault` command to reset all port configurations, including the NPIV configuration of a port.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands This command has the following operands:

*slot*  For bladed systems only, specify the slot number of the port to be configured, followed by a slash (/).

*port*  Specify a port number to be configured, relative to its slot for bladed systems. Use `switchShow` to display a list of valid ports.

*mode*  Specify 1 to enable and 0 to disable the NPIV function.

Examples To enable NPIV functionality on a port:

```
switch:admin> portcfgnpivport 1/3 1
```
To display NPIV functionality on a port:

```
switch:admin> portcfgshow
(output from other ports suppressed)
```

```
Ports of Slot 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Speed AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN
AL_PA Offset 13
Trunk Port ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON
Long Distance
VC Link Init
Locked L_Port
Locked G_Port
Disabled E_Port
ISL R_RDY Mode
RSCN Suppressed
Persistent Disable..
NPIV capability ON
QOS E_Port
EX Port
Mirror Port
Rate Limit
Credit Recovery
```

where AN:AutoNegotiate, ..:OFF, ??:INVALID, LM:L0.5

To disable NPIV functionality on a port:

```
switch:admin> portcfgnpivport 1/3 0
```

See Also configure, portCfgDefault, portCfgShow
portCfgNPort

Enables or disables N_Port functionality for an Access Gateway port.

Synopsis  portcfgnport [port_number | port_range] [mode]

Description Use this command to enable or disable N_Port functionality for an Access Gateway port. The enabled N_Port automatically comes online if it is connected to an enterprise fabric switch that supports NPIV.

Notes NPIV capability should be enabled on the ports connected to the Access Gateway. Use portcfgnpivport to enable NPIV capability on the specific port. By default, NPIV is enabled on Goldeneye.

The execution of this command is subject to Admin Domain restrictions that may be in place. The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following optional operands:

port_number Specifies the port to enable or disable as an N_Port.

port_range Specifies the range of ports <port1-port2> to enable or disable as N_Port

mode Displays current agmode setting for the switch. The default value for mode is 0 (disabled) and if the value 1 (enabled).

Examples To enable N_Port functionality for a port:

switch:admin> portcfgnport 2 1

To enable N_Port functionality for a set of ports in a specific range:

switch:admin> portcfgnport 2-3 1

To display the N_Port configuration for all the ports:

switch:admin> portcfgnport

Ports    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
--------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
Locked N_Port     ON ON ON ON .. .. .. .. ON ON ON ON .. .. .. .

switch:admin> portcfgshow

Ports of Slot 0  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
--------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
Speed              AN AN AN AN   AN AN AN AN   AN AN AN AN   AN AN AN AN
Locked N_Port     ON ON ON ON   .. .. .. ..   ON ON ON ON   .. .. .. ..
Persistent Disable.. .. .. ..   .. .. .. ..   .. .. .. ..   .. .. .. ..
NPIV capability   ON ON ON ON   ON ON ON ON   ON ON ON ON   ON ON ON ON

See Also portCfgShow, ag
portCfgPersistentDisable

Persistently disables a port.

Synopsis  portCfgPersistentDisable [[slot[/]port]

Description Use this command to persistently disable a port, or use this command without operands to display
the persistently disabled status of all ports on the switch.

Persistently disabled ports remain disabled across power cycles, switch reboots, and switch enables. By default, a port is enabled persistently, unless the port is capable of routing. The change
in configuration is effective immediately. Use portCfgShow to display the persistently disabled status of a port.

The persistent disable configuration overrides existing port configurations Use the
portCfgPersistentEnable command to enable a port persistently and to restore all previously set port configurations for that port.

The switch still runs power-on diagnostics and initializes a persistently disabled port. The
portEnable, switchEnable, and bladeEnable commands fail when executed on a a persistently
disabled port.

The persistent switch disable or enable configuration does not alter the persistent disable or
enable configurations of the ports within the switch.

Because the default state of the port is persistently enabled, the persistent disable state is cleared by the portCfgDefault command.

Notes This command is not allowed if the switch is operating in the FICON Management Server mode
(fmsmode); instead, use portDisable with Active=Saved mode enabled.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
To chapter1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

slot For bladed systems only, specify the slot number of the port to configure,
followed by a slash (/).

port Specify a port number to configure, relative to its slot for bladed systems. Use
switchShow to display a list of valid ports. This operand is optional; if omitted,
this command displays the persistently-disabled condition for all ports.

Examples To configure a port as persistently disabled and then display all ports that are permanently
disabled:

switch:admin> portCfgPersistentDisable 9/3

switch:admin> portCfgPersistentDisable

Slot 9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-----------------------------
Disabled - - - YES - - - - - - - - - - - - -
(output truncated)

See Also  ficonCupSet, ficonCupShow, portCfgDefault, portDisable, portEnable, portCfgPersistentEnable,
portShow, switchShow
portCfgPersistentEnable

Persistently enables a port.

Synopsis portCfgPersistentEnable [[slot/][port]]

Description Use this command to persistently enable a port or a range of ports, or use this command without operands to display the persistently disabled status of all ports on the switch. Persistently enabled ports remain enabled across power cycles, switch reboots, and switch enables. By default, a port is enabled persistently, unless the port is capable of routing. The change in configuration is effective immediately.

This command re-enables all previously set port configurations of a specified port. A persistently enabled port can temporarily be disabled by the portDisable, or switchDisable command.

The persistent switch disable or enable configuration does not alter the persistent disable or enable configurations of the ports within the switch.

Notes If this port is connected to another switch, then the Fabric may reconfigure. If this port is connected to one or more devices, the devices can now communicate with the Fabric.

The configuration commands configDefault and portCfgDefault do not modify the persistent enable attribute of a port.

This command is not allowed if the switch is operating in the FICON Management Server mode (fmsmode). Instead use portEnable with Active=Saved Mode enabled.

For ports that come online after being enabled, the following indications may be sent to indicate a state transition: RSCN, SNMP trap, Web pop-up window.

The front panel LED of an enabled and online port is green.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

slot For bladed systems only, specify the slot number of the port to configure, followed by a slash (/).

port Specify a port number to configure, relative to its slot for bladed systems. Use switchShow to display a list of valid ports. This operand is optional; if omitted, this command displays the persistently enabled condition for all ports.

Examples To configure a port as persistently enabled.

switch:admin> portCfgPersistentEnable 9/3

To display all ports that are persistently enabled:

switch:admin> portCfgPersistentEnable

<table>
<thead>
<tr>
<th>Slot</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>
(output truncated)
See Also  
  ficonCupSet, ficonCupShow, portDisable, portEnable, portCfgPersistentDisable, portCfgShow, portShow, switchShow
PortCfgQos

Enables or disables QoS, sets the default configuration, and sets and resets the ingress rate limit.

Synopsis

portcfgqos --default | --disable | --enable [slot/][port]
portcfgqos --setratelimit [slot/][port] ratelimit
portcfgqos --resetratelimit [slot/][port]
portcfgqos --help

Description

Use this command to enable or disable Adaptive Networking/Quality of Service (AN/QoS) on a port, to set or reset the ingress rate limit for the specified port, and to set the default behavior.

The Adaptive Networking with QoS feature allows latency-sensitive applications to share storage resources alongside throughput-intensive applications. Ingress Rate Limiting, a feature available in the Condor2/Goldeneye 2 ASIC, allows the ASIC to delay the return of BB credits to the external device. By limiting the throughput on the ingress side of a port, existing congestion can be removed or proactively avoided.

Notes

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

An Adaptive Networking license is required for using the QoS feature.

The QoS configuration of a port is applicable to that port only when it comes up as an E_Port to form an inter-switch link (ISL).

QoS configuration is persistent across system reboots.

Operands

This command has the following operands:

slot

For bladed systems only, specify the slot number of the port to configure, followed by a slash (/).

port

Specify a port number to configure, relative to its slot for bladed systems. Use switchShow to display a list of valid ports. This operand is optional; if omitted, this command displays the persistently enabled condition for all ports.

--default

Applies the default QoS configuration to the specified ports. QoS is enabled by best effort based on availability of buffers.

--disable

Disables QoS configuration on the specified ports.

--enable

Enables QoS configuration on the specified ports.

--resetratelimit

Turns off the ingress rate limiting feature on the specified ports.

--setratelimit

Sets an ingress rate limit to reduce traffic from the specified ports. This configuration is applicable only to F/F_Ports. For E/EX_Ports, this configuration would not be effective. The ingress rate limit is enforced only when a given port can run at a speed higher than the speed specified in the configuration. For example if the rate limit is set at 4 Gbps and the port comes online only at 2 Gbps, no enforcement is needed. Specify an ingress rate in Mbps. Supported values for --setratelimit are: 200, 400, 600, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 5000, 6000, 7000, 8000.
PortCfgQos 2

--help Displays command usage.

Examples
To enable QoS on a port.

switch:admin> portcfgqos --enable 3/15

To disable QoS on a port.

switch:admin> portcfgqos --disable 3/15

To set the ingress rate limit on a port to 2 Gbps:

switch:admin> portcfgqos --setratelimit 3/15 2000

To set the default QoS configuration on a port:

switch:admin> portcfgqos --default 3/15

See Also  portCfg, portCmd, portShow, switchShow, configure
portCfgShow

Displays port configuration settings.

Synopsis

\[ \text{portcfgshow} \]

\[ \text{portcfgshow} \ [\text{slot}[/\text{port}]] \]

\[ \text{portcfgshow} \ \text{option} \ [\text{slot}[/\text{ge}]/\text{port} \ \text{arguments} \ [\text{optional arguments}]] \]

Description

Use this command to display the current configuration of a port.

If no operand is specified, this command displays port configuration settings for all ports on a switch, except gigabit Ethernet (GbE) ports. Additionally, use this command with optional arguments to display specific FCIP parameters configured for a gigabit Ethernet port, such as the following:

- Address resolution protocol (ARP) entries
- IP interfaces on the GbE port
- Static routes on the IP interfaces
- Fibre Channel over IP (FCIP) tunnel configuration settings
  - IKE and IPSec policy information
  - QoS mappings
- Port Mode information
- VLAN tag configuration

The following information is displayed when the command is issued for all ports, or for a specific port:

**Speed** Displays AN for auto speed negotiation mode, or a specific speed of 1, 2, 4, or 8 Gbps. This value is set by the `portCfgSpeed` command.

**AL_PA Offset 13** Displays (...) or OFF when the arbitrated loop physical address (AL_PA) on the port is configured to use a 0x0 AL_PA address (default). Displays ON when the address configuration is 0x13 AL_PA. This value is set by the `portCfgAlpa` command.

**Trunk Port** Displays ON when port is set for trunking. Displays (...) or OFF when trunking is disabled on the port. This value is set by the `portCfgTrunkPort` command.

**Long Distance** Displays (...) or OFF when long distance mode is off; otherwise, displays long distance levels as follows:
- LE  The link is up to 10 km.
- LM  The link is up to 25 km.
- L1  The link is up to 50 km.
- L2  The link is up to 100 km.
- LD  The distance is determined dynamically.
- LS  The distance is determined statically by user input.

This value is set by the `portCfgLongDistance` command.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC Link Init</td>
<td>Displays (..) or OFF when the long distance link initialization option is turned off. Displays ON when it is turned on for long distance mode. This value is set by the <code>portCfgLongDistance</code> command.</td>
</tr>
<tr>
<td>Locked L_Port</td>
<td>Displays ON when the port is locked to L_Port only. Displays (..) or OFF when L_Port lock mode is disabled and the port behaves as a U_Port. This value is set by the <code>portCfgLPort</code> command.</td>
</tr>
<tr>
<td>Locked G_Port</td>
<td>Displays ON when the port is locked to G_Port only. Displays (..) or OFF when G_Port lock mode is disabled and the port behaves as a U_Port. This value is set by the <code>portCfgGPort</code> command.</td>
</tr>
<tr>
<td>Disabled E_Port</td>
<td>Displays ON when the port is not allowed to be an E_Port. Displays (..) or OFF when the port is allowed to function as an E_Port. This value is set by the <code>portCfgEPort</code> command.</td>
</tr>
<tr>
<td>ISL R_RDY Mode</td>
<td>Displays ON when ISL R_RDY mode is enabled on the port. Displays (..) or OFF when ISL R_RDY mode is disabled. This value is set by the <code>portCfgISLMode</code> command.</td>
</tr>
<tr>
<td>RSCN Suppression</td>
<td>Displays ON when RSCN suppression is enabled on the port. Displays (..) or OFF when RSCN suppression is disabled. This value is set by the <code>portCfgRscnsupr</code> command.</td>
</tr>
<tr>
<td>Persistent Disable</td>
<td>Displays ON when the port is persistently disabled; otherwise displays (..) or OFF. This value is set by the <code>portCfgPersistentDisable</code> command.</td>
</tr>
<tr>
<td>NPIV capability</td>
<td>Displays ON when N_Ports ID Virtualization (NPIV) is enabled on the port (default). Displays (..) or OFF when NPIV capability is disabled. This value is set by the <code>portCfgNPIVPort</code> command.</td>
</tr>
<tr>
<td>QOS E_Port</td>
<td>Displays ON when Quality of Service (QoS) is enabled on the port. Displays (..) or OFF when QoS is disabled. By default, QoS is enabled by best effort based on availability of buffers. This value is set by the <code>portCfgQos</code> command.</td>
</tr>
<tr>
<td>EX_port</td>
<td>Displays ON when the port is configured as an EX_Port. Otherwise displays (..) or OFF. This value is set by the <code>portCfgExPort</code> command.</td>
</tr>
<tr>
<td>Mirror Port</td>
<td>Displays ON when Mirror Port is enabled on the port. Displays (..) or OFF when Mirror Port is disabled. This value is set by the <code>portCfgMirrorPort</code> command.</td>
</tr>
<tr>
<td>FC Fastwrite</td>
<td>Displays ON when FC Fastwrite is enabled on the port or (..) or OFF when disabled. Fastwrite is disabled by default. This value is set by the <code>portCfgFastwrite</code> command.</td>
</tr>
<tr>
<td>Rate Limit</td>
<td>Displays ON when ingress rate limit is set on the port or (..) or OFF when the ingress rate limiting feature is disabled. This value is set by the <code>portCfgQos --setratelimit</code> command. The default value is OFF.</td>
</tr>
<tr>
<td>Credit Recovery</td>
<td>Displays ON when Credit Recovery is enabled on the port or (..) or OFF when disabled. This value is set by the <code>portCfgCreditRecovery</code> command. The credit recovery feature is enabled by default, but only ports configured as long distance ports can utilize this feature.</td>
</tr>
</tbody>
</table>
Notes

The output of this command may vary depending on the hardware platform and port type.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command supports the following port options:

slot
For bladed systems only, specifies the slot number of the port to be configured, followed by a slash (/).

[ge]port
Specifies the number of the port to be configured, relative to its slot for bladed systems. For GigE ports, the ports are numbered ge0 - ge1. Use the switchShow command for a list of valid ports.

Use portCfgshow with one of the following options and optional arguments to display specific FCIP-related parameters configured for a gigabit Ethernet port:

arp
Displays the address resolution protocol (ARP) table.

ipif
Displays the IP interface for both ports of the tunnel. IPv6 addresses are supported.

iproute
Displays the IP route on the specified GbE port. IPv6 addresses are supported.

mode
Displays the mode of the specified GbE port. FCIP or not configured.

vlantag
Displays VLAN Tagging configuration.

fciptunnel
Displays FCIP tunnels on the specified GbE port. Valid arguments for fciptunnel include:

all | tunnel_id
Display includes all FCIP tunnels on the port or the specified FCIP tunnel only. Valid values for tunnel_id are 0-7.

-ipsec
Displays IKE and IPSec policy information on IPSec-enabled tunnels. This argument is optional.

-qosmap
Displays the VC to QoS mapping. This argument is optional.

Examples

To display the port configuration settings on an enterprise-class platform:

```
switch:admin> portcfgshow
 Ports of Slot 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
--
Speed AN AN
AL_PA Offset 13 ..
Trunk Port ON ON
Long Distance ON ON
VC Link Init ..
Locked L Port ..
Locked G Port ..
Disabled E_Port ..
ISL R_RDY Mode ..
RSCN Suppressed ..
Persistent Disable ..
NPIV capability ON ON
QOS E_Port ON ON
EX Port ..
Mirror Port ..
FC Fastwrite ON ON
```
To display the configuration settings for a port with Access Gateway enabled:

```
SW4016_5311:admin> portcfgshow
```

### Ports of Slot 2

<table>
<thead>
<tr>
<th>Speed</th>
<th>AL_PA Offset 13</th>
<th>Trunk Port</th>
<th>Long Distance</th>
<th>VC Link Init</th>
<th>Locked L_Port</th>
<th>Locked G_Port</th>
<th>Disabled E_Port</th>
<th>ISL R_RDY Mode</th>
<th>RSCN Suppressed</th>
<th>Persistent Disable</th>
<th>NPIV capability</th>
<th>QOS E_Port</th>
<th>EX Port</th>
<th>Mirror Port</th>
<th>FC Fastwrite</th>
<th>Rate Limit</th>
<th>Credit Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>AN</td>
<td>ON</td>
<td>ON ON ON ON ON ON ON ON</td>
</tr>
</tbody>
</table>

### Ports of Slot 7

<table>
<thead>
<tr>
<th>Speed</th>
<th>AL_PA Offset 13</th>
<th>Trunk Port</th>
<th>Long Distance</th>
<th>VC Link Init</th>
<th>Locked L_Port</th>
<th>Locked G_Port</th>
<th>Disabled E_Port</th>
<th>ISL R_RDY Mode</th>
<th>RSCN Suppressed</th>
<th>Persistent Disable</th>
<th>NPIV capability</th>
<th>QOS E_Port</th>
<th>EX Port</th>
<th>Mirror Port</th>
<th>FC Fastwrite</th>
<th>Rate Limit</th>
<th>Credit Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>AN</td>
<td>ON</td>
<td>ON ON ON ON ON ON ON ON</td>
</tr>
</tbody>
</table>

where AN:AutoNegotiate, ..:OFF, ??:INVALID,
To display the configuration settings for a single port:

```
switch:admin> portcfgshow 2/16
Area Number: 144
Speed Level: AUTO
AL_PA Offset 13: OFF
Trunk Port ON
Long Distance OFF
VC Link Init OFF
Locked L_Port OFF
Locked G_Port OFF
Disabled E_Port OFF
ISL R_RDY Mode OFF
RSCN Suppressed OFF
Persistent Disable OFF
NPIV capability ON
QOS E_Port ON
Mirror Port OFF
```

To display FCIP tunnels configured on a GbE port. (refer to the `portCfg` help page for an explanation of the displayed parameters):

```
switch:admin> portcfgshow 10/ge0
Mode: FCIP
Persistent Disable: OFF

Ipif configuration:

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
<th>NetMask</th>
<th>MTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>192.168.60.100</td>
<td>255.255.255.0</td>
<td>1500</td>
</tr>
<tr>
<td>1</td>
<td>192.168.60.101</td>
<td>255.255.255.0</td>
<td>2348</td>
</tr>
<tr>
<td>2</td>
<td>192.168.60.102</td>
<td>255.255.255.0</td>
<td>1260</td>
</tr>
<tr>
<td>3</td>
<td>192.168.60.103</td>
<td>255.255.255.0</td>
<td>1700</td>
</tr>
<tr>
<td>4</td>
<td>192.168.60.104</td>
<td>255.255.255.0</td>
<td>1400</td>
</tr>
<tr>
<td>5</td>
<td>192.168.60.105</td>
<td>255.255.255.0</td>
<td>2000</td>
</tr>
<tr>
<td>6</td>
<td>192.168.60.106</td>
<td>255.255.255.0</td>
<td>1300</td>
</tr>
<tr>
<td>7</td>
<td>192.168.60.107</td>
<td>255.255.255.0</td>
<td>2200</td>
</tr>
</tbody>
</table>

Interface IPv6 Address Len MTU
--

Arp configuration:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Mac Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Iproute Configuration:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Mask</th>
<th>Gateway</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPv6address Len Gateway Metric
--

Fciptunnel configuration:

IPV4 FCIP TUNNEL(S)
--

Tunnel ID 0
Remote IP Addr 192.168.60.180
Local IP Addr 192.168.60.100
Remote WWN Not Configured
Local WWN 10:00:00:05:1e:39:80:65
Compression on
Fastwrite off
Tape Pipelining off
Committed Rate 125000 Kbps (0.125000 Gbps)
SACK on
Min Retransmit Time 100
Keepalive Timeout 10
Max Retransmissions 8
VC QoS Mapping off
DSCP (Control): 10, DSCP (Data): 40
VLAN Tagging Not Configured
VC QoS Map:
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>46</td>
<td>7</td>
<td>1</td>
<td>07</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>3</td>
<td>5</td>
<td>23</td>
<td>3</td>
<td>6</td>
<td>27</td>
<td>0</td>
<td>7</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>0</td>
<td>9</td>
<td>39</td>
<td>0</td>
<td>10</td>
<td>43</td>
<td>4</td>
<td>11</td>
<td>47</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>51</td>
<td>4</td>
<td>13</td>
<td>55</td>
<td>4</td>
<td>14</td>
<td>59</td>
<td>4</td>
<td>15</td>
<td>63</td>
<td>0</td>
</tr>
</tbody>
</table>

Tunnel ID 1
Remote IP Addr 192.168.60.181
Local IP Addr 192.168.60.101
Remote WWN Not Configured
Local WWN 10:00:00:05:1e:39:80:65
Compression on
Fastwrite off
Tape Pipelining off
Committed Rate 125000 Kbps (0.125000 Gbps)
SACK on
Min Retransmit Time 100
Keepalive Timeout 10
Max Retransmissions 8
DSCP (Control): 30, DSCP (Data): 4
VLAN Tagging Not Configured
VC QoS Map:
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>46</td>
<td>7</td>
<td>1</td>
<td>07</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>3</td>
<td>5</td>
<td>23</td>
<td>3</td>
<td>6</td>
<td>27</td>
<td>0</td>
<td>7</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>0</td>
<td>9</td>
<td>39</td>
<td>0</td>
<td>10</td>
<td>43</td>
<td>4</td>
<td>11</td>
<td>47</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>51</td>
<td>4</td>
<td>13</td>
<td>55</td>
<td>4</td>
<td>14</td>
<td>59</td>
<td>4</td>
<td>15</td>
<td>63</td>
<td>0</td>
</tr>
</tbody>
</table>

Vlantag configuration:

Display of VLAN tagging on a GbE port. Refer to the portCfg help page for an explanation of the displayed parameters.

switch: admin> portcfgshow vlantag 8/ge0
Port: 8/ge0
IpIfAddress VlanId L2 CoS Dest IP Address Flags

192.168.10.1 100 7 192.168.10.1 App
192.168.10.1 100 3 0.0.0.0 Perm

See Also portCfg, portCfgCreditRecovery, portCfgEPort, portCfgGPort, portCfgLongDistance, portCfgLPort, portCfgNPIVPort, portCfgSpeed, portCfgTrunkPort
portCfgSpeed

Configures the speed level for a specified port.

Synopsis portCfgSpeed [slotnumber/]portnumber, speed

Description Use this command to set the speed on a specified speed. This command disables and then
re-enables the port, so that it comes up with the new speed setting. The configuration is saved in
nonvolatile memory and is persistent across switch reboots or power cycles.

Notes This configuration cannot be set on VE/VEX_Ports.

Use portShow to display actual port speed levels. Use portCfgShow to display user-specified speed
settings.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands This command has the following operands:

slotnumber For bladed systems only, specify the slot number of the port to be configured,
followed by a slash (/).

portnumber Specify a port number to be configured, relative to its slot for bladed systems.
Use switchShow to display a list of valid ports.

speed_level Specify the speed of a port. This operand is required. Valid values are one of
the following:

0 Auto-sensing mode. The port automatically configures for maximum speed.
1 1-Gbps mode. The port is at a fixed speed of 1 Gbps.
2 2-Gbps mode. The port is at a fixed speed of 2 Gbps.
4 4-Gbps mode. The port is at a fixed speed of 4 Gbps.
8 8-Gbps mode. The port is at a fixed speed of 8 Gbps.

Examples To set the speed of a port to 2 Gbps:

switch:admin> portCfgSpeed 2/3, 2

See Also portCfgShow, portShow, switchCfgSpeed
portCfgTrunkPort

Enables or disables trunking on a port.

Synopsis

portcfgtrunkport [slot[/]port[,]] mode

Description

Use this command to enable or disable trunking on a port. Use switchCfgTrunk to enable or disable
trunking on all ports of a switch.

When the command is executed to update the trunking configuration, the port to which the
configuration applies is disabled and subsequently re-enabled with the new trunking configuration.
Traffic through the ports may be temporarily disrupted.

Disabling trunking fails if a Trunk Area (TA) is enabled on the port. Use the portTrunkArea command
to remove the TA before disabling trunking.

Notes

Enabling trunking requires an ISL Trunking license. You may disable trunking without a license.
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands

This command has the following operands:

slotnumber

For bladed systems only, specify the slot number of the port to be configured,
followed by a slash (/).

portnumber

Specify a port number to be configured, relative to its slot for bladed systems.
Use switchShow to display a list of valid ports.

portnumber-portnumber

Specify a port range, for example 5/3-7. Ports in a range must be separated
by a dash ("-"). Spaces between the dash and the ports are not allowed. You
can specify multiple port ranges or combine a range of ports with one or more
single ports.

mode

Specify 1 to enable trunking on the specified port. Specify 0 to disable
trunking on the port. This operand is required.

Examples

To enable a port for trunking:

switch:admin> portcfgtrunkport 1/3, 1

See Also

portCfgShow, portShow, switchCfgTrunk, portTrunkArea, switchShow
portCfgVEXPort

Configures a port as a VEX_Port connected to an FC-IP and sets and displays VEX_Port configuration parameters.

Synopsis

portCfgVEXPort [slotnumber/]portnumber

portCfgVEXPort [-a admin]

portCfgVEXPort [-f fabricid]

portCfgVEXPort [-r ratov]

portCfgVEXPort [-e edtov]

portCfgVEXPort [-d domainid]

portCfgVEXPort [-p pidformat]

portCfgVEXPort [-t fabric_parameter]

portCfgVEXPort [-m portmode]

Description

Use this command to configure a port as a VEX_Port, to display the port's VEX_Port configuration, or to change the configuration. If no optional parameter is specified, the command displays the currently configured values; otherwise, it sets the specified attribute to its new value. The port must be disabled prior to setting VEX_Port attributes. The port must be enabled before the port can become active following VEX_Port parameter changes. Use portDisable and portEnable to disable or enable the port.

When the port is not active, the preferred domain ID is configurable. The preferred domain ID is used by the VEX_Port's front phantom domain to request a domain ID from the principal switch. The domain ID received becomes the subsequent preferred domain ID, which is persistent and is displayed.

Notes

The fabric ID must be the same for every router port connected to the same edge fabric, and different for every edge fabric. If two ports are connected to the same fabric but have been assigned different fabric IDs, one of them will be disabled due to a fabric ID oversubscription. If two fabrics have been assigned the same fabric ID, one of them will be disabled due to a fabric ID conflict.

The front domain WWN field displays the WWN of the front domain. If the port is enabled and the state is “OK”, the edge fabric principal switch’s domain ID and WWN also are displayed.

If the Fabric Parameter value is “Auto Negotiate”, the port ID format, R_A_TOV, and E_D_TOV values display the negotiated values indicated by “(N)” next to them. The negotiated values are what the edge switch specifies in the ELP request. If the state is “Not OK”, R_A_TOV and E_D_TOV display “Not Applicable”. By default, all VEX_Ports are auto-ELP enabled.

If the Fabric Parameter attribute value is “User configured”, port ID format, R_A_TOV, and E_D_TOV display the configured values.

A configuration change that would result in an invalid domain ID for McDATA Open Fabric mode or McDATA Fabric mode causes the preferred domain ID to be set to the minimum valid McDATA mode domain ID of 1. The exception to this is if the configuration change includes setting the preferred domain ID, in which case the configuration change does not take place and a corresponding error message is displayed.
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- **-a admin** Enables or disables the specified port as a VEX_Port. Valid values are 1 (enable as VEX_Port), 2 (disable as VEX_Port and enable as non-VEX_Port). `portCfgDefault` may also be used to disable VEX_Ports.

- **-f fabricid** Specifies the fabric ID. Valid values are 1-128.

- **-r ratov** Specifies the R_A_TOV used for port negotiation. Valid values are 2000 - 120000. This operand is only applicable if the "Fabric Parameter" attribute value is not "Auto Negotiate".

- **-e edtov** Specifies the E_D_TOV used for port negotiation. Valid values are 1000 - 60000. This operand is only applicable if the "Fabric Parameter" attribute value is not "Auto Negotiate".

- **-d domainid** Specify the preferred domain ID. For Brocade native mode (-m 0) or McDATA Open Fabric mode (-m 1), valid values are 1-239. For McDATA Fabric mode (-m 2), valid values are 1-31.

- **-p pidformat** Specifies the Port ID format. Valid values are 0-native, 1-core, 2-extended edge. This operand is applicable only when port mode is set to 0 (native mode). If port mode is not "Brocade Native", the Port ID format displays as "Not applicable".

- **-t fabric_parameter** Enables or disables negotiation of the fabric parameters. Valid values are: 1-enable, 2-disable.

- **-m port mode** Specifies the Port mode. The -m option enforces the same port mode for all the ports connected to the same edge fabric. If the -m option is selected, the port mode is compared to the online ports. If the modes are different, an error message is displayed, and the command fails. Valid values are as follows:

 0 Brocade Native mode.

 1 McDATA Open Fabric mode.

 2 McDATA Fabric mode.

Note that this mapping between mode values and modes is NOT the same as the mapping used when setting interoperability modes with the `interopMode` command.

Examples

To display the VEX_Port configuration of port 2/16:

```
switch:admin> portcfgvexport 2/16

      Port     info
        2/16      
   Admin: enabled
        State:  OK
   Pid format:  core(N)
  Edge Fabric ID:  16
Front Domain ID:  160
Front WWN:  50:06:06:9e:20:9f:ce:10
Principal Switch:  7
```
principal WWN: 10:00:00:60:69:c0:05:8a
Fabric Parameters: Auto Negotiate
R_A_TOV: 9000 (N)
E_D_TOV: 2000 (N)
Edge fabric's primary wwn: N/A
Edge fabric's version stamp: N/A

To set the fabric ID of port 2/21 to 5 and the port ID format to core:

switch:admin> portcfgvexport 2/21 -f 5 -p 1

To configure port 2/20 as a VEX_Port and set the fabric ID to 4:

switch:admin> portcfgvexport 2/20 -a 1 -f 4

To disable fabric parameter negotiation on port 2/20 of a VEX_Port:

switch:admin> portcfgvexport 2/20 -t 2

See Also portCfgEXPort, portDisable, portEnable, portShow
portCmd

Diagnoses intelligent ports.

Synopsis

portcmd action [slot/]<ge port arguments

Description

Use this command to invoke the end-to-end IP path performance (ipperf) characterization feature, or to ping or trace route to a destination IP host from an intelligent GbE port.

Notes

Virtual LAN (VLAN) tagging is supported on the Brocade FR4-18i and all 7500 platforms that run Fabric OS v6.0.0 or later. To ensure that test traffic traverses the same path as real FCIP traffic would, portCmd supports the VLAN settings as an option. Note that a VLAN tag entry must exist prior to issuing the --ping or --traceroute commands; this includes both the local and remote sides. A VLAN Tag table entry is dynamically maintained by the ipperf application.

End-to-end path characterization is not supported if there exists an IPSec-enabled tunnel using the same source/local IP address.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

slot

For bladed systems only, specify the slot number of the port to be configured, followed by a slash (/).

g e port

Specifies the port number of the GbE port on the blade.

--ipperf

Determines the path characteristics to the remote host. Valid arguments and their values include:

-s src_ip

Specifies the local IP address to use for sourcing the probe packets. ipperf will not start if there exists an IPsec-enabled tunnel using the same source IP address. IPv6 addresses are supported.

-d dst_ip

Specifies the destination IP address to which to probe the IP router path. IPv6 addresses are supported.

-S

Specifies the source mode to initiate the TCP connection. The source end-point generates a traffic stream and reports the end-to-end IP path characteristics from this end-point to the receiver end-point sink.

-R

Specifies the sink mode to accept the new connection. The end-to-end path characteristics are not reported.

-i interval

Specifies the intervals between polling and displaying statistics, in seconds. If the duration is less than -t running_time, the statistics displays only once, at the conclusion of the test. This operand is optional.

-p port

Specifies the TCP port number for the listener end-point. This operand is optional.

-q diffserv

Specifies the DSCP (DiffServ Code Point) marking used for the TCP connection. This operand accepts values between 0 and 63 (inclusive). The default value is 0.
-c committed_rate
Specifies a committed rate for the data stream, in Kbps. If specified, the traffic generator is limited by a traffic shaper. This characterizes the end-to-end IP path performance based on the data rate configured for a tunnel between the same end-points. If a rate is not specified, the traffic generator competes for uncommitted bandwidth. This operand is optional.

-t running_time
Specifies total time to run the test traffic stream, in seconds. If not specified, the test runs continuously until aborted with Ctrl+c. This operand is optional.

-z size
Specifies the size, in bytes, of the trace route packet to use. The default is 64 bytes. In an IPv4 environment, the ICMP/IP header occupies 28 bytes. In an IPv6 environment, it occupies 48 bytes. The total size, including ICMP/IP headers (28 or 48 bytes without IP options) cannot be greater than the IP MTU configured on the interface. This operand is optional.

-v vlan_id
Specifies the VLAN ID. Values must be in the range of 1 - 4094. There is no default value. Note that a VLAN tag entry must exist on the local and remote sides prior to issuing the -v option. A VLAN Tag table entry is dynamically maintained by the ipperf application. See the portCfg help page for details on creating a VLAN tag table.

-c L2 Class-of-Service
Specifies Class of Service/Priority, as defined by IEEE 802.1p. Valid values are 0 to 7. The default is 0. This operand is optional with the -v option.

The output of --ipperf output includes:

Sampling frequency(s)
The interval specified with --ipperf -I option or the default (30 seconds).

BW
The bandwidth measured in the last interval. Bandwidth is defined as the total packets and bytes sent. Note: BW represents what the FCIP tunnel / FC application sees for throughput rather than the Ethernet on-the-wire bytes.

WBW
The weighted bandwidth currently with a gain of 50 percent.

Loss (%)
The number of TCP retransmits. This number is an average rate over the last display interval.

Delay (ms)
The TCP smoothed round-trip time (RTT) and variance estimate in milliseconds.

PMTU
The path MTU. This is the largest IP-layer datagram that can be transmitted over the end-to-end path without fragmentation. This value is measured in bytes and includes the IP header and payload. Note: There is limited support for black hole PMTU detection. If the Jumbo PMTU (anything over 1500) does not work, --ipperf tries 1500 bytes. If 1500 PMTU fails, --ipperf tries the lower PMTU of 1260 (the minimum PMTU supported for FCIP tunnels). If 1260 also fails, --ipperf gives up. There is no support for aging. During black hole PMTU detection the BW, WBW, Loss and PMTU values printed may not be accurate.

--ping
Pings a destination IP address from one of the source IP interfaces on the GbE port. Valid arguments include:

-s src_ip
Specifies the source IP address that originates the ping request. IPv6 addresses are supported.
-d dst_ip Specifies the destination IP address to which to target the ping request. IPv6 addresses are supported.

-n num_requests Specifies the number of ping requests. Valid values are 1 to 255. The default is 4. This operand is optional.

-q service_type Specifies the type of service in the ping request. The default is 0 and service_type must be an integer from 0 to 255. This operand is optional.

-t ttl Specifies the time to live. Valid values are 1 to 255. The default is 100. This operand is optional.

-w wait_time Specifies the time to wait for the response of each ping request in milliseconds. The default is 5000 milliseconds and the maximum wait time is 29000. This operand is optional.

-z size Specifies the default packet size to a fixed size in bytes. The default is 64 bytes. In an IPv4 environment, the ICMP/IP header occupies 28 bytes. In an IPv6 environment it occupies 48 bytes. The total size, including ICMP/IP headers (28 or 48 bytes without IP options) cannot be greater than the IP MTU configured on the interface. This operand is optional.

-v vlan_id Specifies the VLAN ID. Values must be in the range of 1 - 4094. There is no default value. Note that a VLAN tag entry must exist on the local and remote sides prior to issuing the -v option. A VLAN Tag table entry is dynamically maintained by the ipperf application. See the portCfg help page for details on creating a VLAN tag table.

-c L2 Class-of-Service

Specifies Class of Service/Priority, as defined by IEEE 802.1p. Values must be in the range 0 to 7. The default is 0. This operand is optional with the -v option.

--traceroute Traces the IP router hops used to reach the host dst_ip from one of the source IP interfaces on the GbE port. Valid arguments include:

-s src_ip Specifies the local IP address to use for sourcing the probe packets. IPv6 addresses are supported.

-d dst_ip Specifies the destination IP address to which to probe the IP router path. IPv6 addresses are supported.

-h max_hops Specifies the maximum hop limit used in the outgoing probe packets. This operand is optional.

-f first_ttl Sets the starting time to live to the value of this parameter. The default is 1. The command skips processing for those intermediate gateways that are less than the first_ttl hops. This operand is optional.

-q service_type Specifies the type of service in the traceroute request. The default is 0 and service_type must be an integer from 0 to 255. This operand is optional.

-w timeout Sets the time, in milliseconds, to wait for a response to a probe. The default is 5000 ms. The maximum wait time is 29000 ms. This operand is optional.
-z size
Specifies the size, in bytes, of the trace route packet to use. The default is 64 bytes. In an IPv4 environment, the ICMP/IP header occupies 28 bytes. In an IPv6 environment, it occupies 48 bytes. The total size, including ICMP/IP headers (28 or 48 bytes without IP options), cannot be greater than the IP MTU configured on the interface. This operand is optional.

-v vlan_id
Specifies the VLAN ID. Values must be in the range of 1 - 4094. There is no default value. Note that a VLAN tag entry must exist on the local and remote sides prior to issuing the -v option. A VLAN Tag table entry is dynamically maintained by the ipperf application. See the portCfg help page for details on creating a VLAN tag table.

-c L2 Class-of-Service
Specifies Class of Service/Priority, as defined by IEEE 802.1p. Values must be in the range 0 to 7. The default is 0. This operand is optional. with the -v option.

Examples
To verify if packets can be sent to the destination IP address with maximum wait_time specified:

```
2007:7:30:32:227:77:0:60 -w 29000
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=0ms ttl=255
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=1ms ttl=255
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=0ms ttl=255
Reply from 2007:7:30:32:227:77:0:60: bytes=64 rtt=0ms ttl=255
```

```
Ping Statistics for 2007:7:30:32:227:77:0:60:
  Packets: Sent = 4, Received = 4, Loss = 0 ( 0 percent loss)
  Min  RTT = 0ms, Max RTT = 1ms Average = 0ms
```

To trace the IP router hops used to reach the remote (with packet size specified):

```
2007:7:30:32:227:77:0:60 -z 1452
  1  1 ms  0 ms  0 ms
Traceroute complete.
```

To verify if packets can be sent to the destination IP address using VLAN tagging with the -c option.

```
switch:admin> portcmd --ping 8/ge0 -s 192.168.10.1 -d 192.168.20.1 -v 10 -c 3
```

To trace the IP router hops used to reach the remote host using VLAN tagging with the -c option.

```
switch:admin> portcmd --traceroute 8/ge0 -s 192.168.10.1 -d 192.168.20.1 -v 10
```

To set the path characteristic to source mode on the remote host using VLAN tagging with the -c option.

```
switch:admin> portcmd --ipperf 8/ge0 -s 192.168.10.1 -d 192.168.20.1 -s -v 10 -c 3
```

See Also
portCfg, portShow
portDebug

Sets debug level and verbose level of port modules.

Synopsis
```
portdebug dbg_lvl, vbs_lvl
```

Description
Use this command to set the debug level and verbose level of port modules.

Note
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
This command has the following operands:

- `dbg_lvl`
 Specify the debug level to be set for port modules; valid values are 1 to 5.

- `vbs_lvl`
 Specify the verbose level to be set for port modules; valid values are 1 to 5.

Examples
To set debug level and verbose level of port modules:

```
switch:admin> portdebug 3 4
```

See Also
`dbgShow`
portDisable

Disables a port.

Synopsis portdisable [slot/]port

Description Use this command to disable a port. If a port is connected to another switch when disabled, the fabric may reconfigure. Devices connected to this port can no longer communicate with the fabric. If the port was online before being disabled, a state transition will be indicated in one of the following ways: RSCN, SNMP trap, or Web pop-up window.

Notes The front panel LED of a disabled port flashes yellow with a two-second cycle.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

slot On blades systems only, specify the slot number of the port to be disabled, followed by a slash (/).

port Specify a port number to be disabled, relative to its slot for bladed systems. Use switchShow to display a list of valid ports.

Examples To disable a port:

switch:admin> portdisable 2/4

See Also portCfgPersistentDisable, portCfgPersistentEnable, portEnable, portShow, switchShow
portEnable

Enables a port.

Synopsis portenable [slot/]port

Description Use this command to enable a port. If a port is connected to another switch when enabled, the fabric may reconfigure. Devices connected to the port can now communicate with the fabric.

For ports that come online after being enabled, the following indications might be sent to indicate a state transition: RSCN, SNMP trap, Web pop-up window.

This command fails if the port’s switch is disabled, the port’s blade is not fully enabled (faulted, powered off, or disabled), or if the port is persistently disabled.

Notes The front panel LED of an enabled and online port is green.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

slot For bladed systems only, specify the slot number of the port to be enabled, followed by a slash (/).

port Specify a port number to be enabled, relative to its slot for bladed systems. Use switchShow to display a list of valid ports.

Examples To enable a port:

switch:admin> portenable 2/4

See Also portCfgPersistentDisable, portCfgPersistentEnable, portDisable, portShow, switchShow
portErrShow

Displays port error summary.

Synopsis porterrshow

Description Use this command to display an error summary for all ports. The display contains one output line per port and shows error counters in ones, thousands (k), or millions (m).

frames tx Frames transmitted
frames rx Frames received
enc in Encoding errors inside frames
crc err Frames with CRC errors
too shrt Frames shorter than minimum
too long Frames longer than maximum
bad eof Frames with bad end-of-frame delimiters
enc out Encoding error outside of frames
disc c3 Class 3 frames discarded
link fail Link failures (LF1 or LF2 states)
loss sync Loss of synchronization
loss sig Loss of signal
frjt Frames rejected with F_RJT
fbsy Frames busied with F_BSY

Operands none

Examples To display error counters for ports on a switch:

switch:admin> porterrshow

frames enc crc too too bad enc disc link loss loss frjt fbsy
 tx rx in err shrt long eof out c3 fail sync sig
===
 0: 0 0 0 0 0 0 0 0 0 0 0 2 0 0
 1: 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 2: 0 0 0 0 0 0 0 0 0 0 0 1 0 0
 3: 12 14 0 0 0 0 0 0 0 0 3 6 0 0
 4: 300 300 0 0 0 0 0 2 0 1 1 2 0 0
 5: 0 0 0 0 0 0 0 0 0 0 0 2 0 0
 6: 12 14 0 0 0 0 0 0 0 0 3 6 0 0
 7: 0 0 0 0 0 0 0 0 0 0 0 2 0 0
 29: 0 0 -- 0 0 0 0 -- 0 -- -- -- -- --
 30: 0 0 -- 0 0 0 0 -- 0 -- -- -- -- --
 31: 0 0 -- 0 0 0 0 -- 0 -- -- -- -- --

(output truncated)

See Also portShow, portStatsShow
portFlagsShow

Displays the port status bitmaps for all ports in a switch.

Synopsis

```
portflagsshow
```

Description

Use this command to display the following status for a port:

- **SNMP**: Displays whether the port is online or offline.
- **Physical**: Displays the port physical status. Valid values are `In_Sync` and `No_Light`.
- **Flags**: Displays whether there is an SFP inserted in the port, whether the port is active, and the port type.

Operands

None

Examples

To display the port status for all ports in the switch:

```
switch:user> portflagsshow
           Slot  Port  SNMP      Physical        Flags
-----------------------------------------------
           1     0  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           1     1  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           1     2  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           1     3  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           1     4  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           1     5  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           1     6  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           1     7  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           1     8  Offline No_Light  PRESENT LED
           1     9  Offline No_Light  PRESENT LED
           1    10  Offline No_Light  PRESENT LED
           1    11  Offline No_Light  PRESENT LED
           1    12  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           1    13  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           1    14  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           1    15  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           4     0  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           4     1  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           4     2  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           4     3  Online  In_Sync  PRESENT ACTIVE E_PORT G_PORT LOGIN LED ACCEPT
           4     4  Offline No_Light  PRESENT LED
           4     5  Offline No_Light  PRESENT LED
```

(output truncated)

See Also

`portShow`, `switchShow`
portLedTest

Cycles user port LEDs.

Synopsis portledtest [-npass count][-ports itemlist]

Description Use this command to exercise the user port LEDs in the current switch on and off by setting the ATTN LEDs to green for the ON condition and unlighted for the OFF condition. The SPEED LEDs are initially set to black before the command execution. The SPEED LEDs are set to green once the command is executing.

You must disable the current switch (using the switchDisable command) before running this command. After the command has completed, the ATTN LEDs flash amber, indicating that the command has finished and exited. You can enable the current switch (using the switchEnable command) to set the ATTN LEDs back to black.

Notes The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is retained for legacy reasons only and is longer supported on most current platforms. On some of the unsupported platforms, the command may return a “not applicable to this platform” message. On some switches, the command is still allowed to run, but may not run without errors.

Operands This command has the following operands:

- npass count Specify the number of times to perform this test. The default value is 10.
- ports itemlist Specify a list of user ports on which to run the test. If omitted, all the active ports in the switch are assumed. For more information, refer to the itemList command.

Examples To test port LEDs:

```
switch:admin> portledtest -ports 1/1-1/5
passed.
```

See Also itemList, switchDisable, switchEnable
portLogClear

Clears the port log.

Synopsis

 portLogClear

Description

Use this command to clear the port log. You might want to clear the port log before triggering an activity so that the log displays only the log events related to that activity.

If the port log is disabled, portLogClear enables it. The port log is disabled automatically when certain errors occur to allow the collection of all the information needed to understand the cause of the error. When the port log is disabled, the events already present in the log are preserved, but new events are not collected.

The following errors disable the port log:

 FCPh, EXCHBAD
 FCPh, EXCHFREE
 NBFSM, DUPEPORTSCN
 UCAST, RELICPDB

Refer to the Fabric OS Message Reference for more information on these errors.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

none

Examples

To clear the port log:

 switch:admin> portLogClear
 switch:admin> portLogShow
 port log is empty

See Also

 portLogDump, portLogShow
portLogConfigShow

Displays the current port log configuration.

Synopsis portLogconfigshow

Description Use this command to display the current port log configuration.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To display the current port log configuration:

 switch:admin> portLogconfigshow
 max portlog entries = 8192

See Also portLogResize
portLogDisable

Disables the port log facility.

Synopsis portLogDisable

Description Use this command to disable the port log facility.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To display the port log facility:

 switch:admin> portLogDisable

See Also portLogEnable
portLogDump

Displays the port log without page breaks.

Synopsis

portlogdump [count[, saved[, portid]]]

Description

Use this command to display the port log, listing all entries in the log without page breaks. This command displays the same information as portLogShow, but portLogShow prompts you to press Enter between each page.

If the port log is disabled, the following message displays as the first line:

WARNING: port log is disabled

Refer to the portLogClear command for more information. For a full explanation of the information displayed by this command, refer to the Fabric OS Administrator’s Guide.

Operands

This command has the following operands:

count Specify the maximum number of lines to be displayed. Only the most recent count entries are displayed. This operand is optional.

saved Specify a nonzero value to display the saved port log from the last switch fault. Refer to upTime for conditions that cause a fault. The operand count is ignored when displaying the saved log. This operand is optional.

portid Specify the port for which to display the log dump. If a port is not specified, the command displays the port logs for all ports. This operand is optional.

Examples

To display the port log for a port:

switch:user> portlogdump 20

time task event port cmd args
--
08:35:27.899 tShell pstate 14 OL1
08:35:27.899 tReceive pstate 14 LR2
08:35:27.916 tReceive pstate 14 AC
08:35:28.416 interrupt scn 14 1
08:35:28.433 tFabric ioctl 14 90 101d9910,0
08:35:28.433 tFabric Tx 14 164 02fffffd,00fffffd,0005ffff,1000000
08:35:28.433 tReceive Rx 14 0 c0fffffd,00fffffd,00050006
08:35:28.433 tTransmit Tx 14 96 02fffffd,00fffffd,00060007,11000060
08:35:28.433 tFabric ioct1 14 96 02fffffd,00fffffd,00060007,02100060
08:35:28.466 tReceive pstate 14 LR1
08:35:28.466 tReceive pstate 14 LR3
08:35:28.466 tReceive pstate 14 AC
08:35:28.483 tFabric Tx 14 96 02fffffd,00fffffd,00060007,02100060
08:35:28.483 tReceive Rx 14 96 03fffffd,00fffffd,00060007,02100060
08:35:28.483 tTransmit Tx 14 96 02fffffd,00fffffd,00060007,02100060
08:35:28.483 tFabric ioct1 14 96 02fffffd,00fffffd,00060007
08:35:28.483 tFabric scn 14 5

See Also

portLogClear, portLogShow, upTime
portLogDumpPort

Displays the port log of a specified port without page breaks.

Synopsis

```bash
portLogDumpPort portid
```

Description

Use this command to display the port log of a specified port. The command displays all entries in the log without any page breaks. It is identical to `portLogShowPort`, except that `portLogShowPort` prompts you to press Enter between each page.

Port logs are circular log files in the switch firmware which can save up to 8,192 entries. Refer to `portLogConfigShow` to display the current port log size. Once the log is full, the newest log entries displace the oldest log entries. Port logs capture switch-to-device, device-to-switch, switch-to-switch, some device-to-device, and control information.

If the port log is disabled, the following message displays as the first line. Refer to `portLogClear` command for more information.

```
WARNING: port log is disabled
```

Refer to the *Fabric OS Administrator’s Guide* for more information.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operand:

- `portid`

Specify the port area or index number.

Examples

To display the port log dump for a port:

```
switch:user> portLogDumpPort 14
```

```
time   task    event port  cmd  args
---------------------------
08:35:27.899 tShell  pstate  14  OL1
08:35:27.899 tReceive pstate  14  LR2
08:35:27.916 tReceive pstate  14  AC
08:35:28.416 interrupt scn     14    1
08:35:28.433 tFabric ioctl   14   90  101d9910,0
08:35:28.433 tFabric Tx      14  164  02fffffd,00fffffd,0005ffff,10000000
08:35:28.433 tReceive Rx     14  164  03fffffd,00fffffd,00050006,02000000
08:35:28.433 tTransmit Rx    14    0  c0fffffd,00fffffd,00060007
08:35:28.433 tFabric ioctl   14   a1  0,0
08:35:28.466 tFabric ioct1   14  91  103646d8,0
08:35:28.466 tFabric ioct1   14    3c,1
08:35:28.466 tFabric pstate  14  LR1
08:35:28.466 tReceive pstate 14  LR3
08:35:28.466 tReceive pstate 14  AC
08:35:28.483 tFabric Tx      14  96  02fffffd,00fffffd,0006ffff,11100060
08:35:28.483 tReceive Rx     14    0  c0fffffd,00fffffd,00060007
08:35:28.483 tReceive Rx     14  96  03fffffd,00fffffd,00060007,02100060
08:35:28.483 tTransmit Tx    14    0  c0fffffd,00fffffd,00060007
08:35:28.483 tFabric ioct1   14    a1 0,0
08:35:28.483 tFabric scn     14    5
```

See Also

`portLogClear`, `portLogShow`, `upTime`
portLogEnable

Enables the port log facility.

Synopsis portLogEnable

Description Use this command to enable the port log facility.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To enable the port log facility:

 switch:admin> portLogEnable

See Also portLogDisable
portLogEventShow

Displays information about port log events.

Synopsis

 portlogeventshow

Description

Use this command to display information about the ID associated with the various port log events. The Disabled field indicates whether the port log for that event ID is disabled (1) or enabled (0).

Operands

 none

Examples

To display information about port log events:

 switch:admin> portlogeventshow

 ID Event-Name Disabled

 1 start 0
 2 disable 0
 3 enable 0
 4 ioctl 0
 5 Tx 0
 6 Tx1 0
 7 Tx2 0
 8 Tx3 0
 9 Rx 0
 10 Rx1 0
 11 Rx2 0
 12 Rx3 0
 13 stats 0
 14 scn 0
 15 pstate 0
 16 reject 0
 17 busy 0
 18 ctin 0
 19 ctout 0
 20 errlog 0
 21 loops scn 0
 22 create 0
 23 debug 1
 24 nbrfsm 0
 25 timer 0
 26 sn 0
 27 fcin 0
 28 fcout 0
 29 read 0
 30 write 0
 48 cmd 0
 49 event 0
 50 msg 0
 51 switch 0
 52 ficonq 0

 (output truncated)

See Also

 portLogTypeDisable, portLogTypeEnable
portLoginShow

Displays port login status of devices attached to the specified port.

Synopsis

portLoginShow [slotnumber/]portnumber

Description

Use this command to display port login status received from devices attached to the specified port. For each login, this command displays the following fields:

Type

Type of login can display one of the following:

fd

FDISC, Discover F_Port Service Parameters or Virtual N_Port login.

fe

FLOGI, Fabric Login to Fabric F_Port.

ff

PLOGI, Port Login to specific N_Ports or well-known addresses like Name Server.

PID

The 24-bit Port ID of the attached device.

WorldWideName

The port's World Wide Name.

credit

The credit for this login as appropriate. This is BB (buffer-to-buffer) credit for Flogs and EE (end-to-end) credit for PLOGIs.

df_sz

The default frame size for this login.

cos

Class of Services supported. This can be a combination of the following bits:

4

Class 2 is supported.

8

Class 3 is supported.

Further information about each login is displayed after these columns, including the Port ID of the well-known address or N_Port that was the target of the PLOGI, if applicable.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

slotnumber

For bladed systems only, specify the slot number of the port to be displayed, followed by a slash (/).

portnumber

Specify the port for which to display login status information, relative to its slot for bladed systems. Use switchShow for a list of valid ports.

Examples

To display the logins received by Port 23 (in this case, revealing one FLOGI (type fe) and two PLOGIs):

```
switch:admin> portLoginShow 23
Type  PID  World Wide Name  credit  df_sz cos
--------------------------------------------
fe  201700  21:00:00:e0:8b:05:a3:c9  3  2048  8 scr=1
ff  201700  21:00:00:e0:8b:05:a3:c9  0  0  8 d_id=FFFFC20
ff  201700  21:00:00:e0:8b:05:a3:c9  0  0  8 d_id=FFFFFC
```

See Also

fcpProbeShow, portShow
portLogPdisc

Sets or clears the debug_pdisc_flag.

Synopsis portLogPdisc 0 | 1

Description Use this command to set or clear the debug_pdisc_flag. This command is part of the environmental monitor. A setting of 1 will enable logging of Port Discovery parameters. The PDISC log is disabled by default.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

0 | 1 Specify 0 to clear or 1 to set the debug_pdisc_flag. The default is 0.

Examples To set the debug_pdisc_flag:

switch:admin> portLogPdisc 1
PDISC log setting = 1

See Also none
portLogReset

Enables the port log facility.

Synopsis

```
portLogreset
```

Description

Use this command to enable the port log facility.

Notes

Refer to `portLogClear` for events that might disable the port log facility.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

none

Examples

To enable the port log:

```
switch:admin> portLogreset
```

See Also

none
portLogResize

Resizes the port log to a specified number of entries.

Synopsis portLogResize num_entries

Description Use this command to resize the port log to a specified number of entries. If the specified number of entries is less than the already configured port log size, there is no change.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

num_entries Specifies the number of port log entries. The valid range of values is 32,768 to 65,536 for the Brocade 48000 and the Brocade 7500. For all other platforms, the range is 8,192 to 16,384.

Examples To resize the portlog:

switch:admin> portLogResize 12288

See Also portLogConfigShow
portLogShow

Displays the port log with page breaks.

Synopsis

\texttt{portlogshow [count[, saved]]}

Description

Use this command to display the port log, page by page. The \texttt{portLogShow} command displays the same information as \texttt{portLogDump}, but it enables you to press Enter after each page of output.

Port logs are circular log files in the switch firmware, which can save up to 32,768 entries. Refer to \texttt{portLogConfigShow} to display the current port log size. Once the log has reached the maximum size, new entries displace the oldest ones. Port logs capture switch-to-device, device-to-switch, switch-to-switch, some device-to-device, and control information.

If the port log is disabled, the following message displays as the first line. Refer to \texttt{portLogClear} command for more information.

\texttt{WARNING: port log is disabled}

The following information displays for each log entry:

- **Time**
 Displays the event date and time in milliseconds. The clock resolution is 16 milliseconds.

- **Task**
 Displays the name of the task that logged the event or “interrupt” if the event was logged in interrupt context, or “unknown” if the task no longer exists.

- **Event**
 Displays the task event that generated the log entry. Possible events include:

 - \texttt{start}
 A switch start or re-start event.

 - \texttt{disable}
 A port is disabled.

 - \texttt{enable}
 A port is enabled.

 - \texttt{ioctl}
 A port I/O control is executed.

 - \texttt{Tx}
 A frame is transmitted (class is indicated).

 - \texttt{Rx}
 A frame is received (class is indicated).

 - \texttt{scn}
 A state change notification is posted.

 - \texttt{pstate}
 A port changes physical state.

 - \texttt{reject}
 A received frame is rejected.

 - \texttt{busy}
 A received frame is busied.

 - \texttt{ctin}
 A CT based request is received.

 - \texttt{ctout}
 A CT based response is transmitted.

 - \texttt{errlog}
 A message is added to the error log.

 - \texttt{loopscn}
 A loop state change notification is posted.

 - \texttt{create}
 A task is created.

 - \texttt{debug}
 A debug message.

 - \texttt{nbrfsm}
 Neighbor state transition.
<table>
<thead>
<tr>
<th>sn</th>
<th>Speed negotiation states.</th>
</tr>
</thead>
<tbody>
<tr>
<td>fcin</td>
<td>Incoming Fibre Channel information unit.</td>
</tr>
<tr>
<td>fcout</td>
<td>Outgoing Fibre Channel information unit.</td>
</tr>
<tr>
<td>read</td>
<td>Information unit header log from read operation.</td>
</tr>
<tr>
<td>write</td>
<td>Information unit header log from write operation.</td>
</tr>
<tr>
<td>err</td>
<td>Information unit header log of an FC error frame.</td>
</tr>
<tr>
<td>frame</td>
<td>FC frame payload.</td>
</tr>
<tr>
<td>nsRemQ</td>
<td>Interswitch name server query.</td>
</tr>
<tr>
<td>rscn</td>
<td>RSCN.</td>
</tr>
<tr>
<td>xalloc</td>
<td>Allocate an exchange.</td>
</tr>
<tr>
<td>xfree</td>
<td>Free an exchange.</td>
</tr>
<tr>
<td>xerr</td>
<td>Exchange error.</td>
</tr>
<tr>
<td>xstate</td>
<td>Exchange state.</td>
</tr>
<tr>
<td>payload</td>
<td>Frame payload.</td>
</tr>
</tbody>
</table>

Port

Displays the port number that logged the event.

Cmd

Defined by the event. Displays a value defined by the event as follows:

- **ioctl**
 - I/O control command code.
- **Tx & Rx**
 - Frame payload size.
- **scn**
 - New state (see state codes below).
- **pstate**
 - New physical state (see pstate codes below).

ctin

The CT-subtype:

- **fc**
 - Simple Name Server.
- **f8**
 - Alias Server.
- **ctout**
 - Same as ctin.

errlog

Error level (refer to errShow).

loopsqn

Current loop state during loop initialization, possible values are:

- **OLP**
 - Offline (disconnected or nonparticipating).
- **LIP**
 - FL_Port entered INITIALIZING or OPEN_INIT state.
- **LIM**
 - LISM completed, FL_Port became the loop master.
- **BMP**
 - Loop init completed, FL_Port in MONITORING state.
- **OLD**
 - Port transited to the OLD_PORT state.
- **TMO**
 - Loop init times out.

Args

Displays additional information about the event as follows:

- **start**
 - Start type: 0 = enable ports, 100 = disable ports.
- **disable**
 - State (refer to state codes).
enable

Mode: 0 normal; non-zero loopback.

Tx & Rx

Header words 0,1,4 (R_CTL,D_ID,S_ID,OX_ID,RX_ID) and the first payload word.

reject

FC-PH reject reason.

busy

FC-PH busy reason.

ctin

Argument 0 is divided into two 16-bit fields:

[A] a bit map indicating whether subsequent arguments are valid (0001 means argument 1 is valid, 0003 means arguments 1 and 2 are valid).

[B] the CT-based service command code.

Argument 1 is the first word of the CT payload, if applicable (as specified in [A]).

Argument 2 is the second word of the CT payload, if applicable (as specified in [A]).

ctout

Argument 0 is also divided into two 16-bit fields:

[A] a bit map indicating whether subsequent arguments are valid (0001 means argument 1 is valid, 0003 means arguments 1 and 2 are valid).

[B] the CT command code indicating whether an accept (8002) or a reject (8001).

If [B] is an accept, argument 1 and 2 represents the first and second words of the CT payload, if applicable (as specified in [A]).

If [B] is a reject, argument 1 contains the CT reject reason and explanation code.

errlog

Error type (refer to errShow).

loopscln

The meaning further depends on each loop state:

- **OLP**: Offline reason code, usually zero.
- **LIP**: Reason code for LIPs initiated by FL_Port, if the code value is 800x (x = [1,0xc], see below), or the lower two bytes of the LIP received, if the code value is other than 800x.
- **LIM**: Usually zero.
- **BMP**: Memory address for the loop bitmap.
- **OLD**: Usually zero.
- **TMO**: Encoded value of the state when loop initialization timed out. This value is usually equal to the first word of a loop init frame payload. Other possible values include:
 - 2: LIP (req. INITIALIZING) timeout.
 - 94: FOFOARB(FO) timeout.
 - 40: CLS timeout.
Codes used in various fields are as follows:

state

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Online</td>
</tr>
<tr>
<td>2</td>
<td>Offline</td>
</tr>
<tr>
<td>3</td>
<td>Testing</td>
</tr>
<tr>
<td>4</td>
<td>Faulty</td>
</tr>
<tr>
<td>5</td>
<td>E_Port</td>
</tr>
<tr>
<td>6</td>
<td>F_Port</td>
</tr>
<tr>
<td>7</td>
<td>Segmented</td>
</tr>
</tbody>
</table>

pstate

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Active State</td>
</tr>
<tr>
<td>LR1</td>
<td>Link Reset: LR Transmit State</td>
</tr>
<tr>
<td>LR2</td>
<td>Link Reset: LR Receive State</td>
</tr>
<tr>
<td>LR3</td>
<td>Link Reset: LRR Receive State</td>
</tr>
<tr>
<td>LF1</td>
<td>Link Failure: NOS Transmit State</td>
</tr>
<tr>
<td>LF2</td>
<td>Link Failure: NOS Receive State</td>
</tr>
<tr>
<td>OL1</td>
<td>Offline: OLS Transmit State</td>
</tr>
<tr>
<td>OL2</td>
<td>Offline: OLS Receive State</td>
</tr>
<tr>
<td>OL3</td>
<td>Offline: Wait for OLS State</td>
</tr>
</tbody>
</table>

LIP reason

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8001</td>
<td>Retry loop init.</td>
</tr>
<tr>
<td>8002</td>
<td>Start loop after gaining sync.</td>
</tr>
<tr>
<td>8003</td>
<td>Restart loop after port reset.</td>
</tr>
<tr>
<td>8004</td>
<td>LIP when a loop hangs.</td>
</tr>
<tr>
<td>8005</td>
<td>Restart loop if LIP received when sending out ARB(F0).</td>
</tr>
<tr>
<td>8006</td>
<td>LIP when an OPN returns.</td>
</tr>
<tr>
<td>8007</td>
<td>Restart loop when LIPs received in OLD_PORT AC state.</td>
</tr>
<tr>
<td>8008</td>
<td>Restart loop if loop not empty but E_Port loopback.</td>
</tr>
<tr>
<td>8009</td>
<td>LIP as requested by the LINIT ELS received.</td>
</tr>
<tr>
<td>800a</td>
<td>LIP as requested by the LPC ELS received.</td>
</tr>
</tbody>
</table>

Speed Negotiation States

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>Start negotiation.</td>
</tr>
<tr>
<td>NM</td>
<td>Negotiate master.</td>
</tr>
<tr>
<td>WS</td>
<td>Wait for signal.</td>
</tr>
<tr>
<td>NF</td>
<td>Negotiation follows.</td>
</tr>
</tbody>
</table>
portLogShow

NC Negotiation complete.

Operands

This command has the following operands:

count Specify the maximum number of lines to display. Only the most recent count entries are displayed. This operand is optional.

saved Specify a nonzero value to display the saved port log from the last switch fault. Refer to upTime for a list of conditions that cause a fault. The count is ignored when the saved log is displayed. This operand is optional.

Examples

To view the port log for a port:

switch:user> portLogShow 24

time task event port cmd args

17:05:30.384 PORT Rx 0 40 02fffffd,00fffffd,08f00000,14000000
17:05:30.384 PORT Tx 0 0 c0fffffd,00fffffd,08fb0e02
17:05:30.384 PORT debug 0 00c0ffee,00fd0118,00000000,00000001
17:05:30.389 PORT Rx 1 40 02fffffd,00fffffd,08f00000,14000000
17:05:30.389 PORT Tx 1 0 c0fffffd,00fffffd,08fb0e03
17:05:30.389 PORT debug 1 00c0ffee,00fd013c,00000000,00000001
17:05:30.504 PORT Rx 2 40 02fffffd,00fffffd,08e00000,14000000
17:05:30.504 PORT Tx 2 0 c0fffffd,00fffffd,08e00004
17:05:30.504 PORT debug 2 00c0ffee,00fd0182,00000000,00000001
17:05:30.507 PORT Rx 3 40 02fffffd,00fffffd,08f00000,14000000
17:05:30.507 PORT Tx 3 0 c0fffffd,00fffffd,08ff0e05
17:05:30.508 PORT debug 3 00c0ffee,00fd0148,00000000,00000001
17:05:31.081 PORT Tx 0 40 02fffffd,00fffffd,0e000000,14000000
17:05:31.082 PORT debug 0 00c0ffee,00fd0182,14000000,00000001
17:05:31.084 PORT Rx 0 0 c0fffffd,00fffffd,0e000000,14000000
17:05:31.772 PORT Tx 1 40 02fffffd,00fffffd,0e070906
17:05:31.772 PORT debug 1 00c0ffee,00fd013c,14000000,00000001
17:05:31.774 PORT Rx 1 0 c0fffffd,00fffffd,0e070906
17:05:31.775 PORT Tx 2 40 02fffffd,00fffffd,0e080907
17:05:31.775 PORT debug 2 00c0ffee,00fd015c,14000000,00000001
17:05:31.777 PORT Rx 2 0 c0fffffd,00fffffd,0e080907
17:05:31.778 PORT Tx 3 40 02fffffd,00fffffd,0e090908
17:05:31.779 PORT debug 3 00c0ffee,00fd015e,14000000,00000001
17:05:31.782 PORT Rx 3 0 c0fffffd,00fffffd,0e090908

See Also

portLogClear, portLogDump, upTime
portLogShowPort

Displays the port log of a specified port with page breaks.

Synopsis portLogShowPort [portid]

Description Use this command to display the port log of the specified port, showing all entries in the log with page breaks. It is identical to portLogDumpPort, except that portLogDumpPort does not prompt you to press Enter between each page of output.

If the port log is disabled, the following message is printed as the first line (refer to portLogClear for details):

WARNING: port log is disabled

Note Refer to the portLogDump command for more information on the data returned by this command.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

portid Specify the number of the port for which to display the log.

Examples To display a port log for port 14:

switch:user> portLogShowPort 14

time task event port cmd args
--
08:35:28.483 tFabric scn 14 0
08:35:27.899 tShell pstate 14 OL1
08:35:27.899 tReceive pstate 14 LR2
08:35:27.916 tReceive pstate 14 AC
08:35:28.416 interrupt scn 14 1
08:35:28.433 tFabric ioctl 14 90 101d9910,0
08:35:28.433 tFabric Tx 14 164 02fffffd,00fffffd,0005ffff,11000000
08:35:28.433 tReceive Rx 14 0 c0fffffd,00fffffd,00500006
08:35:28.433 tReceive Rx 14 164 03fffffd,00fffffd,00050006,02000000
08:35:28.433 tTransmit Tx 14 0 c0fffffd,00fffffd,00500006
08:35:28.433 tFabric ioctl 14 91 103646d8,0
08:35:28.433 tFabric ioctl 14 92 103646d8,0
08:35:28.466 tFabric ioctl 14 a7 3c,1
08:35:28.466 tFabric pstate 14 LR1
08:35:28.466 tReceive pstate 14 LR3
08:35:28.466 tReceive pstate 14 AC
08:35:28.483 tFabric Tx 14 96 02fffffd,00fffffd,0006ffff,11100060
08:35:28.483 tReceive Rx 14 0 c0fffffd,00fffffd,00600007
08:35:28.483 tReceive Rx 14 96 03fffffd,00fffffd,00600007,02100060
08:35:28.483 tTransmit Tx 14 0 c0fffffd,00fffffd,00600007
08:35:28.483 tFabric ioctl 14 a1 0,0
08:35:28.483 tFabric scn 14 5
(output truncated)

See Also portLogClear, portLogShow, upTime
portLogTypeDisable

Disables the port log of a specified type.

Synopsis portLogTypeDisable id

Description Use this command to disable the port log for a specified port log type.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands This command has the following operand:

id Specify a nonzero value that corresponds to the port log type to be disabled. The values corresponding to different log types can be obtained by running portLogEventShow.

Examples To disable event 2 from reporting to the port log:

switch:admin> portLogTypeDisable 2

See Also portLogDisable, portLogEventShow, portLogTypeEnable
portLogTypeEnable

Enables the port log of a specified port log type.

Synopsis portLogTypeEnable id

Description Use this command to enable the port log for a specified port log type.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands This command has the following operand:

id Specify a nonzero value that corresponds to the port log type to be enabled. The values corresponding to different log types can be obtained by running portLogEventShow.

Examples To enable event 2 to report to the port log:

switch:admin> portLogTypeEnable 2

See Also portLogEventShow, portLogTypeDisable
portLoopbackTest

Performs a functional test of port N->N path.

Synopsis

```
portloopbacktest [--slot number][-nframes count][-lb_mode mode][-spd_mode mode]
[-ports itemlist]
```

Description

Use this command to verify the functional operation of the switch by sending frames from the port N transmitter and looping them back into the same port N receiver. The loopback is done at the parallel loopback path. The path exercised in this test does not include the media or the fibre cable.

Only one frame is transmitted and received at a time. No external cable is required to run this test. The port LEDs flicker green rapidly while the test is running.

The test performs the following operations:

1. Sets all ports for parallel loopback.
2. Creates a frame F of maximum data size (2,112 bytes).
3. Transmits the frame F through port N.
4. Picks up the frame from the same port N.
5. Checks the eight statistic error counters for nonzero values:
 - ENC_in, CRC_err, TruncFrm, FrmTooLong, BadEOF, Enc_out, BadOrdSet, DiscC3
6. Checks whether the transmit, receive, or class 3 receiver counters are stuck at some value.
7. Checks whether the number of frames transmitted is not equal to the number of frames received.
8. Repeats Steps 2 through 7 for all ports until one of the following conditions are met:
 a. The number of frames (or passcount) requested is reached.
 b. All ports are marked bad.

At each pass, the frame is created from a different data type. If seven passes are requested, seven different data types are used in the test. If eight passes are requested, the first seven frames use unique data types, and the eighth is the same as the first. The seven data types are:

- CSPAT: 0x7e, 0x7e, 0x7e, 0x7e, ...
- BYTE_LFSR: 0x69, 0x01, 0x02, 0x05, ...
- CHALF_SQ: 0x4a, 0x4a, 0x4a, 0x4a, ...
- QUAD_NOT: 0x00, 0xff, 0x00, 0xff, ...
- CQTR_SQ: 0x78, 0x78, 0x78, 0x78, ...
- CRPAT: 0xbc, 0xbc, 0x23, 0x47, ...
- RANDOM: 0x25, 0x7f, 0x6e, 0x9a, ...

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, *"Understanding Admin Domain Restrictions"* and Appendix A, *"Command Availability"* for details.
portLoopbackTest

Operands

This command has the following operands:

- --slot number
 Specifies the slot number on which to run the diagnostics. The ports specified
 will be relative to this slot number. The default is set to 0 and designed to
 operate on fixed-port-count products.

- -nframes count
 Specifies the number of frames to send. The test progresses until the
 specified number of frames has been transmitted on each port. The default
 value is 10.

- -lb_mode mode
 Specifies the loopback mode for the test. By default, this test uses internal
 loopback. Valid values are as follows:

 1 Port Loopback (loopback plugs)
 2 External (SERDES) loopback
 5 Internal (parallel) loopback

- -spd_mode mode
 Specifies the speed mode for the test. This parameter controls the speed at
 which each port is operated. The exact operation of speed modes 5 through 8
 depends on the loopback mode selected. When speed modes 5 through 8
 are used with cables, they must be connected even to odd or the test fails.

 0 Runs test at 1 Gbps, 2 Gbps, and 4 Gbps.
 1 Runs test at 1 Gbps (Not applicable to v6.x platforms).
 2 Runs test at 2 Gbps (Not applicable to v6.x platforms).
 4 Runs test at 4 Gbps (Condor default).

For lb_mode set to 0 or 1, the following speed modes are available to test the speed negotiation:

 3 Sets the speed on all even ports to autonegotiate; sets the speed on all
 odd ports to 1 Gbps.
 4 Sets the speed on all even ports to autonegotiate; sets the speed on all
 odd ports to 2 Gbps.
 5 Sets the speed on all odd ports to autonegotiate; sets the speed on all
 even ports to 1 Gbps.
 6 Sets the speed on all odd ports to autonegotiate; sets the speed on all
 even ports to 2 Gbps.

For lb_mode set to 2 or 3, the following speed modes are available to test FIFO underrun.

 3,5 Sets the speed on all even ports to 2 Gbps; sets the speed on all odd
 ports to 1 Gbps.
 4,6 Sets the speed on all even ports to 1 Gbps; sets the speed on all odd
 ports speed to 2 Gbps.

- -ports itemlist
 Specifies a list of blade ports to test. By default, all of the blade ports in the
 specified slot (--slot) are used. See itemList for more information on the
 itemlist parameter.

Examples

To run a functional test of a connection:

switch:admin> portLoopbackTest -ports 1/10-1/20 -nframes 1 -lb_mode 1
Running Port Loopback Test .

passed.
portLoopbackTest

Diagnostics Following are possible error messages if failures are detected:

- DATA
- ERRSTAT
- INIT
- PORTDIED
- STATS
- TIMEOUT
- XMIT

Refer to the *Fabric OS Message Reference* for more information.

See Also itemList
portMirror

Adds, deletes, or shows mirror connections.

Synopsis

portmirror --show

portmirror --add [slotnumber/]portnumber sourceID DestID

portmirror --delete sourceID DestID

Description

Use this command to add, delete, or show a mirror connection between two ports, a source and a destination port.

The SourceID must be local to the switch. The DestID can be either on the local switch or on a different switch. Any given SourceID can only participate in four mirror connections. The DestID is limited by existing mirror connections. If the DestID for an existing connection is to a local switch DestID, then all unused connections for this switch must go to local switch destination IDs. If the DestID for an existing connection is to a domain X switch, then all unused mirror connections for this switch must also go to the same domain X switch.

Each internal or external port can only be a member of four mirror connections. Internal ports are used when the DestID is on another blade or another switch (i.e. another blade has an E_Port leading to another switch).

A port mirroring connection on FL_Ports mirrors all traffic originating from or terminating at this FL_Port. Port mirroring does not support ALPA granularity port mirroring.

A mirror connection can be rejected because of an invalid configuration, no resources, duplicate entries, mirror port not configured, or an offline connection port.

When in-order deliver (IOD) is enabled, deleting a mirror connection can cause frame loss between the SourceID and DestID. If IOD is disabled, deleting a mirror connection may introduce an "order of delivery" error between the SourceID and DestID.

This command displays:

SID Source Port ID.

DID Destination Port ID.

Mirror_Port_Number The port number of the mirror port to mirror the traffic between SourceID and DestID.

State The state of the mirror connection. The state can either be "Defined" or "Enabled." In both cases, the port mirroring connection is persistently stored. A connection that is "Defined" has not been hardware-configured due to at least one port not being online. A connection that is "Enabled" has been configured in the hardware.

A new connection cannot conflict with a "Defined" or "Enabled" port mirror connection.

To display all configured mirror ports on a switch, use the portCfgShow command.

Setting up multiple mirror connections on a core-edge platform between devices mirrors additional traffic. Assuming two mirror connections, device A to device B and device C to device D, the mirror port will see traffic between A to B and C to D. In addition, the mirror port will see traffic between A to D and C to B.
The `portPerfShow` command displays the total number of transmit and receive bytes for each port. In the case of a mirror port, the command shows double the amount of traffic because the mirror port transmits the frame and also receives the frame.

Notes
The port mirroring feature is only supported on the following platforms: Brocade 4100, Brocade 4900, Brocade 7600, and Brocade 48000 set to `chassisConfig` Option 5.

The mirror port location can impact the latency of mirrored frames.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands
This command has the following operands:

- `--show` Displays all configured mirror connections.
- `--add` Adds a mirror connection between a source and destination. The `slotnumber/portnumber` is the mirrored traffic output port.
- `--delete` Deletes a mirror connection between a source and a destination.
- `slotnumber` For bladed systems only, specify the slot number of the port on which the mirror port is located, followed by a slash (/).
- `portnumber` Specifies the number of the port on which the mirror port is located, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports. This port number is the mirror port in which the mirror traffic is shown.
- `SourceID` Specifies the 3-byte SID (source ID) of the originator device, in "0xDDAAPP" format, where DD is Domain ID, AA is Area ID and PP is AL_PA ID. For example, 0x050200 has a domain ID of 5, an area ID of 2, and AL_PA ID of 0. SourceID and DestID cannot both be 0x000000.
- `DestID` Specifies the 3-byte DID (destination ID) of the destination device, in "0xDDAAPP" format, where DD is Domain ID, AA is Area ID and PP is AL_PA ID. For example, 0x050200 has a domain ID of 5, an area ID of 2 and an AL_PA ID of 0. SourceID and DestID cannot both be 0x000000.

Examples
To configure a port as a mirror port:

```
switch:admin> portcfg portmirror 2/1 --enable
Please confirm enable of Mirror Port: 17 (Y,y,N,n): [n] y
```

To add a port mirror connection between two local switch ports:

```
switch:admin> portmirror --add 2/1 0x011400 0x012400
```

To add a port mirror connection between a local switch port and a remote switch port:

```
switch:admin> portmirror --add 2/1 0x011400 0x240400
```

To delete a port mirror connection between two local switch ports:

```
switch:admin> portmirror --delete 0x011400 0x012400
```
To delete a port mirror connection between a local switch port and a remote switch port:

```
switch:admin> portmirror --delete 0x011400 0x240400
```

To display port mirror connections:

```
switch:admin> portmirror --show

Number of mirror connection(s) configured: 2

<table>
<thead>
<tr>
<th>Mirror_Port</th>
<th>SID</th>
<th>DID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/12</td>
<td>0x791800 0x791900</td>
<td>Defined</td>
<td></td>
</tr>
<tr>
<td>10/15</td>
<td>0x791a00 0x799300</td>
<td>Enabled</td>
<td></td>
</tr>
</tbody>
</table>
```

See Also portCfgShow
portName

Assigns a name to the specified port, or displays a port name.

Synopsis

 portname [slotnumber]/portnumber [name]

Description

Use this command to assign or display a port name. This name is included in the `portShow` output; it should not be confused with the world wide port name.

Like all other configurable port attributes, port name persists across reboots and power cycles. It is not affected by `configDefault` command, but it is cleared by `portCfgDefault`.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- `slotnumber` For bladed systems only, specify the slot number of the port to be configured, followed by a slash (/).
- `portnumber` Specify a port number to be configured, relative to its slot for bladed systems. Use `switchShow` to display a list of valid ports.
- `name` Specify a port name. The port name is a character string up to 32 characters, including spaces and characters, and excluding commas (,), semicolons (;), backslashes (\), and the at sign (@). To erase a port name, specify this operand as an empty string in double-quotation marks. This operand is optional; if omitted, the current port name is displayed.

Some characters require a qualifier or double-quotation marks when used with a bash shell; for example, enter a single-quotation mark as \', enter an exclamation mark as \/!, or enter a pipe (|) as "\|".

Without operands, the port names of all ports present are displayed.

Examples

To name a port tape drive 8:

 switch:admin> portname 1/3, "Tape drive 8"
 switch:admin> portname 1/3
 Tape drive 8

See Also

 configDefault, portCfgDefault, portShow
portPerfShow

Displays port throughput performance.

Synopsis

portperfshow [interval]

Description

Use this command to display throughput information for all ports on the switch. Output includes the number of bytes received plus the number of bytes transmitted per interval. Throughput values are displayed as either bytes, kilobytes (k), megabytes (m), or gigabytes (g). Values are always rounded down.

The data is displayed in 8 or 16 columns, one column per port plus one column that displays the total for these ports. Results display every second or over the specified interval. Enter, Ctrl-c, or Ctrl-d to exit the display.

Operands

This command has the following operand:

interval Specifies the interval, in seconds, between each sample. Default is one second. This operand is optional.

When fastwrite or tape pipelining is enabled, the portPerfShow VE link output is different. The acceleration entity (fastwrite or tape pipelining) responds by sending XFER_RDY and status well ahead of the actual device’s response to the host. The host sends data which is stored near the device and is delivered to the device only when the device is ready. So the data may be stored near the target for some brief period of time. In this case, the portPerfShow output on the VE link may not match the output on the device port.

Examples

To display port throughput for a switch:

```
switch:user> portperfshow 20

          0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 Total
  slot 1:  0  0 23k 0 134k 0 12m 0 7.3m 0 312m 0 1.1g 0 0 1.4g
  slot 2:  0 212m 0 784k 0 0 43m 0 85m 0 275k 0 498 0 341m
          0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 Total
  slot 1:  0  0 26k 0 160k 0 13m 0 7.5m 0 310m 0 1.2g 0 0 1.3g
  slot 2:  0 178m 0 812k 0 0 43m 0 87m 0 272k 0 330 0 310m
```

See Also

portStatsShow
portRouteShow

Displays routing tables for the specified port.

Synopsis portrouteshow [slotnumber|portnumber]

Description Use this command to display the port address ID and the contents of the following port routing tables:

External unicast routing table

Displays how the specified port forwards unicast frames to remote domains in the following format:

domain_number: ports_bitmap

domain_number
The remote domain ID to which frames are ultimately routed.

ports_bitmap The port number on the ASIC pair to which frames for the domain ID forward in bitmap hex format; for example, 0x0100 indicates port 8 on the ASIC pair. The arrangement of ports on an ASIC pair is specific to the system type. For any active port, this table contains at least one entry, which routes unicast frames destined to the embedded port (value 0x10000) of the local domain.

Internal unicast routing table

Displays how the specified port forwards unicast frames to a locally attached Nx_Port in the following format:

area_number: ports_bitmap

area_number The area number of a device (or set of looped devices) attached to the local switch.

ports_bitmap The format of ports_bitmap is the same as the external unicast routing table.

Broadcast routing table

Displays how the specified port forwards broadcast frames. There is one bit map entry in this table, similar to the bit maps in the other tables; however, this table typically has only Bit 16 set (value 0x10000), indicating this port always routes broadcast frames to the embedded port, for handling by the firmware.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

slotnumber For bladed systems only, specifies the slot number of the port to display, followed by a slash (/).

portnumber Specifies the number of the port to display, relative to its slot for bladed systems. Use switchShow to display a list of valid ports.
portRouteShow

Examples

To display the routing tables for a port:

switch:user> portrouteshow 4/15
port address ID: 0x02bf00
external unicast routing table:
 1: 0x4 (vc=3)
 2: 0x10000 (vc=0)
internal unicast routing table:
 60: 0x8000 (vc=2)
 63: 0x1000 (vc=5)
broadcast routing table:
 0x10000

See Also

bcastShow, fabricShow, switchShow, topologyShow, uRouteShow
portShow

Displays the status of the specified port.

Synopsis

portShow [slot/]port

portShow [options] [slot/]ge port arguments optional_arguments

Description

Use this command to display general port status and specific configuration parameters for the specified port.

If this command is executed for a specified port with no additional options, it displays general status and configuration for that port. If executed with optional arguments for a gigabit Ethernet (GbE) port, the command displays specific FCIP related port configuration parameters, such as the following:

- Address resolution protocol (ARP) entries
- IP interfaces on the GbE port
- Static routes on the IP interfaces
- Fibre Channel over IP (FCIP) tunnel configuration settings
- Port Mode information
- FICON parameters
- VLAN tag configuration
- FTRACE settings

The following general information is displayed when the command is issued for a non-GbE port without additional arguments:

- **portName**: Name assigned to the port by the portName command.
- **portHealth**: Current health of the port (requires a Fabric Watch license).
- **Authentication**: Authentication type and associated parameters (if applicable) used on the port at port online.
 - None: No authentication was performed.
 - FCAP: FCAP authentication was performed.
 - DHCHAP: DHCHAP authentication was performed. Also displays DH group and hash type used for authentication.
- **portDisableReason**: Provides an explanation for the port's disabled status, if it has not been disabled by **portDisable** or **portCfgPersistentDisable**.
- **portCFflags**: Port control flags.
- **portFlags**: A bit map of port status flags, including information on the type of port, whether it is fully online, and whether logins have been accepted.
- **portType**: The port's type and revision numbers.
- **portState**: The port's SNMP state:
 - Online: Up and running.
 - Offline: Not online, see **portPhys** for more detail.
portShow 2

Testing Running diagnostics.
Faulty Failed diagnostics.
Persistently Disabled
 Persistently disabled.

portPhys The port's physical state:
 No_Card No interface card present.
 No_Module No module (GBIC or other) present.
 No_Light Module is not receiving light.
 No_Sync Receiving light but out of sync.
 In_Sync Receiving light and in sync.
 Laser_Flt Module is signaling a laser fault.
 Port_Flt Port marked faulty.
 Diag_Flt Port failed diagnostics.
 Lock_Ref Locking to the reference signal.

portScn The port’s last State Change Notification.

port generation number
 The port’s generation number for the last offline state change.

portId The port’s 24-bit port ID.
portIfId The user port’s interface ID.
portWwn The port’s World Wide Name.

portWwn of devices(s) connected
 The World Wide Port Names of connected devices.

Distance The port’s long-distance level. In case of LD mode, the user configured
distance and actual distance also are displayed. See portCfgLongDistance for
information on long distance levels.

portSpeed The port’s fixed speed (1, 2, 4, or 8 Gbps) or negotiated speed (N1 Gbps, N2
Gbps, N4Gbps, N8 Gbps or AN).

LE domain The LE domain ID.
FC Fastwrite The status of FC Fastwrite (ON or OFF).

If the port is configured as an EX_Port, the following additional port information is displayed:

EX_Port Mode The port is configured as an EX_Port.

Fabric ID The fabric ID assigned to this EX_Port; therefore, it is the fabric ID of the edge
fabric attached to this EX_Port.

Front Phantom Information on the front phantom domain presented by this EX_Port. Includes
the preferred (if not active) or actual (if active) domain ID for the front domain
and the WWN of the front domain.

Pr Switch Info Information on the principal switch of the edge fabric attached to this
EX_Port. Includes the domain ID and WWN of the principal switch.
BB XLate
Information on the xlate (translate) phantom domain presented at this port.
Includes the preferred (if not active) or actual (if active) domain ID for the
xlate phantom domain and the WWN of the xlate phantom domain. The xlate
phantom domain connected at this port is in the same fabric as the router
and represents the edge fabric connected to the EX_Port.

Authentication Type
Displays NONE or DH-CHAP. DH-CHAP is the only authentication type
supported on EX_Ports.

DH Group
Displays DH group [0-4] if DH-CHAP authentication is used. Otherwise
displays N/A.

Hash Algorithm
Displays hash type (MD5 or SHA-1) if DH-CHAP authentication is used.
Otherwise, displays N/A.

Edge fabric's primary WWN
If the EX_Port is connected to an edge switch with FCS policy enforcement,
the WWN of the primary FCS is displayed when the edge fabric is secure and
the primary FCS is online. Otherwise, displays “No Primary”.

Edge fabric's version stamp
If the EX_PORT is connected to an edge switch with FCS policy enforcement,
the version of the security database is displayed. Otherwise displays N/A.

Following the general information, the command displays three columns of counters. The first
column shows interrupt statistics:

<table>
<thead>
<tr>
<th>Interrupt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupts</td>
<td>Total number of interrupts.</td>
</tr>
<tr>
<td>Unknown</td>
<td>Intermittent that are not counted elsewhere.</td>
</tr>
<tr>
<td>Lli</td>
<td>Low-level interface (physical state, primitive sequences).</td>
</tr>
<tr>
<td>Proc_rqrd</td>
<td>Frames delivered for embedded N_Port processing.</td>
</tr>
<tr>
<td>Timed_out</td>
<td>Frames that have timed out.</td>
</tr>
<tr>
<td>Rx_flushed</td>
<td>Frames requiring translation.</td>
</tr>
<tr>
<td>Tx_unavail</td>
<td>Frames returned from an unavailable transmitter.</td>
</tr>
<tr>
<td>Free_buffer</td>
<td>Free buffer available interrupts.</td>
</tr>
<tr>
<td>Overrun</td>
<td>Buffer overrun interrupts.</td>
</tr>
<tr>
<td>Suspended</td>
<td>Transmission suspended interrupts.</td>
</tr>
<tr>
<td>Parity_err</td>
<td>Central memory parity errors.</td>
</tr>
<tr>
<td>2_parity_err</td>
<td>Secondary transmission parity errors.</td>
</tr>
<tr>
<td>CMI_bus_err</td>
<td>Control message interface errors.</td>
</tr>
</tbody>
</table>

The second column displays link error status block counters.

The third column shows the number of F_RJTs and F_BSYs generated. For L_Ports, the third
column also displays the number of loop initialization protocols (LIPs) received, number of LIPs
transmitted, and the last LIP received.
The output of this command may vary depending on the hardware platform and port type.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

In an AD context, if one of the L_Ports or NPIV Ports is a part of the current AD, the complete device information attached to the port is shown in the output.

This command supports the following port options:

plateform slot For bladed systems only, specify the slot number of the port to be configured, followed by a slash (/).

[ge]port Specify the port number to be displayed relative to its slot for bladed systems. For GigE ports, the ports are numbered ge0 - ge1. See switchShow for a list of valid ports.

Use portShow with one of the following options and optional arguments to display specific FCIP related parameters configured for a GbE port.

all | tunnel_id For FCIP-related command options only, specify all to display all FCIP tunnels or tunnel_id (0-7) to display a single FCIP tunnel.

arp Displays address resolution protocol (ARP) table. When used with the imac option, the local MAC address is displayed.

fciptunnel Displays FCIP tunnel IDs, remote and local IP addresses, remote and local WWNs, compression status, FCIP fastwrite status, Tape Pipelining status, bandwidth rate, SACK status, Minimum Retransmit time, Keepalive Timeout, Maximum Retransmissions, DSCP Marking, tunnel status, tunnel uptime. Refer to portCfg help for an explanation of these parameters.

Additional optional arguments for fciptunnel include:

-perf Displays additional performance information.

-params Displays connection parameter information.

-credits Displays FC data path credit data.

-ipsec Displays IKE and IPSec policy information on IPSec-enabled tunnels. Security policies are configured with the portCfg command.

-qosmap Displays the mapping table for VC to FCIP QoS.

ipif Displays the IP interface ID, IP address, netmask, and MTU for IPv4 addresses. Displays prefix instead of netmask for IPv6 addresses.

iproute Displays the IP address, netmask, gateway, metrics, and flags. Displays prefix instead of netmask for IPv6 addresses.

iscsi Displays GbE port WWN and ISCSI Sessions.

mode Displays mode of GbE port as either “FCIP” or “not configured”.

ficon Displays FICON emulation configuration parameters. The syntax for this command is as follows:

portshow ficon [Slot/]GePort all | tunnelId [arg] [parm] [-clear]
The following arguments are supported with `ficon`:

- **-globals** Displays general FICON controls and statistics.
- **-images** Displays discovered Images (FCUB).
- **-emul** Displays emulated FDCBs.
- **-active** Displays active FDCBs.
- **-epcb** Displays Emulation Control Block (port specific).
- **-fhpb** Displays FICON Host Path Block.
- **-fdpb adrs** Displays FICON Device Path Block.
- **-fchb** Displays FICON Channel Control Block.
- **-fcub** Displays FICON Control Unit Control Block.
- **-fdcb adrs** Displays FICON Device Control Block.
- **-mem adrs** Displays memory in 256 byte increments: ! for next.
- **-pools** Displays current data buffer pool counts.
- **-pmmr** Displays PMMR pointers.
- **-clear** Clears post display statistics; requires a preceding argument.

vlantag Displays VLAN tag configuration settings.

ftrace FTRACE is a debug tool for developers and support (not intended for customer use). For usage information, execute `portShow ftrace`.

Examples

To display the state of a port:

```
switch:admin> portshow 3/15
portName: 
portHealth: HEALTHY

Authentication: None
portDisableReason: None
portCFlags: 0x1
portFlags: 0x4903  PRESENT ACTIVE E_PORT G_PORT U_PORT
                  SEGMENTED LOGICAL_ONLINE LOGIN LED
portType: 17.0
portState: 1  Online
portPhys: 6  In_Sync
portScn: 64  Segmented
port generation number: 12
portId: 022f00
portIfId: 4332001e
portWwn: 20:2f:00:05:1e:39:5b:75
portWwn of device(s) connected:
Distance: normal
portSpeed: N4Gbps
LE domain: 0
FC Fastwrite: OFF
Interrupts: 0  Link_failure: 9  Frjt: 0
Unknown: 0  Loss_of_sync: 4810  Fbsy: 0
Lli: 1211464  Loss_of_sig: 9617
Proc_rqrd: 95542  Protocol_err: 0
```
To view xlate domains, you must be running a Brocade 7500 or 48000 with an FC4-18i blade. Note that the Front Domain ID is what is shown:

```
switch:admin> portshow 8/4
portName: 
portHealth: No Fabric Watch License
Authentication: None
EX_Port Mode:   Enabled
Fabric ID:      20
Front Phantom:  State: OK
   Cur Dom ID: 160 WWN: 50:00:51:e3:60:ee:0e:14
Pr Switch Info: Dom ID: 5
   WWN: 10:00:00:05:1e:34:02:04
Authentication Type: None
Hash Algorithm: N/A
DH Group: N/A
Edge fabric's primary wwn: N/A
Edge fabric's version stamp: N/A
portDisableReason: None
portCFlags: 0x1
portFlags: 0x903         PRESENT ACTIVE G_PORT U_PORT
                        EX_PORT LOGICAL_ONLINE LOGIN
portType:  10.0
portState: 1    Online
portPhys:  6    In_Sync
portScn:   1    Online    Trunk master port
port generation number:    160
portId:    965400
portIfId:    43820005
portWwn:   20:54:00:05:1e:36:0e:e0
portWwn of device(s) connected:
Distance: normal
portSpeed: N2Gbps
LE domain: 0
Interrupts:  49    Link_failure: 0    Frjt:    0
Unknown:    0    Loss_of_sync: 2    Fbsy:    0
Lli:        27    Loss_of_sig:  4
Proc_rqrd:  143    Protocol_err: 0
Timed_out:  0    Invalid_word: 0
Rx_flushed: 0    Invalid_crc:  0
Tx_unavail: 0    Delim_err:    0
```

Port part of other ADs: No
To display IPv4 interfaces on a GbE port:

```
switch:admin> portshow ipif 10/ge0
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Port</th>
<th>Interface IP Address</th>
<th>NetMask</th>
<th>MTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ge0</td>
<td>192.168.60.100</td>
<td>255.255.255.0</td>
<td>1500</td>
</tr>
<tr>
<td>1</td>
<td>ge0</td>
<td>192.168.60.101</td>
<td>255.255.255.0</td>
<td>2348</td>
</tr>
<tr>
<td>2</td>
<td>ge0</td>
<td>192.168.60.102</td>
<td>255.255.255.0</td>
<td>1260</td>
</tr>
<tr>
<td>3</td>
<td>ge0</td>
<td>192.168.60.103</td>
<td>255.255.255.0</td>
<td>1700</td>
</tr>
<tr>
<td>4</td>
<td>ge0</td>
<td>192.168.60.104</td>
<td>255.255.255.0</td>
<td>1400</td>
</tr>
<tr>
<td>5</td>
<td>ge0</td>
<td>192.168.60.105</td>
<td>255.255.255.0</td>
<td>2000</td>
</tr>
<tr>
<td>6</td>
<td>ge0</td>
<td>192.168.60.106</td>
<td>255.255.255.0</td>
<td>1300</td>
</tr>
<tr>
<td>7</td>
<td>ge0</td>
<td>192.168.60.107</td>
<td>255.255.255.0</td>
<td>2200</td>
</tr>
</tbody>
</table>

To display IP routes with IPv4 addresses on a GbE port:

```
switch:admin> portshow iproute ge0
```

<table>
<thead>
<tr>
<th>GE Port</th>
<th>IP Address</th>
<th>Mask</th>
<th>Gateway</th>
<th>Metric</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/ge0</td>
<td>192.168.255.0</td>
<td>255.255.255.0</td>
<td>192.168.255.20</td>
<td>0</td>
<td>Interface,</td>
</tr>
<tr>
<td></td>
<td>192.168.255.0</td>
<td>255.255.255.0</td>
<td>192.168.255.21</td>
<td>0</td>
<td>Interface,</td>
</tr>
<tr>
<td></td>
<td>192.168.255.0</td>
<td>255.255.255.0</td>
<td>192.168.255.22</td>
<td>0</td>
<td>Interface,</td>
</tr>
<tr>
<td></td>
<td>192.168.255.0</td>
<td>255.255.255.0</td>
<td>192.168.255.23</td>
<td>0</td>
<td>Interface,</td>
</tr>
<tr>
<td></td>
<td>192.168.255.0</td>
<td>255.255.255.0</td>
<td>192.168.255.24</td>
<td>0</td>
<td>Interface,</td>
</tr>
<tr>
<td></td>
<td>192.168.255.0</td>
<td>255.255.255.0</td>
<td>192.168.255.25</td>
<td>0</td>
<td>Interface,</td>
</tr>
<tr>
<td></td>
<td>192.168.255.0</td>
<td>255.255.255.0</td>
<td>192.168.255.26</td>
<td>0</td>
<td>Interface,</td>
</tr>
<tr>
<td></td>
<td>192.168.255.0</td>
<td>255.255.255.0</td>
<td>192.168.255.27</td>
<td>0</td>
<td>Interface,</td>
</tr>
<tr>
<td></td>
<td>192.168.255.0</td>
<td>255.255.255.0</td>
<td>192.168.255.28</td>
<td>0</td>
<td>Interface,</td>
</tr>
<tr>
<td></td>
<td>192.168.255.0</td>
<td>255.255.255.0</td>
<td>192.168.255.29</td>
<td>0</td>
<td>Interface,</td>
</tr>
<tr>
<td></td>
<td>192.168.255.0</td>
<td>255.255.255.0</td>
<td>192.168.255.30</td>
<td>0</td>
<td>Interface,</td>
</tr>
</tbody>
</table>

To display ISCSI Port WWN and Sessions:

```
switch:admin> portshow iscsi 2/ge0
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port WWN</td>
<td>Sessions</td>
</tr>
<tr>
<td>50:06:06:9e:40:09:a2:00</td>
<td>0</td>
</tr>
</tbody>
</table>
To display the connection parameter information on an FCIP tunnel on a GbE port and to show the current DiffServ markings being used for data connection as well as control connection:

```
switch:admin> portshow fciptunnel 9/ge0 0 -params
```

```
Slot: 9 Port: ge0
-------------------------------------------
Tunnel ID 0
Remote IP Addr 10.62.0.100
Local IP Addr 10.10.9.100
Remote WWN Not Configured
Local WWN 10:00:00:05:1e:39:d4:5a
Compression on
Fastwrite on
Tape Pipelining on
Uncommitted bandwidth, minimum of 1000 Kbps (0.001000 Gbps)
SACK on
Min Retransmit Time 100
Max Retransmissions 9
VC QoS Mapping off
DSCP Marking (Control): 10, DSCP Marking (Data): 62
VLAN Tagging Id 1062, L2CoS (Control): 1, L2CoS (data): 0
Status : Active
Connected Count: 1
Uptime 2 hours, 12 minutes, 52 seconds
FC control traffic TCP connection:
  Local 10.10.9.100:4099, Remote 10.62.0.100:3225
  Local 10.10.9.100:4100, Remote 10.62.0.100:3226
Sender stats:
  Send MSS 1136 Bytes
  smoothed roundtrip 91 ms, variance 2
  peer advertised window 6749184 Bytes
  negotiated window scale (shift count) 9
  congestion window 1204 Bytes
  slow start threshold 2272 Bytes
  operational mode: slow start
  0 packets queued: TCP sequence# NXT(507832865)
  0 packets in-flight
  Send.Unacknowledged(TCP sequence# 507832865) recovery:
    retransmit timeout 100 ms, duplicate ACKs 0
    retransmits 0 (max retransmits 9)
    loss recovery: fast retransmits 472,
    retransmit timeouts 481
Receiver stats:
  advertised window 6749184 Bytes (max 6749184)
  negotiated window scale (shift count) 9
  0 packets queued: TCP sequence# NXT(4235909509)
  0 out-of-order packets queued (0 lifetime total)
  Keepalive:
    time since last activity detected 10 s
    idle connection probe interval 15 s
    timeout 90 s
Data transfer TCP connection:
  Local 10.10.9.100:4100, Remote 10.62.0.100:3226
  Send MSS 1136 Bytes
  Sender stats:
    smoothed roundtrip 90 ms, variance 0
    peer advertised window 26998784 Bytes
```
negotiated window scale (shift count) 9
congestion window 43252 Bytes
slow start threshold 1072 Bytes
operational mode: congestion avoidance
1 packets queued: TCP sequence # MIN(4108052700)
MAX(4108052792) NXT(4108052792)
1 packets in-flight
Send.Unacknowledged(TCP sequence # 4108052700) recovery:
retransmit timeout 100 ms, duplicate ACKs 0
retransmits 0 (max retransmits 9)
loss recovery: fast retransmits 0, retransmit timeouts 1
Receiver stats:
advertised window 26998784 Bytes (max 26998784)
negotiated window scale (shift count) 9
0 packets queued: TCP sequence # NXT(3345955035)
0 out-of-order packets queued (0 lifetime total)
Keepalive:
time since last activity detected 0 s
idle connection probe interval 15 s
timeout 90 s
IKE Policy 1
IPSec Policy 1
Pre-Shared Key testing FIPS and IPSec

To display the performance information on an FCIP tunnel:

```
switch:admin> portshow fciptunnel 9/ge0 0 -perf Slot: 9 Port: ge0
```

Tunnel ID 0
Remote IP Addr 10.62.0.100
Local IP Addr 10.10.9.100
Remote WWN Not Configured
Local WWN 10:00:00:05:1e:39:d4:5a
Compression on
Fastwrite on
Tape Pipelining on
Uncommitted bandwidth, minimum of 1000 Kbps (0.001000 Gbps)
SACK on
Min Retransmit Time 100
Keepalive Timeout 90
Max Retransmissions 9
VC QoS Mapping off
DSCP Marking (Control): 10, DSCP Marking (Data): 62
VLAN Tagging Id 1062, L2CoS (Control): 1, L2CoS (data): 0
Status: Active
Connected Count: 1
Uptime 2 hours, 12 minutes, 5 seconds
QoS shaper performance stats:
 48152162 Bytes
 2961 Bps 30s avg, 6075 Bps lifetime avg
 29286242 compressed Bytes
 2065 Bps 30s avg, 3695 Bps lifetime avg
 1.64 compression ratio
FC control traffic TCP connection:
 Local 10.10.9.100:4099, Remote 10.62.0.100:3225
Performance stats:
 44862 output packets
 2 pkt/s 30s avg, 5 pkt/s lifetime avg
 34118172 output Bytes
To display the connection IPSec information on an FCIP tunnel on a GbE port:

```
switch:admin> portshow fciptunnel 9/ge0 0 -ipsec
Slot: 9 Port: ge0
-------------------------------------------
Tunnel ID 0
Remote IP Addr 10.62.0.100
Local IP Addr 10.10.9.100
Remote WWN Not Configured
Local WWN 10:00:00:05:1e:39:d4:5a
Compression on
Fastwrite on
Tape Pipelining on
Uncommitted bandwidth, minimum of 1000 Kbps (0.001000 Gbps)
SACK on
Min Retransmit Time 100
Keepalive Timeout 90
Max Retransmissions 9
VC QoS Mapping off
DSCP Marking (Control): 10, DSCP Marking (Data): 62
VLAN Tagging Id 1062, L2CoS (Control): 1, L2CoS (data): 0
Status : Active
Connected Count: 1
Uptime 2 hours, 13 minutes, 58 seconds
IKE Policy 1
-----------------------------------------
Authentication Algorithm: SHA-1
Encryption: AES-128
Perfect Forward Secrecy: on
Diffie-Hellman Group: 14
SA Life (seconds): 28800
IPSec Policy 1
-----------------------------------------
Authentication Algorithm: SHA-1
```
Encryption: AES-128
SA Life (seconds): 28800
Pre-Shared Key testingFIPSandIPSec

To show the ARP entries with local MAC address for a GbE port:

```
switch:admin> portshow arp 12/ge0 -lmac
```

```
Port: ge0
Local MAC Address: 00:05:1e:35:1e:e5
IP Address      Mac Address        Flags
------------------------------------------------------
192.168.15.20   00:05:1e:37:0f:a5  Permanent Resolved
```

To display the FC data path credit data:

```
switch:admin> portshow fcip tunnel 9/ge0 0 -credits
```

```
Slot: 9 Port: ge0
----------------------------------------------------------
Tunnel ID 0
Remote IP Addr 10.62.0.100
Local IP Addr 10.10.9.100
Remote WWN Not Configured
Local WWN 10:00:00:05:1e:39:d4:5a
Compression on
Fastwrite on
Tape Pipelining on
Uncommitted bandwidth, minimum of 1000 Kbps (0.001000 Gbps)
SACK on
Min Retransmit Time 100
Keepalive Timeout 90
Max Retransmissions 9
VC QoS Mapping off
DSCP Marking (Control): 10, DSCP Marking (Data): 62
VLAN Tagging Id 1062, L2CoS (Control): 1, L2CoS (data): 0
Status : Active
Connected Count: 1
Uptime 2 hours, 14 minutes, 34 seconds
QoS Runtime Credit Controls:
```
iac_credits_total: 26366
iac_credits_posted: 32
iac_credits_queued: 0
iac_max_credits_queued: 1
iac_credits_pipesize: 20250000
iac_credits_queued_bytes: 0
iac_credits_timer_updates:0
overcommitted_count: 0
iac_credits_timestamp: 0x0000030DF1E6C770
iac_credits_time_savg: 907614 microseconds
iac_credits_time_max: 1000221 microseconds
iac_e2e_latency_savg: 81800 microseconds
iac_e2e_latency_max: 90074 microseconds
iac_credits_timer_abort: 0
iac_credits_timer_nobuff: 0
iac_hold_head = 0x00000000
iac_hold_tail = 0x00000000
Internal Knobs for tuning Credit processing:
```
Fabric OS Command Reference

53-1000599-02

ip_api_data_credit_target = 32
ip_api_data_credit_ratio = 80
ip_api_credit_time = 15
ip_api_cwnd_overcommit = 29760

FC control traffic TCP connection:
   Local 10.10.9.100:4099, Remote 10.62.0.100:3225
Data transfer TCP connection:
   Local 10.10.9.100:4100, Remote 10.62.0.100:3226
IKE Policy 1
IPSec Policy 1
Pre-Shared Key testing FIPS and IPSec

To display QoS Mappings:

```
switch:admin> portshow fcitunnel 9/ge0 0 -qosmap
```

```
Slot: 9 Port: ge0

Tunnel ID 0
Remote IP Addr 10.62.0.100
Local IP Addr 10.10.9.100
Remote WWN Not Configured
Local WWN 10:00:00:05:1e:39:d4:5a
Compression on
Fastwrite on
Tape Pipelining on
Uncommitted bandwidth, minimum of 1000 Kbps (0.001000 Gbps)
SACK on
Min Retransmit Time 100
Keepalive Timeout 90
Max Retransmissions 9
VC QoS Mapping off
DSCP Marking (Control): 10, DSCP Marking (Data): 62
VLAN Tagging Id 1062, L2CoS (Control): 1, L2CoS (data): 0
Connected Count: 1
Uptime 2 hours, 14 minutes, 47 seconds
IKE Policy 1
IPSec Policy 1
Pre-Shared Key testing FIPS and IPSec
VC QoS Map:
0 46 7 1 07 0 2 11 3 3 15 3
4 19 3 5 23 3 6 27 0 7 31 0
8 35 0 9 39 0 10 43 4 11 47 4
12 51 4 13 55 4 14 59 4 15 63 0
```

To display FICON EPCB for a GbE port 0 tunnel ID 1 with post display clearing of relevant statistics:

```
switch:admin> portshow ficon ge0 1 -epcb -clear
```

To display a list of discovered devices and selected path and status information on each. Get the adrs from this display for the next command:

```
switch:admin> portshow ficon ge0 all -fdcb
```

This command displays details on the FDCB specified in the adrs argument which was derived from the previous example:

```
switch:admin> portshow ficon ge0 all -fdcb 10008000
```
This command displays the same information as the previous but posts selected statistical areas:

```bash
switch:admin> portshow ficon ge0 all -fdcb 10008000 -clear
```

See Also  authUtil, portCfg, portCfgLongDistance, portLoginShow, portName, switchShow
portStats64Show

Displays the 64-bit hardware statistics for a port.

Synopsis

portStats64Show [slotnumber|portnumber]

Description

Use this command to display the following hardware statistics for a port. Two integers are reported for most values. In such cases, the top word is the most significant.

- stat64_wtx: Number of 4-byte words transmitted.
- stat64_wrx: Number of 4-byte words received.
- stat64_ftx: Number of frames transmitted.
- stat64_frx: Number of frames received.
- stat64_c2_frx: Number of class 2 frames received.
- stat64_c3_frx: Number of class 3 frames received.
- stat64_lc_rx: Number of link control frames received.
- stat64_mc_rx: Number of multicast frames received.
- stat64_mc_to: Number of multicast timeouts.
- stat64_mc_tx: Number of multicast frames transmitted.
- tim64_rdy_pri: Number of times R_RDY was high priority.
- tim64_txcrd_z: Number of times that the TX BB_credit was at zero.
- er64_enc_in: Number of encoding errors inside of frames.
- er64_crc: Number of frames with CRC errors.
- er64_trunc: Number of frames shorter than minimum.
- er64_toolong: Number of frames longer than maximum.
- er_bad_eof: Number of frames with bad end-of-frame.
- er64_enc_out: Number of encoding error outside of frames.
- er64_disc_c3: Number of class 3 frames discarded.

- stat64_rateTxFrame: Tx frame rate (fr/sec).
- stat64_rateRxFrame: Rx frame rate (fr/sec).
- stat64_rateTxPeakFrame: Tx peak frame rate (fr/sec).
- stat64_rateRxPeakFrame: Rx peak frame rate (fr/sec).
- stat64_rateTxByte: Tx Byte rate (Bps).
- stat64_rateRxByte: Rx Byte rate (Bps).
- stat64_rateTxPeakByte: Tx peak Byte rate (Bps).
portStats64Show

stat64_rateRxPeakByte
    Rx peak Byte rate (Bps).

stat64_PRJTFrames
    Number of P_RJT frames transmitted.

stat64_PBSYFrames
    Number of P_BSY transmitted.

stat64_inputBuffersFull
    Occasions on which input buffers are full.

stat64_rxClass1Frames
    Class 1 frames received.

Note
    The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
    This command has the following operands:

    slotnumber
        For bladed systems only, specify the slot number of the port to be displayed, followed by a slash (/).

    portnumber
        Specify a port number to be displayed, relative to its slot for bladed systems. Use switchShow to display a list of valid ports.

Examples
    To display the 64-bit hardware statistics for a port:

    switch:user> portstats64show 4/15
    stat64_wtx 0  top_int : 4-byte words transmitted
                 316  bottom_int : 4-byte words transmitted
    stat64_wrx 0  top_int : 4-byte words received
                 1486 bottom_int : 4-byte words received
    stat64_ftx 0  top_int : Frames transmitted
                 69  bottom_int : Frames transmitted
    stat64_frx 0  top_int : Frames received
                 73  bottom_int : Frames received
    stat64_c2_frx 0  top_int : Class 2 frames received
    stat64_c3_frx 0  top_int : Class 3 frames received
    stat64_lc_rx 0  top_int : Link control frames received
                 8  bottom_int : Link control frames received
    stat64_mc_rx 0  top_int : Multicast frames received
    stat64_mc_to 0  top_int : Multicast timeouts
    stat64_mc_tx 0  top_int : Multicast frames transmitted
    stat64_mc_tx 0  top_int : Multicast frames transmitted
    tim64_rdy_pri 0  top_int : Time R_RDY high priority
                   60438254 bottom_int : Time R_RDY high priority
    tim64_txcrd_z 0  top_int : Time BB_credit zero
                  2  bottom_int : Time BB_credit zero
    er64_enc_in 0  top_int : Encoding errors inside of frames
    er64_crc 0  top_int : Frames with CRC errors
    er64_trunc 0  top_int : Frames shorter than minimum
    er64_toolong 0  top_int : Frames longer than maximum
<table>
<thead>
<tr>
<th>Counter</th>
<th>Value</th>
<th>Description</th>
<th>Direction</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>er_bad_eof</td>
<td>0</td>
<td>Frames with bad end-of-frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>er64_enc_out</td>
<td>0</td>
<td>Encoding error outside of frames</td>
<td></td>
<td></td>
</tr>
<tr>
<td>er64_disc_c3</td>
<td>0</td>
<td>Class 3 frames discarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stat64_rateTxFrame</td>
<td>17</td>
<td>Tx frame rate (fr/sec)</td>
<td>top_int</td>
<td></td>
</tr>
<tr>
<td>stat64_rateRxFrame</td>
<td>17</td>
<td>Rx frame rate (fr/sec)</td>
<td>top_int</td>
<td></td>
</tr>
<tr>
<td>stat64_rateTxPeakFrame</td>
<td>17</td>
<td>Tx peak frame rate (fr/sec)</td>
<td>top_int</td>
<td></td>
</tr>
<tr>
<td>stat64_rateRxPeakFrame</td>
<td>17</td>
<td>Rx peak frame rate (fr/sec)</td>
<td>top_int</td>
<td></td>
</tr>
<tr>
<td>stat64_rateTxByte</td>
<td>79</td>
<td>Tx Byte rate (bytes/sec)</td>
<td>top_int</td>
<td></td>
</tr>
<tr>
<td>stat64_rateRxByte</td>
<td>371</td>
<td>Rx Byte rate (Bytes/sec)</td>
<td>top_int</td>
<td></td>
</tr>
<tr>
<td>stat64_rateTxPeakByte</td>
<td>79</td>
<td>Tx peak Byte rate (Bytes/sec)</td>
<td>top_int</td>
<td></td>
</tr>
<tr>
<td>stat64_rateRxPeakByte</td>
<td>371</td>
<td>Rx peak Byte rate (Bytes/sec)</td>
<td>top_int</td>
<td></td>
</tr>
<tr>
<td>stat64_PRJTFrames</td>
<td>0</td>
<td>4-byte words transmitted</td>
<td>top_int</td>
<td></td>
</tr>
<tr>
<td>stat64_PBSYFrames</td>
<td>0</td>
<td>4-byte words transmitted</td>
<td>top_int</td>
<td></td>
</tr>
<tr>
<td>stat64_inputBuffersFull</td>
<td>0</td>
<td>4-byte words transmitted</td>
<td>top_int</td>
<td></td>
</tr>
<tr>
<td>stat64_rxClass1Frames</td>
<td>0</td>
<td>4-byte words transmitted</td>
<td>top_int</td>
<td></td>
</tr>
</tbody>
</table>

**See Also**  
portStatsClear, portStatsShow
portStatsClear

Clears the hardware statistics of a port.

Synopsis  portStatsClear [slot[/]port

Description Use this command to clear the hardware statistics for a specified port. This command also clears the hardware statistics for the associated three ports in the target port's quad, including ALPA-based CRC monitor, End-to-End monitor, and Filter-based performance monitor statistics. Inter-Switch Link (ISL) monitor statistics are not cleared by this command.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

slot For bladed systems only, specify the slot number of the port to be cleared, followed by a slash (/).

port Specify a port number to be cleared, relative to its slot for bladed systems. Use switchShow to display a list of valid ports.

Examples To clear hardware statistics for a port:

switch:admin> portStatsClear 4/15

See Also portStats64Show, portStatsShow
portStatsShow

Displays port hardware statistics.

**Synopsis**

```
portstatsshow [slotnumber/]portnumber
portstatsshow [ge | ip | fcip] [slotnumber/]geportnumber [ipaddress | tunnelnumber]
```

**Description**

Use this command to display port hardware statistics counters. Some counters are platform- and port-specific and display only with those platforms and ports. All statistics have a maximum 32-bit value of 4,294,967,295.

The command output includes the following fields:

- `stat_wtx` The number of 4-byte words transmitted.
- `stat_wrx` The number of 4-byte words received.
- `stat_ftx` The number of frames transmitted.
- `stat_frx` The number of frames received.
- `stat_c2_frx` The number of class 2 frames received.
- `stat_c3_frx` The number of class 3 frames received.
- `stat_lc_rx` The number of link control frames received.
- `stat_mc_rx` The number of multicast frames received.
- `stat_mc_to` The number of multicast timeouts.
- `stat_mc_tx` The number of multicast frames transmitted.
- `tim_rdy_pri` The amount of time elapsed during which sending R_RDY or VC_RDY primitive signals was a higher priority than sending frames, due to diminishing credit reserves in the transmitter at the other end of the fibre. This parameter is sampled once every 348 106.25 MHz clocks, and the counter is incremented by 1 if the condition is true.
- `tim_txcrd_z` The amount of time during which frame transmission is blocked by a transmit credit of 0. The counter is incremented by 1 every time that the transmit credit was zero when the condition was true.
- `er_enc_in` The number of encoding errors inside frames.
- `er_crc` The number of frames with CRC errors.
- `er_trunc` The number of frames shorter than minimum.
- `er_toolong` The number of frames longer than maximum.
- `er_bad_eof` The number of frames with bad end-of-frame.
- `er_enc_out` The number of encoding error outside frames.
- `er_bad_os` The number of invalid ordered sets (platform- and port-specific).
- `er_c3_timeout` The number of class 3 frames discarded due to timeout (platform- and port-specific).
- `er_c3_dest_unreach` The number of class 3 frames discarded due to destination unreachable (platform and port specific).
**portStatsShow**

The number of other discards (platform- and port-specific).

The number of class 3 frames discarded due to zone mismatch.

The number of frames with FTB type 1 miss.

The number of frames with FTB type 2 miss.

The number of frames with FTB type 6 miss.

The number of frames with hard zoning miss.

The number of frames with LUN zoning miss.

The number of CRC errors with good EOF (platform- and port-specific).

The number of invalid ARBs.

The number of times the FL_Port entered OPEN state.

The number of times the FL_Port entered TRANSFER state.

The number of times the FL_Port entered OPENED state.

The number of loop tenancies stopped due to starvation.

The number of times FL_Port had loop tenancy.

The number of times NL_Port had loop tenancy.

The number of times zero tenancy occurred.

**Note** The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, *Understanding Admin Domain Restrictions* and Appendix A, *Command Availability* for details.

**Operands** This command has the following operands:

- `slotnumber` For bladed systems only, specifies the slot number of the port to be displayed, followed by a slash (/).

- `[ge]portnumber` Specifies a port number to be configured, relative to its slot for bladed systems. Specify the optional `ge` option to display the GbE port hardware statistics. Use `switchShow` to display a list of valid ports.

- `ge` Displays the GbE statistics.

- `ip` Displays all the GbE port statistics related to IP addresses that are on (not zero).

- `ipaddress` Optionally specify an IP address to display statistics only for the specified IP address.

- `fcip` Displays the GbE statistics on all FCIP tunnels.

- `tunnelnumber` Optionally specify a tunnel ID to display statistics only for the specified FCIP tunnel.

**Examples** To display the basic set of statistics for port 1/0 on a DCX backbone:

```
switch:admin> portstatsshow 13
stat_wtx 1979747673 4-byte words transmitted
stat_wrx 618367 4-byte words received
stat_ftx 1958745847 Frames transmitted
```
To display GbE port statistics for slot 8 and GbE port 1:

```bash
switch:admin> portstatsshow ge 8/ge1
```

<table>
<thead>
<tr>
<th>Stat</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge_stat_tx_frms</td>
<td>0</td>
<td>GE transmitted frames</td>
</tr>
<tr>
<td>ge_stat_rx_frms</td>
<td>0</td>
<td>GE received frames</td>
</tr>
<tr>
<td>ge_stat_tx_octets</td>
<td>0</td>
<td>GE transmitted octets</td>
</tr>
<tr>
<td>ge_stat_rx_octets</td>
<td>0</td>
<td>GE received octets</td>
</tr>
<tr>
<td>ge_stat_tx_ucast_frms</td>
<td>0</td>
<td>GE transmitted unicast frames</td>
</tr>
<tr>
<td>ge_stat_rx_ucast_frms</td>
<td>0</td>
<td>GE received unicast frames</td>
</tr>
<tr>
<td>ge_stat_tx_mcast_frms</td>
<td>0</td>
<td>GE transmitted multicast frames</td>
</tr>
<tr>
<td>ge_stat_rx_mcast_frms</td>
<td>0</td>
<td>GE received multicast frames</td>
</tr>
<tr>
<td>ge_stat_tx_bcast_frms</td>
<td>0</td>
<td>GE transmitted broadcast frames</td>
</tr>
<tr>
<td>ge_stat_rx_bcast_frms</td>
<td>0</td>
<td>GE received broadcast frames</td>
</tr>
<tr>
<td>ge_stat_tx_vlan_frms</td>
<td>0</td>
<td>GE transmitted vlan frames</td>
</tr>
<tr>
<td>ge_stat_rx_vlan_frms</td>
<td>0</td>
<td>GE received vlan frames</td>
</tr>
<tr>
<td>ge_stat_tx_pause_frms</td>
<td>0</td>
<td>GE transmitted pause frames</td>
</tr>
<tr>
<td>ge_stat_rx_pause_frms</td>
<td>0</td>
<td>GE received pause frames</td>
</tr>
<tr>
<td>ge_err_carrier</td>
<td>0</td>
<td>GE lost carrier sense</td>
</tr>
<tr>
<td>ge_err_length</td>
<td>0</td>
<td>GE invalid length</td>
</tr>
<tr>
<td>ge_err_crc</td>
<td>0</td>
<td>GE CRC Errors</td>
</tr>
<tr>
<td>ge_err_abort</td>
<td>0</td>
<td>GE abort frames</td>
</tr>
</tbody>
</table>
To display statistics for FCIP tunnel 2, slot 8, and GbE port 1:

```bash
switch:admin> portstatsshow fcip 8/ge1 2
```

- **tunnel_id**: 2
- **fcip_ip2fc_bytes**: 0
- **fcip_ip2fc_pkts**: 0
- **fcip_ip2fc_wantov_drop**: 0
- **fcip_fc2ip_pkts**: 0
- **fcip_fc2ip_bytes**: 0

To display port statistics for all IP addresses, slot 8, and GbE port 1:

```bash
switch:admin> portstatsshow ip 8/ge1
```

- **ip_err_crc**: 0
- **ip_err_hdr_cksum**: 0
- **ip_err_tcp_data_chksum**: 0

To display port statistics for IP address 192.168.255.10, slot 8, and GbE port 1:

```bash
switch:admin> portstatsshow ip 8/ge1 192.168.255.10
```

- **ipaddr**: 192.168.255.10
- **ip_out_octets**: 159896
- **ip_out_octets**: 159896
- **ip_out_pkts**: 3476
- **ip_out_uCAST_pkts**: 3476
- **ip_out_mcast_pkts**: 0
- **ip_in_octets**: 0
- **ip_in_octets**: 0
- **ip_inPkts**: 0
- **ip_in_uCAST_pkts**: 0
- **ip_in_bcast_pkts**: 0
- **ip_in_mcast_pkts**: 0
- **ip_err_crc**: 0
- **ip_err_hdr_cksum**: 0
- **ip_err_tcp_data_chksum**: 0

See Also  portErrShow, portShow
portSwap

Swaps area numbers of two ports.

Synopsis  
\texttt{portswap [slotnumber1]/portnumber1 [slotnumber2]/portnumber2}

Description  
Use this command to swap area numbers for a pair of ports. Both ports must be disabled prior to executing this command and the port-swapping feature must be enabled using \texttt{portSwapEnable}. The result of this operation is persistent across reboots and power cycles. To undo a previous port swap, execute \texttt{portSwap} again on the same two ports.

\texttt{portSwap} information is kept in its own database; it cannot be manipulated by editing the configuration database displayed by \texttt{configShow} and \texttt{configUpload}.

Note  
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  
This command has the following operands:

\texttt{slotnumber1}  
For bladed systems only, specify the slot number of the first port whose area number is to be swapped, followed by a slash (/).

\texttt{portnumber1}  
Specify the number of the first port whose area number is to be swapped, relative to its slot for bladed systems. Use \texttt{switchShow} to display a list of valid ports.

\texttt{slotnumber2}  
For bladed systems only, specify the slot number of the second port whose area number is to be swapped, followed by a slash (/).

\texttt{portnumber2}  
Specify the number of the second port whose area number is to be swapped, relative to its slot for bladed systems.

Examples  
To swap area numbers between a pair of ports:

\texttt{switch:admin> portswap 1/3 2/5}
\texttt{portswap done}

See Also  
\texttt{portDisable, portEnable, portShow, portSwapDisable, portSwapEnable, portSwapShow, switchShow}
portSwapDisable

Disables the portswap feature.

Synopsis  portswapdisable

Description Use this command to disable the portswap feature. The portSwap command cannot be used after this feature is disabled.

The disabled state of the portswap feature is persistent across reboots and power cycles.

Enabling or disabling the portswap feature does not affect previously performed portswap operations.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To disable the portswap feature:

    switch:admin> portswapdisable

See Also  portSwap, portDisable, portEnable, portShow, portSwapEnable, portSwapShow, switchShow
portSwapEnable

Enables the portswap feature.

Synopsis  portswapenable

Description Use this command to enable the portswap feature. The portSwap command cannot be used unless
the feature is first enabled with this command.

The enabled state of the portswap feature is persistent across reboots and power cycles.
Enabling or disabling the portswap feature does not affect previously performed portswap
operations.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands none

Examples To enable the portswap feature:

switch:admin> portswapenable

See Also portSwap, portDisable, portEnable, portShow, portSwapDisable, portSwapShow, switchShow
portSwapShow

Displays the state of the portswap feature.

Synopsis portswapshow

Description Use this command to display the enabled state of the portswap feature, as well as port and area information for ports whose area number differs from the default area number. The default area number of a port is the same as its switch port number.

Operands none

Examples To display the enabled state of the portswap feature and information for ports whose area numbers have been swapped:

```
switch:admin> portswapshow
PortSwap is enabled
Slot Slotport Swport Area
==
2 2 18 19
2 3 19 18
```

See Also portSwap, portDisable, portEnable, portShow, portSwap, portSwapDisable, portSwapEnable, switchShow
**portTest**

Performs a functional test of a switch in a live fabric.

**Synopsis**

```
porttest [-ports itemlist][-iteration count][-userdelay time][-timeout time][-pattern pattern]
[-patsize size][-seed seed][-listtype porttype]
```

**Description**

Use this command to isolate problems to a single replaceable element and isolate problems to near-end terminal equipment, far-end terminal equipment, or transmission line. Diagnostics can be executed every day or on demand.

This command verifies the intended functional operation of the switch by sending frames from a port’s transmitter, and looping the frames back through an external fibre cable into the port’s receiver, thus exercising all the switch components from the main board, to the fibre cable, to the media (of the devices and the switch), and back to the main board.

The cables and media connected should be of the same technology: a short-wavelength media (switch) port is connected to another short-wavelength media (device) port using a short-wavelength cable; a long wavelength port is connected to a long-wavelength port, and a copper port is connected to a copper port.

Only one frame is transmitted and received at a time. The port LEDs flicker green while the test is running.

Only the following port types are supported:

- E_Ports
- F_Ports (must support ELS Echo)
- L_Ports
- N->N loopback ports

This command performs the following operations:

1. Initiates tests on certain ports (`portTest` command).
2. Stops active tests on certain ports (`stopPortTest` command).
3. Gets the snapshot of the test result (`portTestShow` command).

Once `portTest` is triggered, you can use `stopPortTest` to stop the test. Refer to the `stopPortTest` command for more information.

View the current progress of `portTest` by running `portTestShow`. Refer to the `portTestShow` command for more information.

If there is a port type change during `portTest` execution, the test continues on a given port as long as it can be supported and it is asked to do so. If a request was made to test all possible ports on a given switch, `portTest` starts a new test using the new port type to start an appropriate test.

**Note**

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

This command has the following operands:

- `-ports itemlist` Specify a list of user ports to test. By default, all the user ports in the switch are tested. Refer to `itemList` help pages for further details.
-iteration count  Specify the number of times (or number of frames per port) to execute this test. Default value is 20. Valid values include:

  0  Run the test on timeout mode.
  -1  Run indefinitely.

-userdelay time  Specify the delay between frames sent by portTest, in milliseconds. The default value is 10 milliseconds.

-timeout time  Specify the number of seconds to run the test. Setting the iteration to 0 puts the portTest process into timeout mode. The default value is 0.

-pattern pattern  Specify the pattern of the test packet payload. Twenty types of predefined patterns are provided with the test. Use the dataTypeShow command to view the types of pattern that are supported with portTest. The default pattern type, if no pattern number is specified, is RANDOM (type=11).

-patsize size  Specify the size of the pattern. The default pattern size is 1024 bytes. The range is 4 to 2112 bytes.

-seed seed  Specify the seed pattern to be used with the pattern. The default seed value is 0xaa.

-listtype porttype  Specify the type of ports to run portTest. The following values are predefined for porttype:

  -1  All ports (default).
  -2  All L_Ports.
  -3  All F_Ports.
  -4  All E_Ports.
  -5  All N->N loopback ports.

Examples  To run a functional test on an active switch:

```
switch:admin> porttest -ports 1/1-1/3
```

See Also portLoopbackTest, portTestShow, spinFab, stopPortTest
portTestShow

Displays information from portTest.

Synopsis  porttestshow [-ports itemlist]

Description Use this command to display a snapshot of information from portTest. The following information displays:

• Pass or fail information on a given port.
• Port type tested.
• Current state of portTest (NO TEST, TESTING, or TEST DONE).
• Type of ports asked to test (ALL_PORTS, ALL_E_PORTS, ALL_L_PORTS, ALL_F_PORTS, ALL_LB_PORTS, or SINGLE_PORT).
• Pattern used in testing.
• Seed used in testing.
• User delay value.
• Total iteration asked to test.
• Current test iteration.
• Total fails on this test.
• Consecutive fails on this test.
• portTest start time.
• portTest stop time.
• Timeout value.
• Error code, if any.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

-ports itemlist Specify a list of user ports to test. By default, all user ports in the current slot is assumed. Refer to the itemList help page for further details.

Examples To display information from portTest:

switch:admin> porttestshow 1
Port 1 : PASS
 PortType: OTHER      PortState: NO TEST
 PortInternalState: INIT      PortTypeToTest: NO_TEST
 Pattern: 0x0    Seed: 0x0    UserDelay: 0
 TotalIteration: 0    CurrentIteration: 0
 TotalFail: 0    ConsecutiveFail: 0
 StartTime: NONE      StopTime: NONE
 Timeout: 0    ErrorCode: 0

See Also  portLoopbackTest, portTest, spinFab, stopPortTest
portTrunkArea

Assigns or removes a trunk area (TA) from a port or port trunk group; displays masterless F_Port trunking configuration.

Synopsis

```
porttrunkarea --enable port[-Range] -area area_number
porttrunkarea --enable slot/port[-Range] -index port_index
porttrunkarea --disable [slot/]port[-Range]
porttrunkarea --disable all
porttrunkarea --show disabled | enabled | trunk | all
porttrunkarea --show slot/port[-Range]
```

Description

Use this command to assign a static trunk area (TA) on a port or port trunk group, to remove a TA from a port or group of ports in a trunk, and to display masterless F_Port trunking information.

Masterless F_Port trunking interoperates between the Access Gateway (AG) and Condor-based platforms. It is designed to (1) prevent reassignments of virtual addresses when F_Ports come back online after going offline and (2) to increase N_Port bandwidth.

Assigning a TA to a port or trunk group enables F_Port masterless trunking on that port or trunk group. When a TA is assigned to a port or trunk group, the ports immediately acquires the TA as the area of their process IDs (PID). Likewise, when a a TA is removed from a port or trunk group, the ports reverts to the default area as their PID.

Use the `--show` option to obtain configuration details including the following information:

- **Slot**
  - On enterprise-class platforms, displays the slotnumber.
- **Port**
  - Displays the port number.
- **Type**
  - Displays online masterless trunked F_Port or EX_Port if applicable. Otherwise displays `--`.
- **State**
  - Displays Trunk Master, Slave, or `--`.
- **Master**
  - Displays the master port of the trunk group.
- **TA**
  - On standalone switches, displays the user assigned TA number.
- **DA**
  - On standalone switches, displays the default port area. The default area can be a port swapped area.
- **TI**
  - On enterprise-class platforms, displays the user-assigned TA port index.
- **DI**
  - On enterprise-class platforms, displays the default port index. The default port index can be a port swapped area.

The `--show trunk` option displays the following information:

- **Trunk Index**
  - On enterprise-class platforms, displays the trunk index.
- **Trunk Area**
  - On single processor switches only, displays the TA of the trunk group.
- **ptA->ptB**
  - `ptA` indicates the local user port; `ptB` indicates the remote user port.
- **sp**
  - Port speed in Gbps.
- **bw**
  - Port bandwidth in Gbps.
**deskew**

The time difference for traffic to travel over each F_Port trunk as compared to the F_Port trunk with the shortest travel time in the group. The value is expressed in nanoseconds divided by 10. The firmware automatically sets the minimum deskew value of the shortest F_Port trunk travel time to 15.

**Master**

Identifies the master port of the trunk group.

Execution of this command is subject to the following restrictions:

1. Only F_Port trunk ports are allowed to be part of a TA. E/F/L/EX_Ports will be persistently disabled. Private L_Ports remain online but will not run traffic.

2. Only one trunk master per TA is permitted. The second trunk master is persistently disabled.

3. The entire TA trunk group shares the same port WWN.

4. The port must be disabled before a TA can be assigned to a port or removed from a trunk group.

5. There is one port whose Default Area is the same as its Trunk Area. You cannot remove that port from the trunk group unless the TA is removed from all ports in the trunk group.

6. You must enable trunking on all ports to be included in a TA before you can create a TA. Use `portCfgTrunkPort` or `switchCfgTrunk` to enable Trunking on a port or on all ports of a switch.

7. N_Port ID Virtualization (NPIV) support is provided for up to 255 devices per TA. Note that this decreases the number of devices available per port, since all participating ports share the same area.

8. F_Port trunking is only supported in CORE PID formats.

9. Certain port configurations features are not supported within a TA and the command fails, if one of these features is enabled on a port within the trunk group. These features include FastWrite, Port Swapping, Port Mirroring, Long Distance, Inter-chassis links (ICL), and FICON.

10. Ports from different Admin Domains are not allowed to join the same Trunk Area group.

11. On the Brocade FC4-48C, F_Port masterless trunk ports are not supported on ports 16 - 47.

12. Ports included in a TA share the same port index. The original port index may be removed in the process. This means that D, I zones referring to these indices are no longer part of the switch. For details and workarounds, refer to the *Fabric OS Administrator's Guide*.

13. Device Connection Control (DCC) Policy must be removed from ports prior to creating a TA. You can reenable DCC policy after creating the TA.

14. You cannot assign a TA while AG mode is enabled.

**Notes**

This command is supported only on Brocade 48000 and Brocade DCX enterprise-class platforms running Fabric OS v6.1 or later. For Firmware compatibility and upgrade/downgrade considerations, refer to the *Fabric OS Administrator's Guide*.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Masterless F_Port trunking requires an ISL Trunking license.

**Operands**

This command supports the following operands:

- `slot` On enterprise-class platforms, specifies the slot number, followed by a slash (/).
port

Specifies the port number, relative to its slot on bladed systems.

-Range

Optionally specifies a port range. For example, 9/8-15 on an enterprise-class platform indicates slot 9, ports 8 - 15. Range of ports should fall in the octet trunk range starting from port 0 on a switch or blade. Trunking must be enabled on all ports.

--enable

Creates a TA assigned to the specified ports. Use this option with one of the following operands:

-area area_number

On single processor switches, specifies the port area number for the static TA to be created. The TA must fall within the 8 port trunk group starting from port 0 on a switch or blade. The TA must be a default area of an existing port in a given port group. However, you may add ports to the trunk group even when a trunk group has already been assigned by using the same area of the octet trunk group. Use switchShow for a list of valid port area or index numbers.

-index port_index

On enterprise-class platforms, specifies the port index for the static TA to be created. The port index must fall within the 8 port trunk group starting from port 0 on a switch or blade. The TA must be a default index of an existing port in a given port group. However, you may add ports to the trunk group even when a trunk group has already been assigned by using the same index of the octet trunk group. Use switchShow for a list of valid port indexes.

--disable

Removes specified ports from a TA. If a port with the same default area as the TA assigned for the trunk group is removed, all ports in the trunk group must be explicitly specified for removal.

all

Optionally removes all TA assigned ports on the switch. This option disables masterless F_Port trunking on all ports. All TA assigned ports must be disabled for this option to succeed.

--show

Displays masterless F_Port trunking information. When using this option, specify one of the following operands:

slot/port[-Range]

Displays configuration for a specified port or port range.

trunk

Displays configuration details for the port trunk group, including user port, neighboring user port, and master port properties.

enabled

Displays configuration details for all ports included in a user assigned TA (all ports on which masterless F_Port trunking is enabled).

disabled

Displays configuration details for all ports not included in a user assigned TA (all ports on which masterless F_Port trunking is not enabled).

all

Displays configuration details for all ports on a switch.
Examples

To enable masterless F_Port trunking on a standalone switch:

1. Disable ports 36 - 39 by executing `portdisable port` for each port to be included in the TA.
2. Enable Trunk Area for ports 36 - 39 with area number 37:
   
   switch:admin> `porttrunkarea --enable 36-39 -area 37`
   
   Trunk area 37 enabled for ports 36, 37, 38 and 39.

3. Re-enable ports 36-39 by executing `portenable port` for each port in the TA.
4. Show switch/port information:

   switch:admin> `switchshow`
   
   switchName: SPIRIT_B4_01
   switchType: 66.1
   switchState: Online
   switchMode: Native
   switchRole: Principal
   switchDomain: 2
   switchId: fffc02
   switchWwn: 10:00:00:05:1e:41:22:80
   zoning: OFF
   switchBeacon: OFF
   FC Router: ON
   FC Router BB Fabric ID: 100
   Area Port Media Speed State Proto
   0   0   --   N8   No_Module
   1   1   --   N8   No_Module
   2   2   --   N8   No_Module
   3   3   --   N8   No_Module
   4   4   --   N8   No_Module
   5   5   --   N8   No_Module
   6   6   --   N8   No_Module
   7   7   --   N8   No_Module
   8   8   id   N4   Online   F-Port  10:00:00:00:00:01:00:00
   9   9   --   N8   No_Module
  10  10   --   N8   No_Module
  11  11   --   N8   No_Module
  12  12   --   N8   No_Module
  13  13   --   N8   No_Module
  14  14   --   N8   No_Module
  15  15   --   N8   No_Module
  16  16   --   N8   No_Module
  17  17   --   N8   No_Module
  18  18   --   N8   No_Module
  19  19   --   N8   No_Module
  20  20   --   N8   No_Module
  21  21   --   N8   No_Module
  22  22   --   N8   No_Module
  23  23   --   N8   No_Module
  24  24   --   N8   No_Module
  25  25   --   N8   No_Module
  26  26   --   N8   No_Module
  27  27   --   N8   No_Module
  28  28   --   N8   No_Module
  29  29   --   N8   No_Module
  30  30   --   N8   No_Module
  31  31   --   N8   No_Module
5. Display TA enabled port configuration:

```
switch:admin> porttrunkarea --show enabled
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>State</th>
<th>Master</th>
<th>TA</th>
<th>DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>38</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>37</td>
<td>39</td>
</tr>
</tbody>
</table>

To disable masterless F_Port trunking on ports 36-39:

```
switch:admin> porttrunkarea --disable 36-39
ERROR: port 36 has to be disabled
```

Disable each port prior to removing ports from the TA. Then reissue the command:

```
switch:admin> porttrunkarea --disable 36-39
Trunk area 37 disabled for ports 36, 37, 38 and 39.
```

To display trunk details for a user assigned TA 38 that includes ports 36-39:

```
switch:admin> porttrunkarea --show trunk
Trunk Area 38: 39->23 sp: 4.000G bw: 16.000G deskew 16 MASTER
 38->22 sp: 4.000G bw: 4.000G deskew 15
 37->21 sp: 4.000G bw: 4.000G deskew 16
 36->20 sp: 4.000G bw: 4.000G deskew 16
```

To configure a TA on an enterprise-class platform including ports 13 and 14 on slot 10 with port index of 125:

1. Disable the ports to be included in the TA.
2. Enable TA for ports 13 and 14 on slot 10 with port index of 125:

```
switch:admin> porttrunkarea --enable 10/13-14 -index 125
Trunk index 125 enabled for ports 10/13 and 10/14.
```

3. Show the TA port configuration (ports still disabled):

```
switch:admin> porttrunkarea --show enabled
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Port</th>
<th>Type</th>
<th>State</th>
<th>Master</th>
<th>TI</th>
<th>DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>13</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>125</td>
<td>126</td>
</tr>
</tbody>
</table>

Fabric OS Command Reference
53-1000599-02
4. Enable ports 13 and 14:

   switch:admin> portenable 10/13
   switch:admin> portenable 10/14

5. Show the TA port configuration after enabling the ports:

   switch:admin> porttrunkarea --show enabled
   Slot  Port  Type   State  Master   TI  DI
   -------------------------------------------
   10    13   F-port  Master  10/13  125 125
   10    14   F-port  Slave   10/13  125 126

See Also  portCfgTrunkPort, portCfgShow, portShow, switchCfgTrunk, switchShow
portZoneShow

Displays the enforced zone type of the F_Ports and FL_Ports of a switch.

Synopsis

portzoneshow

Description

Use this command to display the enforced zone type of the F_ports and FL_Ports of a switch.

Output shows virtual port number (decimal), physical port number (decimal), online status, and if
online, port type. If the current zone configuration has been disabled by cfgDisable, the fabric is in
non-zoning mode, in which all devices see each other. When default zoning is enabled with "No
Access" mode, "No Effective configuration: (No Access)" is displayed.

Operands

none

Examples

To display the zone membership information of ports:

switch:user> portzoneshow
[OUTPUT TRUNCATED]
PORT: 160 (160) Offline
PORT: 161 (161) Offline
PORT: 162 (162) Offline
PORT: 163 (163) Offline
PORT: 164 (164) Offline
PORT: 165 (165) Offline
PORT: 166 (166) Offline
PORT: 167 (167) Offline
PORT: 168 (168) FL-Port Enforcement: HARD WWN defaultHard: 0 IFID: 0x4332000a
PORT: 169 (169) Offline
PORT: 170 (170) Offline
PORT: 171 (171) Offline
PORT: 172 (172) Offline
PORT: 173 (173) Offline
PORT: 174 (174) Offline
PORT: 175 (175) Offline
PORT: 176 (176) F-Port Enforcement: HARD WWN defaultHard: 0 IFID: 0x4342002a
PORT: 177 (177) Offline
PORT: 178 (178) Offline
PORT: 179 (179) Offline
PORT: 180 (180) Offline
[OUTPUT TRUNCATED]

See Also

cfgShow, switchShow
powerOffListSet

Sets the order in which slots are powered off.

Synopsis powerofflistset

Description Use this command to modify the order in which slots are powered off. This command displays the current order, and then prompts you interactively to confirm or modify the power-off position for each slot.

Whenever a power supply goes out of service or a field-replaceable unit (FRU) RU is inserted, the system’s available power is compared to the system’s required power to determine if there is enough power to operate. If less than the required power is available, the power-off list is processed, until there is sufficient power for the system to operate.

If the system's power supply drops abruptly to insufficient levels, the power-off list cannot be processed. The sudden lack of power causes the CP board processors to cease executing the firmware.

For example, if only one power supply is available to power a fully loaded system and the power supply is removed from the chassis, all system operations terminate immediately, and the power-off list cannot be processed. However, if the system is running on two power supplies (this is not recommended) and one goes into a predicted fail state (in which the power supply is still supplying power), the power-off list is processed as described.

The power-off list does not affect the order, in which slots are powered on. On power-on or when an additional power supply is added, slots are processed sequentially, starting at slot 1.

Notes CP blade slots are not included in the power-off list.

Command output may vary depending on the hardware platform.

Some FRUs may use significant power, but cannot be powered off by the software. For example a missing blower FRU may change the power computation enough to affect how many slot blades can be powered up.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To modify the power-off list order:

```
switch:admin> powerofflistset
Slot Current POL

10 1st
9 2nd
8 3rd
7 4th
5 5th
3 6th
2 7th
1 8th

1st slot to be powered off: (1..10) [10] 1
```
powerOffListSet

2nd slot to be powered off: (2..10) [9] 2
3rd slot to be powered off: (3..10) [8] 3
4th slot to be powered off: (4..10) [7] 4
5th slot to be powered off: (7..10) [7] 10
6th slot to be powered off: (7..9) [8] 9
7th slot to be powered off: (7..8) [8] 8
8th slot to be powered off: (7..7) [7] 7

Old POL    New POL    Power Off Order
-------------------------------------
10          1            1st
  9          2            2nd
  8          3            3rd
  7          4            4th
  4          10           5th
  3          9            6th
  2          8            7th
  1          7            8th

Proceed to change the POL order? (yes, y, no, n): [no] y

See Also chassisShow, powerOffListShow, psShow, slotPowerOff, slotPowerOn, slotShow
powerOffListShow

Displays the order in which slots are powered off.

Synopsis  powerofflistshow

Description  Use this command to display the order in which the physical slots are powered off.

Whenever a power supply goes out of service or a field-replaceable unit (FRU) is inserted, the system's available power is compared to the system's required power to determine if there is enough power to operate. If less than the required power is available, the power-off list is processed, until there is sufficient power for the system to operate.

If the system's power supply drops abruptly to insufficient levels, the power-off list cannot be processed. The sudden lack of power causes the CP board processors to cease executing the firmware.

For example, if only one power supply is available to power a fully loaded system and the power supply is removed from the chassis, all system operations terminate immediately, and the power-off list cannot be processed. However, if the system is running on two power supplies (this is not recommended) and one goes into a predicted fail state (in which the power supply is still supplying power), the power-off list is processed as described.

Notes  Command output may vary depending on the hardware platform.

Control processor (CP) blades are not included in the power-off list.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  none

Examples  To display the slot power off list order:

```
switch:admin> powerofflistshow
Slot 10 will be powered off 1st
Slot 9 will be powered off 2nd
Slot 8 will be powered off 3rd
Slot 7 will be powered off 4th
Slot 6 will be powered off 5th
Slot 5 will be powered off 6th
Slot 4 will be powered off 7th
Slot 3 will be powered off 8th
Slot 2 will be powered off 9th
Slot 1 will be powered off 10th
```

See Also  chassisShow, powerOffListSet, psShow, slotPowerOff, slotPowerOn, slotShow
psShow

Displays power supply status.

Synopsis  psshow

Description Use this command to display the current status of the switch power supplies. The status of each supply is displayed as:

- **OK**  Power supply functioning correctly.
- **absent**  Power supply not present.
- **unknown**  Unknown power supply unit installed.
- **predicting failure**  Power supply is present but predicting failure.
- **faulty**  Power supply present but faulty (no power cable, power switch turned off, fuse blown, or other internal error).

For certain switch models, the OEM serial ID data displays after each power supply status line.

Operands none

Examples To view the status of the power supplies:

```
switch:admin> psshow

Power Supply #1 is OK
DELTA DPS-1001AB-1E 23000000601 S1 IXD0111000088
Power Supply #2 is faulty
DELTA DPS-1001AB-1E 23000000601 S1 IXD0111000162
Power Supply #3 is OK
DELTA DPS-1001AB-1E 23000000601 S1 IXD0111000120
Power Supply #4 is absent
```

See Also  chassisShow, fanShow
reboot

Reboots the control processor (CP) in a switch or a director.

Synopsis reboot -f

Description When this command is issued on a switch, if the switch is part of a fabric, all traffic to and from that switch stops. All Fibre Channel ports on that switch including E_Ports become inactive until the switch comes online.

You are warned to commit to the reboot:

Are you sure you want to reboot the active CP [y/n]?

After performing a reboot, the following can occur:

• If rebooting the Standby CP, that CP goes down and there is no failover because there is no traffic on that switch. The Standby CP will no longer be in sync with the Active CP.
• If rebooting the Active CP, it fails over to the Standby CP and the Standby CP becomes the new Active CP and traffic is disrupted.
• When HA is in sync, and reboot -f is issued on the Active CP of a director, the Standby CP takes over as the active CP without traffic disruption. If HA is not in sync, and reboot -f is issued on the Active CP, the Standby CP takes over as the Active CP with traffic disruption.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands -f Specify this operand when you want to fail over to the Standby CP and not affect any of the Fibre Channel ports. Note that the recommended way to force a failover without affecting any Fibre Channel ports is to issue the hafailover command.

Examples To reboot a Control Processor:

switch:admin> reboot
Warning: This command is being run on a control processor (CP) based system and will cause the active CP to reboot.
Are you sure you want to reboot the active CP [y/n]?y

Broadcast message from root (pts/0) Thu Jul 26 11:20:23 2007...

The system is going down for reboot NOW !!

To reboot the CP to fail over to the Standby CP:

switch:admin> reboot -f
Warning: This command is being run on a control processor (CP) based system and will cause the active CP to reboot.
Are you sure you want to reboot the active CP [y/n]?

See Also fastboot, hafailover
routeHelp

Displays a list of FSPF-related commands.

Synopsis  routehelp

Description Use this command to display a list of fabric-shortest-path-first (FSPF)-related commands.

Operands none

Examples To display a list of routing-related commands:

switch:admin> routehelp

aptpolicy        Get and set Advanced Performance Tuning policy
bcastshow        Display broadcast routing information
dlsreset        Turn off the dynamic load sharing (DLS) option
dlsset          Turn on the dynamic load sharing (DLS) option
dlsshow         Display the state of the dynamic load sharing option
fspfshow        Print FSPF global information
interfaceShow   Display the FSPF (TM) interface information
iodreset        Turn off the in-order delivery (IOD) option
iodset          Turn on the in-order delivery (IOD) option
iodshow         Display the state of the in-order delivery option
ioddelayset     Sets the delay for the in-order delivery (IOD)
i oddelayreset   Resets the user-defined IOD delay settings to
default values
ioddelayshow     Displays the user-defined IOD delay settings in the
                 fabric.
linkcost        Set or print the FSPF cost of a link
lsdbshow        Displays the FSPF link state database
nbrstateshow    Displays FSPF (TM) neighbors' states
nbrstatsclear   Reset the FSPF (TM) interface counters
topologyshow    Display the unicast fabric topology
urouteconfig    Configure a static route
urouteremove    Remove a static route
urouteshow      Display unicast routing information

See Also bcastShow, interfaceShow, uRouteShow
secActiveSize

Displays the size of the active security database.

Synopsis  secactivesize

Description Use this command to display the size of the active security database. The command also displays
the maximum database size.

For switches running Fabric OS v6.0.0 and later, the maximum security database size is 1
Megabyte. For switches running earlier versions of Fabric OS (up to v5.3.0), the maximum is 256
Kilobytes.

Notes The effective security DB size is the lowest supported by the fabric. The presence of a Standby CP
that runs an earlier version of the operating system will drop the effective security DB size on an
Active CP that runs Fabric OS v6.0.0.

The Brocade 200E is unable to handle the maximum DB size supported in v6.0.0 and issues a
compact flash warning when the active security database is close to the 1MB limit.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands none

Examples To display the size of the active security database:

    switch:admin> secactivesize
    Size of security active data: 35 bytes (Max 1048576 bytes)

See Also  secDefineSize, secGlobalShow
secAuthSecret

Manages the DH-CHAP shared secret key information.

Synopsis

```
secAuthSecret --show
secAuthSecret --set
secAuthSecret --remove value | --all
```

Description

Use this command to manage the DH-CHAP shared secret key database used for authentication. This command displays, sets, and removes shared secret key information from the database or deletes the entire database. If you are performing set or remove operations, when the command is completed new data is saved persistently. New data is effective with the next authentication request. The configuration applies to a switch instance only.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

```
--show Lists the WWNs for which a shared secret is configured.
--set Sets shared secrets with a WWN. This command is interactive. When setting secrets for an entry of an EX_Port, the WWN of the entry must be specified.
--remove [wwn | domain | swname]
Removes the specified WWN entry from the database. If a domain name is specified, it is converted to a WWN and then the entry is removed. When removing an entry of an EX_Port type, the WWN of the entry must be specified. If no option is specified, the command is interactive.
--remove --all Deletes the entire secret key database.
```

Examples

To list the shared secret WWN:

```
switch:admin> secAuthSecret --show

WWN DId Name

10:00:00:60:69:80:5b:e8 1 switch
```

To set the shared secret:

```
switch:admin> secAuthSecret --set

This command sets up secret keys for the DH-CHAP authentication. The minimum length of a secret key is 8 characters and maximum 40 characters. Setting up secret keys does not initiate DH-CHAP authentication. If switch is configured to do DH-CHAP, it is performed whenever a port or a switch is enabled.

Warning: Please use a secure channel for setting secrets. Using an insecure channel is not safe and may compromise secrets.

Following inputs should be specified for each entry.
```
1. WWN for which secret is being set up.
2. Peer secret: The secret of the peer that authenticates to peer.
3. Local secret: The local secret that authenticates peer.

Press Enter to start setting up shared secrets >

Enter WWN, Domain, or switch name (Leave blank when done): 10:00:00:60:69:80:05:14
Enter peer secret:
Re-enter peer secret:
Enter local secret:
Re-enter local secret:

Enter WWN, Domain, or switch name (Leave blank when done):
Are you done? (yes, y, no, n): [no] y
Saving data to key store... Done.

To delete the entire secret key database:

switch:admin> secAuthSecret --remove --all

This command deletes database of DH-CHAP secret keys. If a fabric requires authentication, deleting this database may cause switch to segment from the fabric.

Do want to remove secret key database? (yes, y, no, n): [no] y
Deleting secret key database... Done.

switch:admin>

See Also none
secCertUtil

Manages certificates on a switch.

**Synopsis**

```
secCertUtil genkey [-nowarn] [-keysize 1024 | 2048]
secCertUtil delkey [-nowarn]
secCertUtil gencsr [-country country code] [-state state] [-locality locality] [-org organization] [-orgunit organization unit] [-cn common name]
secCertUtil delcsr [-nowarn]
secCertUtil showcsr
secCertUtil delete [-ldapcacert] file name [-nowarn]
secCertUtil show [-ldapcacert] [-file name]
```

**Description**

Use this command to manage third-party certificates on a switch, including Public Key Infrastructure (PKI) based certificates and Lightweight Directory Access Protocol (LDAP) certificates. This command also imports or exports Certificate Signing Requests (CSRs) from or to a remote host. This command supports IPV4 and IPV6 addresses.

Use this command to do the following:

- Generate a public/private key pair.
- Delete a public/private key pair.
- Generate a CSR.
- Delete a CSR.
- List existing certificates on a switch.
- Display the contents of a certificate or CSR.
- Delete a specified certificate.
- Import or export a certificate.
- Configure a SSL certificate file name.
- Enable secure protocols.

This command takes an action and associated arguments. If only an action is specified, this command prompts interactively for input values of the associated arguments. The command runs non-interactively when the arguments associated with a given action are specified on the command line. When invoked without operands, this command displays the usage.

**Note**

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.
Operands

This command has the following operands:

genkey
Generates a public/private key pair. This is the first step in setting up a third-party certificate. When prompted for a key size, enter either 1024 or 2048 bits. The greater the value, the more secure is the connection; however, performance degrades with size. The keys are generated only after all existing CSRs and certificates have been deleted.

-nowarn
Specifies that no warning is given when overwriting or deleting data. If this operand is omitted, the command prompts for confirmation before existing CSRs and certificates are deleted.

delkey [-nowarn]
Deletes a public/private key pair. This command prompts for confirmation unless -nowarn is specified.

gencsr
Generates a new CSR for the switch. This is the second step in setting up a third-party certificate. The following operands are optional; if omitted, the command prompts for answers to a series of questions. If only one or a few operands are specified, the command prompts for input to the remaining questions. When all questions are answered, a CSR is generated and placed in a file named ip_address.csr, where ip_address is the IP address of the switch.

-country country code
Specifies the country. Provide a two-letter country code. For example, US.

-state state
Specifies the state. Provide the full name, for example, California. If the state consists of multiple words, it must be enclosed in double quotes.

-locality locality
Specifies the city. Provide the full name, for example, "San Jose". If the locality consists of multiple words, it must be enclosed in double quotes.

-org organization
Specifies the organization. Provide the full name, for example, Brocade. If the organization consists of multiple words, it must be enclosed in double quotes.

-orgunit organization unit
Specifies the organizational unit, for example, your department name. If the organizational unit consists of multiple words, it must be enclosed in double quotes.

-cn common name
Specifies the common name. Provide a fully qualified Domain Name, or IP address.

showcsr
Displays the content of the CSR on the switch without page breaks. Use the pipe operator followed by the “more” option to display the content one page at a time.
secCertUtil

```plaintext
delcsr [-nowarn] Deletes CSR. This command prompts for confirmation before deleting the CSR unless -nowarn is specified.

delete Deletes the specified certificate. The following operands are optional;

-ldapcacert Deletes a LDAP CA certificate. You must specify a file name for the LDAP CA certificate.

file name Specifies the name of the certificate to be deleted. This operand is required. Use the show option for a list of existing certificates.

-nowarn Deletes the specified file without confirmation. This operand is optional.

export Exports a CSR to a host. This command is typically used to submit a CSR to the Certification Authority (CA) that issues the certificate. The following operands are optional; if omitted, the command prompts interactively for your input.

-ldapcacert file name

Exports an LDAP CA certificate from the switch to a remote host.

-certname certificate name

Specifies the name of the certificate to be exported.

-protocol ftp | scp

Specifies the protocol as either FTP or SCP.

-ipaddr IP address

Specifies the IP address of the remote host.

-remotedir remote directory

Specifies the remote directory. Provide a fully qualified path name.

-login login name

Specifies the login name for the server.

-password password

Specifies the password for the user account. When using SCP, for security reasons, do not enter a password on the command line. Use the interactive version instead.

import Imports a certificate. Use this command to import an LDAP CA certificate from the server or to download a certificate issued by a CA after sending the CSR to the CA. Specify the imported certificate with the following (exclusive) options:

-ldapcacert Imports an LDAP CA certificate.

-config cacert Imports a CA certificate.

-config swcert Imports an SSL certificate.

-enable https Enables secure https. Optionally use this operand with -config swcert.

The following operands are optional; if omitted, the command prompts interactively for your input.

-protocol ftp | scp
```
Specifies the protocol as either FTP or SCP.

-`ipaddr IP address`

  Specifies the IP address of the remote host.

-`remotedir remote directory`

  Specifies the remote directory. Provide a fully qualified path name.

-`certname certificate name`

  Specifies the certificate name.

-`login login name`

  Specifies the login name for the server.

-`password password`

  Specifies the password for the user account. When using SCP, for security reasons, do not enter a password on the command line. Use the interactive version instead.

-`show`

  Lists all existing PKI-based certificates on the switch. The following operands are optional and exclusive.

-`ldapcacert`

  Lists existing LDAP certificates.

-`file name`

  Displays the content of the specified certificate.

Examples

To generate a public/private key pair in interactive mode:

```
switch:admin> seccertutil genkey

Generating a new key pair will automatically do the following:
1. Delete all existing CSRs.
2. Delete all existing certificates.
3. Reset the certificate filename to none.
4. Disable secure protocols.

Continue (yes, y, no, n): [no] y
Select key size [1024 or 2048]: 1024
Generating new rsa public/private key pair
Done.
```

To generate a public/private key pair in non-interactive mode:

```
switch:admin> seccertutil genkey -nowarn -keysize 1024
Generating new rsa public/private key pair
Done.
```

To generate a CSR in interactive mode:

```
switch:admin> seccertutil gencsr

Country Name (2 letter code, eg, US): US
State or Province Name (full name, eg, California): California
Locality Name (eg, city name): San Jose
Organization Name (eg, company name): Brocade
Organizational Unit Name (eg, department or section name): IT
Common Name (Fully qualified Domain Name, or IP address): 192.168.38.206

generating CSR, file name is: 192.168.38.206.csr
Done
```
To generate a CSR in non-interactive mode:

```
switch:admin> seccertutil gencsr -country US -state California -locality "San Jose" \
 -org Brocade -orgunit software -cn 192.168.38.206
```

generating CSR, file name is: 192.168.38.206.csr
Done

To delete the CSR in interactive mode:

```
switch:admin> seccertutil delcsr
```

WARNING!!!

About to delete CSR: 192.168.163.238.csr
ARE YOU SURE (yes, y, no, n): [no] y

To delete a CSR in non-interactive mode:

```
switch:admin> seccertutil delcsr -nowarn
```

To import an LDAP certificate from a remote host to the local switch in interactive mode:

```
switch:admin> seccertutil import -ldapcacert
```

Select protocol [ftp or scp]: ftp
Enter IP address: 195.168.38.206
Enter remote directory: /users/home/remote_certs
Enter certificate name (must have ".crt", ".cer" or ".pem" suffix): ldap.cer
Enter Login Name: mylogin
Enter Password: password
Success: imported certificate [ldap.cert].

To import an LDAP certificate from a remote host to the local switch in non-interactive mode:

```
switch:admin> seccertutil import -ldapcacert -protocol ftp -ipaddr 195.168.38.206 \
 -remotedir /users/home/remote_certs -certname ldap.cer -login abcd -passwd passwd
```

Success: imported certificate [ldap.cert].

To import a PKI-based certificate with configure and enable option in interactive mode:

```
switch:admin> seccertutil import -config swcert -enable https
```

Select protocol [ftp or scp]: ftp
Enter IP address: 192.168.38.206
Enter remote directory: /users/home/mycerts
Enter certificate name (must have ".crt", ".cer" or ".pem" suffix): filename
Enter Login Name: username
Enter Password: password
Success: imported certificate [filename].
Certificate file in configuration has been updated.
Secure http has been enabled.

To import a PKI-based certificate with configure and enable option in non-interactive mode:

```
switch:admin> seccertutil import -config swcert -enable https -protocol ftp \
 -ipaddr 195.168.38.206 -remotedir /users/home/remote_certs -certname file.crt \
 -login abcd -password passwd
```

Success: imported certificate [file.crt].
Certificate file in configuration has been updated.
Secure http has been enabled.

To export an LDAP CA certificate from the local switch to a remote host in interactive mode:

```
switch:admin> seccertutil export -ldapcacert
```

Select protocol [ftp or scp]: scp
Enter IP address: 192.168.38.206
Enter remote directory: /users/home/remote/mycerts
Enter Login Name: username
Enter LDAP certificate name (must have ".pem" suffix): filename.cer
Password: password
Success: exported LDAP certificate

To export an LDAP CA certificate from the local switch to a remote host in non-interactive mode:

Success: exported LDAP certificate

To delete an LDAP CA certificate in interactive mode:

switch:admin> seccertutil delete -ldapcacert filename.pem
WARNING!!!
About to delete certificate: filename.cer
ARE YOU SURE (yes, y, no, n): [no] y
Deleted LDAP certificate successfully

To delete an LDAP CA certificate in non-interactive mode:

switch:admin> seccertutil delete -ldapcacert filename.pem
Deleted LDAP certificate successfully

To list all LDAP certificates on a switch:

switch:admin> seccertutil show -ldapcacert
List of ldap ca certificate files:

Sample.cer

To display the content of the CSR one page at a time:

switch:admin> seccertutil showcsrc | more

To display the content of a certificate:

switch:admin> seccertutil showcertificate certificate_name

See Also none
secDefineSize

Displays the size of the defined security database.

Synopsis  secdefinesize

Description Use this command to display the size of the defined security database. The command also displays the maximum database size.

Notes For switches running Fabric OS v6.0.0 and later, the maximum security database size is 1 MB. For switches running earlier versions of Fabric OS (up to v5.3.0), the maximum is 256 KB.

The effective security DB size is the lowest supported by the fabric. The presence of a Standby CP that runs an earlier version of the operating system drops the effective security DB size on an Active CP that runs Fabric OS v6.0.0 or later.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To display the size of the defined security database

switch:admin> secdefinesize
        Size of security defined data: 35 bytes (Max 1048576 bytes)

See Also  secActiveSize, secGlobalShow
secGlobalShow

Displays the current internal security state information.

Synopsis  secglobalshow

Description Use this command to display security server (secd) specific information as a snapshot of its current state. The output may include information about the following:

- General security parameters
- The latest zone transaction
- The current status of the RCS transaction
- The state of the Domain
- wwnDL state

This command is intended primarily for debugging purposes by technical support staff. The information displayed may not be supported between releases and is subject to change without notice.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To view the current security state:

```
switch:admin> secglobalshow

----General Security Information----
flag 1, saveflag 0
transId 0
Queue Size 0
final Rca 0
reliablemsg 0
reliablePhase 0
Primary pub key: Empty
Primary Version 0
Primary WWN 10:00:00:05:1e:01:23:e0 (local switch)
Stamp 0
----The latest zone transaction----
last retVal from zone: not used
last zone size when calling zone: not used
----The latest RCS STATUS----
RCS was enabled
sec_aca: free
RCS latest Phase: Completion
RCS Message --> RCS transaction completes.
----Database STATUS----
Retry Role 0
Retry Query0
Security Active DataSize 35 bytes

-----Domain State-----
Active Sum 215b
```
**secGlobalShow**

Security Defined Data Size: 35 bytes
Define Sum: 215b
Zone Size (include enabled configuration): 312 bytes
Zone sum: e04b215b
sec_db: free
primaryDLPhase: 0

```
---- wwnDL State-----
pid tid key sec usec

---------- LOG CACHE ----------
14:08:50 813905136 secipadm_ipchange receives notification
14:08:50 850588912 secProcessIPChange starts processing
14:08:50 850588912 secProcessIPChange acks completion

[Output truncated]
```

See Also  
secActiveSize, secDefineSize
secHelp

Displays information about security commands.

Synopsis

sechelp

Description

Use this command to display a list of security commands with a brief description of the commands.

Operands

none

Examples

To display a list of security commands:

switch:admin> sechelp

fipscfg                    Configure FIPS mode operation
pkicreate                  Creates public key infrastructure (PKI) objects
pkiremove                  Removes existing public key infrastructure (PKI) objects
pkishow                    Displays existing public key infrastructure (PKI) objects
secactivesize              Displays size of the active (security) database
secauthsecret              Creates/Manages DHCHAP secret key details
seccertutil                Creates/Manages/Displays third party PKI certificates
secdefinesize              Displays size of the defined (security) database
secglobalshow              Displays current internal security state information
secpolicyabort             Aborts changes to defined policy
secpolicyactivate          Activates all policy sets
secpolicyadd               Adds members to an existing policy
secpolicycreate            Creates a new policy
secpolicydelete            Deletes an existing policy
secpolicydump              Displays all members of existing policies
secpolicyfcsmove           Moves a member in the FCS policy
secpolicyremove            Removes members from an existing policy
secpolicysave              Saves defined policy set and sends to all switches
secpolicyshow              Shows members of one or more policies
seccstatsshow              Resets security statistics

See Also

none
secPolicyAbort

Aborts all changes to the defined database that have not been saved.

Synopsis

```
secPolicyAbort
```

Description

Use this command to abort all changes to the defined security database that have not been saved to flash memory and to abort changes to policy creation and modification operations from all the switches if a fabric-wide consistency policy is not set for the particular policy.

Notes

When FCS Policy is enabled, this command can be issued only from the Primary FCS switch.

Only the user who made the changes to the defined database may use this command to abort them.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

none

Examples

To abort all changes that have not been saved to nonvolatile memory:

```
primaryfcs:admin> secPolicyAbort
Unsaved data has been aborted.
primaryfcs:admin> secPolicyAbort
No new data to abort.
```

See Also

secPolicyActivate, secPolicyAdd, secPolicyDelete, secPolicyDump, secPolicyRemove, secPolicySave, secStatsShow
secPolicyActivate

Saves and activates the Defined Security Policy Set.

Synopsis

    secPolicyactivate

Description

Use this command to activate the current defined security policy to all switches in the fabric. This activates the policy set on the local switch or all switches in the fabric depending on the fabric-wide consistency policy.

If there are changes to the SCC, DCC, or FCS policies in the current CLI or API transaction that have not been saved to the Defined Security Policy Set, then this command saves the changes to the Defined Security Policy Set first, and then activates it. If there are no changes, but the Defined Security Policy Set differs from the Active Security Policy Set, then the Defined Security Policy Set is activated. If there are no changes and the Defined Security Policy Set is the same as the Active Security Policy Set, then nothing is done.

After activation the defined policy set becomes the Active Policy Set.

Use secPolicyShow to display the members of an existing policy in the Active or Defined Security Policy Sets.

Notes

The behavior of this command is the same for tolerant and strict fabric-wide consistency.

When FCS Policy is enabled, this command can be issued only from the Primary FCS switch.

Any modifications to the SCC, DCC, and FCC DB are saved and activated. When secPolicyActivate is issued after the secPolicySave command, it might fail.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

    none

Examples

To activate the defined security policy set on all switches in the fabric:

    switch:admin> secPolicyactivate
    About to overwrite the current Active data.
    ARE YOU SURE (yes, y, no, n): [no]  y
    secPolicyactivate command was completed successfully.

See Also

    fddCfg, secPolicyAbort, secPolicyAdd, secPolicyDelete, secPolicyDump, secPolicyRemove, secPolicySave, secPolicyShow
secPolicyAdd

Adds members to an existing security policy.

Synopsis

```
secpolicyadd "name", "member[;member...]"
```

Description

Use this command to add one or more members to an existing access policy. The new members must not already be members within the policy or the command fails.

Each policy corresponds to a management method. The list of members of a policy acts as an access control list for that management method. Before a policy is created, there is no enforcement for that management method; all access is granted. After a policy has been created and a member has been added to the policy, that policy becomes closed to all access except from included members. If all members are then deleted from the policy, all access is denied for that management method (the DCC_POLICY is an exception).

Notes

When FCS Policy is enabled, this command can be issued only from the Primary FCS switch. The secpolicyadd command can be issued on all switches for SCC and DCC policies as long as fabric-wide consistency policy is not set for the particular policy.

Do not add the WWNs of front or translate (xlate) domains to the FCS policy if the edge fabric is connected to an FC Router.

backup FCS switches typically cannot modify the policy. However, if the Primary FCS switch in the policy list is not reachable, then a backup FCS switch is allowed to modify the policy. If all the reachable backup FCS switches are running pre-v5.3.0 versions of Fabric OS, a non-FCS v5.3.0 switch is allowed to modify the policy so that a new switch can be added to the policy.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

```
'name'
```

Specify the name of an existing policy to which you want to add members. Valid values for this operand are:

```
• DCC_POLICY_nnn
• FCS_POLICY
• SCC_POLICY
```

The specified policy name must be capitalized.

The DCC_POLICY_nnn name has the common prefix DCC_POLICY_ followed by a string of user-defined characters. These characters do not have to be capitalized like regular policy names, but they are case-sensitive.

```
'member'
```

Specify a list of one or more member switches for the security policy. The members must be enclosed in quotation marks and separated by semicolons. Depending on the policy type, members can be specified by IP address, WWN, domain, switch name, or other.

```
WWN Member Policy Types
```
The following policy types require members be specified by WWN address:

- FCS_POLICY
- SCC_POLICY

These policy types require members be specified as WWN strings, domain IDs, or switch names. If domain ID or switch names are used, the switches associated must be present in the fabric or the command fails.

**DCC_POLICY Members**

The DCC_POLICY_\_nnn is a list of devices associated with a specific switch and port combination. An empty DCC_POLICY does not stop access to the switch. The device is specified with a WWN string. The switch and port combination must be in the switch port format where switch can be specified as a WWN, a domain, or a switch name. port can be specified by port numbers separated by commas and enclosed in either brackets or parentheses; for example, (2, 4, 6). Ports enclosed in brackets include the devices currently attached to those ports.

The following examples illustrate several ways to specify the port values:

- (1-6) Selects ports 1 through 6.
- (*) Selects all ports on the switch.
- [3, 9] Selects ports 3 and 9 and all devices attached to those ports.
- [1-3, 5] Selects ports 1 through 3 and 5 and all devices attached to those ports.
- [*] Selects all ports on the switch and devices currently attached to those ports.

**Examples**

To add a member to the SCC_POLICY using the device WWN:

```
primaryfcs:admin> secPolicyAdd "SCC_POLICY", "12:24:45:10:0a:67:00:40"
Member(s) have been added to SCC_POLICY.
```


```
Member(s) have been added to DCC_POLICY_abc.
```

**See Also**
- distribute
- fddCfg
- secPolicyAbort
- secPolicyActivate
- secPolicyDelete
- secPolicyDump
- secPolicyRemove
- secPolicySave
secPolicyCreate

Creates a new security policy.

Synopsis  secPolicyCreate "name" [, "member;member..."]

Description Use this command to create a new policy and to edit Switch Connection Control (SCC), Device Connection Control (DCC), and Fabric Configuration Server (FCS) policies on the local switch. All policies can be created only once, except for the DCC_POLICY_nnn. Each DCC_POLICY_nnn must have a unique name. This command can be issued on all switches in the current fabric for SCC and DCC policies if they are not intended to be fabric-wide.

Adding members while creating a policy is optional. You can add members to a policy later, using the secPolicyAdd command.

Each policy corresponds to a management method. The list of members of a policy acts as an access control list for that management method. Before a policy is created, there is no enforcement for that management method, which is all access is granted. After a policy is created and a member is added to the policy, that policy is closed to all access except to included members. If all members are then deleted from the policy, all access is denied for that management access method.

All newly created policies are saved on the local switch only, unless the switch has a fabric-wide consistency policy for that policy.

Notes When FCS Policy is enabled, this command can be issued only from the Primary FCS switch.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

"name" Specify the name of the policy you want to create. Valid values for this operand are:

• DCC_POLICY_nnn
• SCC_POLICY
• FCS_POLICY

The specified policy name must be capitalized.

The DCC_POLICY_nnn name has the common prefix DCC_POLICY_ followed by a string of user-defined characters. These characters do not have to be capitalized like regular policy names. Valid values for DCC_POLICY_nnn are user-defined alphanumeric or underscore characters. The maximum length is 30 characters, including the prefix DCC_POLICY_.

secPolicyCreate DCC_POLICY "**" may be used to indicate DCC lockdown. This command creates a unique policy for each port in the fabric locking it down to the device connected or creating an empty policy to disallow any device to be connected to it. This can be done only when there are no other DCC policies defined on the switch.
"member" Specify one or more members to be included in the security policy. The member list must be enclosed in double quotation marks and members separated by semicolons. The member list must be separated from the name field by a comma and a space. Depending on the policy type, members are specified as follows:

**DCC_POLICY Members**

The DCC_Policy_nnn is a list of devices associated with a specific switch and port index combination. An empty DCC_POLICY does not stop access to the switch. The device is specified by its port WWN. The switch and port combination must be in the switch port format

switch can be specified using a WWN, domain, or switch name.

port can be specified by port numbers separated by commas and enclosed in either brackets or parentheses: for example, (2, 4, 6). Ports enclosed in brackets include the devices currently attached to those ports.

The following examples illustrate several ways to specify the port values:

- (1-6) Selects ports 1 through 6.
- (*) Selects all ports on the switch.
- [3, 9] Selects ports 3 and 9 and all devices attached to those ports.
- [1-3, 5] Selects ports 1 through 3 and 5 and all devices attached to those ports.
- [*] Selects all ports on the switch and devices currently attached to those ports.

**SCC_POLICY and FCC_POLICY Members**

This policy type requires member IDs to be specified as WWN strings, domains, or switch names. If domain or switch names are used, the switches associated must be present in the fabric or the command fails.

To add all switches in the current fabric as members of the policy, enter an asterisk enclosed in quotation marks (*) as the member value. This feature cannot be used by the other security commands.

**Examples**

To create an FCS policy:

```
primaryfcs:admin> secpolicycreate "FCS_POLICY", "3; 4"
FCS_POLICY has been created.
```

While creating the FCS policy, the local switch WWN is automatically included in the list.

Switches included in the FCS list are FCS switches and the remaining switches in the fabric are non-FCS switches. Out of the FCS list, the switch that is in the first position becomes the Primary FCS switch and the remaining switches become backup FCS switches. If the first switch in the FCS list is not reachable, the next switch becomes the Primary.


```
primaryfcs:admin> secpolicycreate "DCC_POLICY_ab_7",
DCC_POLICY_ab has been created.
```
To create a SCC policy in a Fabric with three switches:

1. Check if a policy exists.
   
   switch:admin> secpolicyshow

   ______________________________________________________
   | ACTIVE POLICY SET |
   | DEFINED POLICY SET |
   ______________________________________________________

2. Identify switches in the fabric.
   
   switch:admin> fabricshow

   Switch ID  Worldwide Name     Enet IP Addr   FC IP Addr     Name
   -----------------------------------------------
   2: fffc02 10:00:00:05:1e:39:5f:67 10.32.69.53 10.20.30.53 "NeptuneSec"
      fec0:60:69bc:60:260:69ff:fe80:d4a
   4: fffc04 10:00:00:05:1e:04:ef:0e 10.32.69.49 10.20.30.49 >"SW4900_Sec"
      fec0:60:69bc:54:205:1eff:fe04:ef0e
   200: fffcc8 10:00:00:05:1e:35:cd:ef 10.32.69.117 10.20.30.117 "nSW4100_98"

3. Create a SCC policy that includes switches with domain IDs 2 and 4.
   
   switch:admin> secpolicycreate "SCC_POLICY","2;4"
   SCC_POLICY has been created.

4. Activate the policy.
   
   switch:admin> secpolicyactivate
   About to overwrite the current Active Policy Set.
   ARE YOU SURE (yes, y, no, n): [no] y
   secpolicyactivate command was completed successfully.

To create an SCC policy that includes all switches in the fabric:

   switch:admin> secpolicycreate "SCC_POLICY",*
   SCC_POLICY has been created.

See Also   fddCfg, distribute, secPolicyAbort, secPolicyActivate, secPolicyAdd, secPolicyDelete, secPolicyDump, secPolicyRemove, secPolicySave, secStatsShow
secPolicyDelete

Deletes an existing security policy.

Synopsis

secPolicyDelete name

Description

Use this command to delete an existing security policy from the defined security database. Run
secPolicyActivate to delete the policies from the active security policy list. Deleting a security policy
does not cause any traffic disruption.

Each policy corresponds to a management method. The list of members of a policy acts as an
access control list for that management method. Before a policy is created, there is no
enforcement for that management method; all access is granted. After a policy has been created
and a member has been added to the policy, that policy becomes closed to all access except from
included members. If the policy is deleted all access is granted.

Notes

When an FCS policy is enabled, this command can be issued only from the Primary FCS switch.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

The following operand is required:

"name" Specify the name of a security policy to delete. The policy name must be
capitalized. Quotation marks are optional. Once a security policy is deleted,
fabric-wide switch access through that method is unrestricted.

Valid security policy names are:

DCC_POLICY_nnn

Deletes specified Device Connection Control (DCC) policy. The
DCC_POLICY_nnn name has the common prefix DCC_POLICY_ followed by a
string of user-defined characters. These characters do not have to be
capitalized.

ALL_DCC_POLICY

Deletes all DCC policies from the defined policy list.

SCC_POLICY

Deletes the Switch Connection Control (SCC) policy from the defined policy
list.

FCS_POLICY

Deletes the Fabric Configuration Server (FCC) policy from the defined policy
list.

Examples

To delete an existing security policy:

switch:admin> secPolicyDelete "DCC_POLICY_ab1"
About to delete policy DCC_POLICY_ab1.
Are you sure [yes, y, no, n]: [no] y
DCC_POLICY_ab1 has been deleted.

To delete all existing DCC policies in the fabric:

primaryfcs:admin> secPolicyDelete ALL_DCC_POLICY
About to clear all the DCC policies
ARE YOU SURE  [yes, y, no, n]: [no] y
secPolicyDelete

See Also  secPolicyAbort, secPolicyActivate, secPolicyAdd, secPolicyCreate, secPolicyDump,
secPolicyRemove, secPolicySave, secPolicyShow
secPolicyDump

Displays all members of existing security policies.

Synopsis  
secpolicydump ["listtype"] ["name"]

Description  
Use this command to display, without page breaks, the members of an existing policy in the active and defined (saved) databases.

Notes  
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command can be issued from all FCS switches in the fabric.

Operands  
This command has the following operands:

"listtype" Specify the database to display. The name for an active database is "Active"; the name for a saved, defined database is "Defined". If not specified, all databases are displayed.

"name" Specify a security policy. Valid values for this operand are:

• DCC_POLICY_nnn
• FCS_POLICY
• SCC_POLICY

The specified policy name must be capitalized.

The DCC_POLICY_nnn name has the common prefix DCC_POLICY_ followed by a string of user-defined characters. These characters do not have to be capitalized like regular policy names.

This operand is optional.

Examples  
To display all security policy information from all databases (active, updating, and defined), without page breaks:

switch:admin> secpolicydump

-------------
DEFINIED POLICY SET
FCS_POLICY
Pos Primary WWN DId swName
-------------
1 Yes 10:00:00:60:69:30:15:5c 1 primaryfcs
2 No 10:00:00:60:69:30:1e:62 4 switch

-------------
ACTIVE POLICY SET
FCS_POLICY
Pos Primary WWN DId swName
-------------
1 Yes 10:00:00:60:69:30:15:5c 1 primaryfcs
2 No 10:00:00:60:69:30:1e:62 4 switch

secPolicyDump

See Also  secPolicyAbort, secPolicyActivate, secPolicyAdd, secPolicyCreate, secPolicyDelete,
secPolicyRemove, secPolicySave, secPolicyShow
secPolicyFCSMove

Moves a member in the FCS policy.

Synopsis

    secpolicyfcsmove [from, to]

Description

Use this command to move an FCS member from one position to another position in the FCS list. Only one FCS can be moved at a time. The first FCS switch in the list that is also present in the fabric is the Primary FCS. FCS Policy must be enabled on the switch to execute this command.

Notes

If a backup FCS is moved to the first position, it becomes the primary FCS after activation.

FCS policy must be enabled to execute this command, and the command must be issued from the primary FCS switch.

Execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

    from         Specify the position of the FCS switch you want to move.
    to           Specify the position to which you want to move the FCS switch.

Examples

To move the backup FCS switch from position 2 to position 3 in the FCS list (interactively):

    switch:admin> secpolicyfcsmove
    Pos   Primary WWN                     DId swName.
    ==================================================
    1   Yes     10:00:00:60:69:10:02:18   1 switch5.
    2   No      10:00:00:60:69:00:00:5a   2 switch60.
    3   No      10:00:00:60:69:00:00:13   3 switch73.

    Please enter position you'd like to move from : (1..3) [1] 2
    Please enter position you'd like to move to  : (1..3) [1] 3

    ______________________________________________________
    DEFINED POLICY SET
    FCS_POLICY
    Pos   Primary WWN                     DId swName
    ______________________________________________________
    1   Yes     10:00:00:60:69:10:02:18   1 switch5.
    2   No      10:00:00:60:69:00:00:13   3 switch73.
    3   No      10:00:00:60:69:00:00:5a   2 switch60.

To move Backup FCS switch from position 3 to position 1 in the FCS list (non-interactively):

    switch:admin> secpolicyshow

  ______________________________________________________
  ACTIVE POLICY SET
  1   Yes     10:00:00:05:1e:39:5f:67   2 switch1
  2   No      10:00:00:05:1e:04:ef:0e   4 switch2
  3   No      10:00:00:05:1e:35:cd:ef 200 switch3
switch:admin> secpolicyfcsmove 3,1

______________________________
DEFINED POLICY SET
FCS_POLICY
Pos  Primary WWN                     DId swName
-----------------------------------------------
1    No       10:00:00:05:1e:35:cd:ef 200 switch3
2    Yes      10:00:00:05:1e:39:5f:67  2 switch1
3    No       10:00:00:05:1e:04:ef:0e   4 switch2

switch:admin> secpolicyactivate
About to overwrite the current Active Policy Set.
ARE YOU SURE (yes, y, no, n): [no] y
secpolicyactivate command was completed successfully.

switch:admin> secpolicyshow

______________________________
ACTIVE POLICY SET
FCS_POLICY
Pos  Primary WWN                     DId swName
-----------------------------------------------
1    Yes      10:00:00:05:1e:35:cd:ef 200 switch3
2    No       10:00:00:05:1e:39:5f:67  2 switch1
3    No       10:00:00:05:1e:04:ef:0e   4 switch2

See Also  secpolicyAbort, secpolicyActivate, secpolicyAdd, secpolicyCreate, secpolicyDelete, secpolicyDump, secpolicyRemove, secpolicySave, secpolicyShow
secPolicyRemove

Removes members from an existing security policy.

Synopsis  secpolicyremove "name", "member[,member...]"

Description Use this command to remove one or more members from an existing security policy. It is not possible to remove all members from the FCS_POLICY; the local switch WWN cannot be deleted from the FCS policy. In the case of SCC policy, if it is empty after removing all members, all access to the switch itself would be disallowed.

Notes If FCS policy is enabled, this command must be issued from the primary FCS switch.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

"name" Specify the name of an existing policy you want to remove members from. Valid values for this operand are:
- DCC_POLICY_nnn
- FCS_POLICY
- SCC_POLICY

The specified policy name must be capitalized.
The DCC_POLICY policy name has the common prefix DCC_POLICY_ followed by a string of user-defined characters. These characters do not have to be capitalized like regular policy names, but are case-sensitive.

This operand is required.

"member" Specify a member or list of members to delete from the policy. The list must be enclosed in quotation marks; members must be separated by semicolons. This operand is required. Depending on the policy type, members can be specified using IP address, WWN, domain, or switch name.

WWN Member Policy Types
The following policy types require members be specified by WWN address:
- FCS_POLICY
- SCC_POLICY

These policy types require member IDs be specified as WWN strings, domains, or switch names. If domain or switch names are used, the switches associated must be present in the fabric or the command fails.

DCC_POLICY Members
The DCC_Policy_nnn is a list of devices associated with a specific switch and port combination. The device is specified with a WWN string. The switch and port combination must be specified in the switch port format where switch can be specified by switch WWN, domain, or switch name. The port
The secPolicyRemove command removes members from a security policy. The parameter can be specified by port number separated by commas, and enclosed in either brackets or parentheses: for example, (2, 4, 6). Ports enclosed in brackets include the devices currently attached to those ports. The following examples illustrate several ways to specify the port values:

- (1-6) Selects ports 1 through 6.
- (*) Selects all ports on the switch.
- [3, 9] Selects ports 3 and 9 and all devices attached to those ports.
- [1-3, 5] Selects ports 1 through 3 and 5 and all devices attached to those ports.
- [*] Selects all ports on the switch and devices currently attached to those ports.

**Examples**

To remove a member that has a WWN of `12:24:45:10:0a:67:00:40` from SCC policy:

```
switch:admin> secpolicyremove "SCC_POLICY", "12:24:45:10:0a:67:00:40"
Member(s) have been removed from SCC_POLICY.
```

**See Also**

secPolicyAbort, secPolicyActivate, secPolicyAdd, secPolicyCreate, secPolicyDelete, secPolicyDump, secPolicySave, secStatsShow
secPolicySave

Saves a defined security policy to persistent memory.

Synopsis   secpolicysave

Description Use this command to save a defined security policy to persistent memory. Secpolicysave saves the modified SCC, DCC, and FCS policies to the Defined Security Policy Set on the local switch.

Notes      This command is always a local switch operation. A fabric-wide consistency configuration does not affect the behavior of this command.
            The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands   none

Example    To save a defined policy set to persistent memory:
            switch:admin> secpolicysave
            secpolicysave command was completed successfully.

See Also   fddCfg, secPolicyAbort, secPolicyActivate, secPolicyAdd, secPolicyCreate, secPolicyDelete, secPolicyDump, secPolicyRemove, secStatsShow
secPolicyShow

Displays an existing security policy including the FCS policy.

Synopsis

```
secpolicyshow ["policy_set" [, "name"]]
```

Description

Use this command to display the members of an existing policy in the Active or Defined security policy set. The command can be issued from all FCS switches.

This command displays the policy database one page at a time. Use secPolicyDump to display the policy database without page breaks.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

```
"policy_type" Specify which policy to display, in quotation marks. Valid values are "Active", "Defined", or an asterisk (*) for both Active and Defined. This operand is optional. If not specified, all databases are displayed.
"name" Specify the name of the security policy you want to view, in quotation marks. This operand is optional. Valid values for this operand are:
```

```
DCC_POLICY_nnn
FCS_POLICY
SCC_POLICY
```

The specified policy name must be capitalized.

The DCC_POLICY_nnn name has the common prefix DCC_POLICY_ followed by a string of user-defined characters. These characters do not have to be capitalized like regular policy names, but they are case-sensitive.

Examples

To display all security policies from active databases:

```
switch:admin> secpolicyshow "active"
```

```
ACTIVE POLICY SET
```

```
FCS_POLICY
 Pos Primary WWN DI D swName
```

```
1 Yes 10:00:00:60:69:30:15:5c 1 primaryfcs
2 No 10:00:00:60:69:30:1e:62 4 switch
```
To display all security policies from defined databases:

```
switch:admin> secpolicyshow "defined"

DEFINIED POLICY SET

FCS_POLICY
Pos Primary WWN DI d swName
--
1 Yes 10:00:00:60:69:30:15:5c 1 primaryfcs
2 No 10:00:00:60:69:30:1e:62 4 switch
```

See Also  fddCfg, secPolicyAbort, secPolicyActivate, secPolicyAdd, secPolicyCreate, secPolicyDelete, secPolicyDump, secPolicyRemove, secPolicySave
secStatsReset

Resets one or all security statistics to 0.

Synopsis  secstatsreset [name],* domain[:domain]*

Description Use this command to reset one or all security statistics to 0. This command can be issued on any
switch to reset the security statistics on the local switch or chassis. If FCS policy is enabled and
secStatsReset is issued on the primary FCS switch, this command can reset security statistics for
any or all switches in the fabric.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands When invoked without operands, this command displays the security statistics on the local switch
or chassis. The following operands are optional:

name Specify the name of a security statistic you would like to reset. The specified
policy name must be capitalized. If executed on the primary FCS, specify an
asterisk (*) to reset all security policies. Valid values for this operand are:

- TELNET_POLICY
- HTTP_POLICY
- API_POLICY
- RSNMP_POLICY
- WSNMP_POLICY
- SES_POLICY
- MS_POLICY
- SERIAL_POLICY
- FRONTPANEL_POLICY
- SCC_POLICY
- DCC_POLICY
- LOGIN
- INVALID_TS
- INVALID_SIGN
- INVALID_CERT
- AUTH_FAIL
- SLAP_BAD_PKT
- TS_OUT_SYNC
- NO_FCS
- INCOMP_DB
- ILLEGAL_CMD
To access DCC policies, enter DCC_POLICY. Violations are not tracked for individual DCC policies. The statistics for all DCC_POLICY violations are grouped together.

**domain(s)** Specify a list of domain IDs on which to reset the security statistics. Specify an asterisk (*) to represent all switches in the fabric or specify a list of domains, separated by semicolons and enclosed in quotation marks. This option can only be executed when FCS policy is enabled and when the command is issued from the primary FCS switch. When domain is specified, the name operand is required.

**Examples**

To reset all statistics on the local switch:

```bash
switch:admin> seccstatsreset
About to reset all security counters.
ARE YOU SURE (yes, y, no, n):[no] y
Security statistics reset to zero.
```

To reset DCC_POLICY statistics on domains 1 and 69:

```bash
primaryfcs:admin> seccstatsreset DCC_POLICY, "1;69"
Reset DCC_POLICY statistic.
```

**See Also**

secStatsShow
secStatsShow

Displays one or all security statistics.

Synopsis  

secstatsshow [name[, "domain[;domain"]]]

Description  

Use this command to display one or all security statistics. This command can be issued on any switch to display local security statistics. If FCS policy is enabled and secStatsShow is issued on the primary FCS switch, this command can retrieve and display the security statistics for any or all switches in the fabric.

Operands  

When invoked without operands, this command displays the security statistics on the local switch or chassis. The following operands are optional:

name  

Specify the name of the security statistic you want to view. The specified policy name must be capitalized. If executed on the primary FCS, specify an asterisk (*) to represent all security policies in the fabric. Valid values for this operand are:

- TELNET_POLICY
- HTTP_POLICY
- API_POLICY
- RSNMP_POLICY
- WSNMP_POLICY
- SES_POLICY
- MS_POLICY
- SERIAL_POLICY
- FRONT_PANEL_POLICY
- SCC_POLICY
- DCC_POLICY
- LOGIN
- INVALID_TS
- INVALID_SIGN
- INVALID_CERT
- AUTH_FAIL
- SLAP_BAD_PKT
- TS_OUT_SYNC
- NO_FCS
- INCOMP_DB
- ILLEGAL_CMD
To access DCC policies, enter DCC_POLICY. Violations are not tracked for individual DCC policies. The statistics for all DCC_POLICY violations are grouped together.

**domain**

Specify one or more domains for which to display the security statistics. Specify an asterisk (*) in quotation marks to represent all switches in the fabric or specify a list of domains separated by semicolons. This option can only be executed when FCS policy is enabled and the command is issued from the primary FCS switch. When **domain** is specified, the **name** operand is required.

**Examples**

To display the MS_POLICY statistics on the local switch or chassis:

```
switch:admin> secstatsshow MS_POLICY
Name Value

MS 20
```

To display statistic information for TELNET_POLICY for all switches in the fabric from the primary FCS switch.

```
primaryfsc:admin> secstatsshow TELNET_POLICY, "*

Fabric Statistics:

Domain 1:
Name Value

TELNET_POLICY 0

Domain 69:
Name Value

TELNET_POLICY 0

Domain 70:
Name Value

TELNET_POLICY 0
```

**See Also**

secStatsReset
sensorShow

Displays sensor readings.

Synopsis  
sensorshow

Description  
Use this command to display the current temperature, fan, and power supply status and readings from sensors located on the switch. The actual location of the sensors varies, depending on the switch type.

Operands  
none

Examples  
To view all sensor values:

```
switch:admin> sensorshow
sensor 1: (Temperature) is Ok, value is 39 C
sensor 2: (Temperature) is Absent
sensor 3: (Temperature) is Absent
sensor 4: (Temperature) is Absent
sensor 5: (Temperature) is Ok, value is 26 C
sensor 6: (Temperature) is Ok, value is 27 C
sensor 7: (Fan) is Ok, speed is 2537 RPM
sensor 8: (Fan) is Ok, speed is 2537 RPM
sensor 9: (Fan) is Ok, speed is 2556 RPM
sensor 10: (Power Supply) is Ok
sensor 11: (Power Supply) is Absent
sensor 12: (Power Supply) is Ok
sensor 13: (Power Supply) is Absent
```

See Also  
fanShow, tempShow
**setDbg**

Sets the debug level of the specified module.

**Synopsis**

```
setdbg [module_name][level]
```

**Description**

Use this command to set the debug level of a specified module. Debug levels filter the display of debug messages to the serial console. By default, no debug messages are displayed.

High debug level values can generate a large volume of messages, degrading the system response time.

The set of supported modules and their current debug levels are displayed by the command `dbgShow`.

**Note**

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

This command has the following operands:

- `module_name` Specify the name of the module for which you want to view the debug and verbosity levels. Module names are case-sensitive. This operand is optional; if omitted, this command displays the debug and verbose level for all modules.

- `level` Specify the debug level for the specified module (0 to 9). A zero (0) value (default) specifies that no messages are to display. Higher values cause more messages from that module to display. This operand is optional; if omitted, this command displays the current debug and verbose level of the specified module.

**Examples**

To set the debug level for a module named NS to value 3:

```
switch:admin> setdbg NS 3
switch:admin> dbgshow NS
Module NS, debug level = 3, verbose level = 0
```

**See Also**

`dbgShow`
setModem

Enables or disables modem dial-in to a control processor (CP).

Synopsis  setmodem [-e] | [-d]

Description Use this command to enable or disable modem dial-in to a CP on those systems that support
modem dial-in. When modem dial-in is enabled, you can log in to a CP through a modem, and a
modem attached to the CP accepts the call. When modem dial-in is disabled, the modem attached
to the CP does not accept the call. When entered with no operands, the command displays the
current state of the modem dial-in.

Modem dial-in must be through a Hayes-compatible modem attached to a CP modem serial port.
When the CP is active and dial-in is enabled, the modem is configured to answer an incoming call
on the first ring. When the CP is standby and dial-in is enabled, the modem is configured to answer
an incoming call on the seventh ring.
In the recommended configuration, a separate modem is connected to each modem port of CP0 and CP1. These modems connect to the telephone outlet through an RJ-11 Y-adapter and standard telephone wire (see Figure) is attached to the wall outlet, as shown in the figure.

During an incoming call, both modems ring and the one connected to the active CP answers the call first. If for any reason the active modem fails to answer, the caller is logged in to the standby CP.

**Note** The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

This command is not supported on the Brocade DCX backbone.

**Operands** The optional operands are as follows:

- `-e` Enables modem dial-in.
- `-d` Disables modem dial-in.

**Examples** To disable modem dial-in to a CP:

```
switch:admin> setmodem -d
disabling modem, please wait, this can take a couple of minutes...
modem disabled
```

**See Also** none
setVerbose

Specifies module verbose level.

Synopsis setverbose [module_name][level]

Description Use this command to set the verbose level of the specified module. These levels filter the display of
the debug message to the serial console. By default, no debug messages are displayed.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

module_name Specify the name of the module for which the verbose level is to be set;
module names are case-sensitive.

level Specify the verbose level (0 to 9).

Examples To set the verbose level of a module named NS to value 3:

switch:admin> setverbose NS 3
switch:admin> dbgshow NS
Module NS, debug level = 0, verbose level = 3

See Also dbgShow, setDbg
sfpShow

Displays Small Form-factor Pluggable SFP information.

**Synopsis**

```
sfpshow [[slotnumber/geportnumber | -all]
```

**Description**

Use this command to display information about Serial Identification SFPs (also known as module definition "4" SFPs). These SFPs provide extended information that describes the SFP’s capabilities, interfaces, manufacturer, and other information.

Use this command with no operand to display a summary of all SFPs in the switch. The summary displays the SFP type (refer to `switchShow` for an explanation of the two-letter codes) and, for serial ID SFP, the vendor name and SFP serial number.

Use this command with the slotnumber and portnumber operands to display detailed information about the serial ID SFP in the specified port. In this mode, this command displays values described in the “Gigabit Interface Converter” spec by Sun Microsystems, et al. Use the `-all` operand to display detailed information for all available SFPs.

For Finisar "smart" SFPs, five additional fields display: module temperature, voltage, received optical power, transmitted optical power (longwave only), and laser diode drive current.

**Notes**

The `sfpShow` command does not reflect changes in the `sfpShow` output if any SFPs are replaced or removed while a port or a switch is disabled.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

This command has the following operands:

- **slotnumber**
  For bladed systems only, specify the slot number of the port to display, followed by a slash (/)

- **portnumber**
  Specify the number of the port for which to display the SFP information, relative to its slot for bladed systems. Use `switchShow` for a list of valid ports. This operand is optional; if omitted, this command displays a summary of all SFPs on the switch.

- **-all**
  Displays detailed data for all available SFPs on the switch. This operand is not compatible with slotnumber/portnumber operands.

**Examples**

To display SFP summary information:

```
switch:admin> sfpshow

Area 0: id (id) Vendor: Serial No: Serial No: H1149T2
Area 1: id (sw) Vendor: FINISAR CORP. Serial No: H112TUD
Area 2: id (sw) Vendor: FINISAR CORP. Serial No: H11QET9
Area 3: id (sw) Vendor: IBM Serial No: 21P53380BR0BE
Area 4: id (sw) Vendor: IBM Serial No: 21P53380BS18A
Area 5: id (sw) Vendor: IBM Serial No: 21P53380BS170
Area 7: id (sw) Vendor: IBM Serial No: 21P53380BS26B
Area 8: --
Area 9: --
Area 10: --
Area 11: --
```

Fabric OS Command Reference
53-1000599-02
Area 12: --
Area 13: --
Area 14: --
Area 15: --
Area 16: id (sw) Vendor: AGILENT Serial No: 0105091301045274
(output truncated)

To display detailed SFP information for a Finisar “smart” SFP:

switch:user> sfpshow 1/3
Identifier: 3 SFP
Connector: 7 LC
Transceiver: 050c402000000000 100,200_MB/s M5,M6 sw Inter_dist
Encoding: 1 8B10B
Baud Rate: 21 (units 100 megabaud)
Length 9u: 0 (units 100 meters)
Length 50u: 30 (units 10 meters)
Length 62.5u: 15 (units 10 meters)
Length Cu: 0 (units 1 meter)
Vendor Name: FINISAR CORP.
Vendor OUI: 00:90:65
Vendor PN: FTRJ-8519-7D-2.5
Vendor Rev:
Options: 0012 Loss_of_Sig,Tx_Disable
BR Max: 0
BR Min: 0
Serial No: H11QET9
Date Code: 020429
Temperature: 50 Centigrade
Current: 10634 mAmps
Voltage: 3164.8 mVolts
RX Power: 199.6 uWatts
TX Power: 235.2 uWatts

To display detailed information for GbE port 0 on a Brocade 7500:

switch:admin> sfpshow ge0
Identifier: 3 SFP
Connector: 7 LC
Transceiver: 050c402000000000 100,200_MB/s M5,M6 sw Inter_dist
Encoding: 1 8B10B
Baud Rate: 21 (units 100 megabaud)
Length 9u: 0 (units km)
Length 9u: 0 (units 100 meters)
Length 50u: 30 (units 10 meters)
Length 62.5u: 15 (units 10 meters)
Length Cu: 0 (units 1 meter)
Vendor Name: AGILENT
Vendor OUI: 00:30:d3
Vendor PN: HFBR-5720L
Vendor Rev:
Wavelength: 0 (units nm)
Options: 001a Loss_of_Sig,Tx_Fault,Tx_Disable
BR Max: 0
BR Min: 0
Serial No: A00107001
Date Code: 020313
To display detailed information for GbE port 0 on an FR4-18i router blade:

```
CS48000:admin> sfpshow 10/ge0
Identifier: 3 SFP
Connector: 7 LC
Transceiver: 050c402000000000 100,200_Mb/s M5,M6 sw Inter_dist
Encoding: 1 8B10B
Baud Rate: 21 (units 100 megabaud)
Length 9u: 0 (units km)
Length 9u: 0 (units 100 meters)
Length 50u: 30 (units 10 meters)
Length 62.5u: 15 (units 10 meters)
Length Cu: 0 (units 1 meter)
Vendor Name: AGILENT
Vendor OUI: 00:30:d3
Vendor PN: HFBR-5720L
Vendor Rev:
Wavelength: 0 (units nm)
Options: 001a Loss_of_Sig,Tx_Fault,Tx_Disable
BR Max: 5
BR Min: 5
Serial No: A00143427
Date Code: 020511
```

To display all SFP information:

```
switch:user> sfpshow -all

Port 0:

Identifier: 3 SFP
Connector: 7 LC
Transceiver: 050c402000000000 100,200_Mb/s M5,M6 sw Inter_dist
Encoding: 1 8B10B
Baud Rate: 21 (units 100 megabaud)
Length 9u: 0 (units km)
Length 9u: 0 (units 100 meters)
Length 50u: 30 (units 10 meters)
Length 62.5u: 15 (units 10 meters)
Length Cu: 0 (units 1 meter)
Vendor Name: IBM
Vendor OUI: 08:00:5a
Vendor PN: IBM42P21SNY
Vendor Rev: AA10
Wavelength: 0 (units nm)
Options: 001a Loss_of_Sig,Tx_Fault,Tx_Disable
BR Max: 5
BR Min: 5
Serial No: 21P7053164529
Date Code: 01060501

Port 1:

Identifier: 3 SFP
Connector: 7 LC
Transceiver: 050c402000000000 100,200_Mb/s M5,M6 sw Inter_dist
Encoding: 1 8B10B
Baud Rate: 21 (units 100 megabaud)
```
sfpShow

Length 9u: 0 (units km)
Length 9u: 0 (units 100 meters)
Length 50u: 30 (units 10 meters)
Length 62.5u: 15 (units 10 meters)
Length Cu: 0 (units 1 meter)
Vendor Name: IBM
Vendor OUI: 08:00:5a
Vendor PN: IBM42P21SNY
Vendor Rev: AA10
Wavelength: 0 (units nm)
Options: 001a Loss_of_Sig,Tx_Fault,Tx_Disable
BR Max: 5
BR Min: 5
Serial No: 21P70530005BW
Date Code: 01062301

(output truncated)

See Also switchShow
shellFlowControlDisable

Disables XON/XOFF flow control on the console serial port.

Synopsis  shellFlowControlDisable

Description Use this command to disable XON/XOFF flow control on the console serial port. Flow control is
disabled by default.

Because this command changes the flow control on the console serial port, it must be executed
from a session that is logged in from the console serial port. This command cannot run from a
Telnet session.

This setting is saved in the configuration database; therefore, it is persistent across reboots and
power cycles.

Notes On dual-CP systems, a reboot on the standby CP is required for this command to take effect. No
action is required on the active CP.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands none

Examples To disable flow control:

    switch:admin> shellFlowControlDisable
    Disabling flow control
    flow control is now disabled

See Also shellFlowControlEnable
**shellFlowControlEnable**

Enables XON/XOFF flow control on the console serial port.

**Synopsis**

shellflowcontrolenable

**Description**

Use this command to enable XON/XOFF flow control to the shell task. Flow control is disabled by default.

Because this command changes the flow control on the console serial port, it must be executed from a session that is logged in from the console serial port. This command cannot run from a Telnet session.

This setting is saved in the configuration database; therefore, it is persistent across reboots and power cycles.

**Notes**

On dual-CP systems, a reboot on the standby CP is required for this command to take effect. No action is required on the active CP.

If flow control is enabled and if the console output is suspended for an extended period of time, the switch might reboot. It is recommended to disable the flow control, using shellFlowControlDisable.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

none

**Examples**

To enable flow control:

```
switch:admin> shellflowcontrolenable
Enabling flowcontrol
flow control is now enabled
```

**See Also**

shellFlowControlDisable
slotPowerOff

Removes power from a slot.

Synopsis slotPowerOff slotnumber

Description Use this command to turn off the power to a blade unit. The slot must have a valid blade unit present and the blade unit must be of a type that can be powered off.

Notes The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

slotnumber Specify the slot number of the blade to be powered down. This operand is required.

Examples To power off blade unit 3:

switch:admin> slotPowerOff 3
Slot 3 is being powered off

See Also powerOffListSet, powerOffListGroup, slotPowerOn, slotShow
slotPowerOn

Restores power to a slot.

Synopsis  slotpoweron slotnumber

Description Use this command to turn on the power to a blade unit. The slot must have a valid blade unit present and the blade unit must be currently powered off. The slotShow command reports such slots as being in the state of INSERTED, NOT POWERED ON.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

slotnumber Specify the slot number of the blade to be powered on. This operand is required.

Examples To power on blade unit 3:

    switch:admin> slotpoweron 3
    Powering on slot 3.

See Also slotPowerOff, slotShow
slotShow

Displays the status of all slots in the system.

Synopsis  slotShow [-m] [-p]

Description Use this command to display the current status of each slot in the system. Depending on the option used, the command retrieves information on Blade Type, Blade ID, Status, Brocade Model Name, and power usage for each slot in the switch or chassis.

When no operand is specified, slotShow displays Blade Type, Blade ID, and Status for each slot. In this view, the fields and their possible values are as follows:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Displays the physical slot number.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade Type</td>
<td>Displays the blade type as one of the following:</td>
</tr>
<tr>
<td>SW BLADE</td>
<td>The blade is a switch.</td>
</tr>
<tr>
<td>CP BLADE</td>
<td>The blade is a control processor.</td>
</tr>
<tr>
<td>CORE BLADE</td>
<td>The blade is a core switch blade.</td>
</tr>
<tr>
<td>AP BLADE</td>
<td>The blade is an application processor.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>The blade not present or its type is not recognized.</td>
</tr>
<tr>
<td>ID</td>
<td>Displays the blade type ID as one of the following:</td>
</tr>
<tr>
<td>16</td>
<td>CP4 control processor blade</td>
</tr>
<tr>
<td>17</td>
<td>FC4-16 port blade</td>
</tr>
<tr>
<td>18</td>
<td>FC4-32 port blade</td>
</tr>
<tr>
<td>24</td>
<td>FR4-18i port blade</td>
</tr>
<tr>
<td>31</td>
<td>FC4-16IP port blade</td>
</tr>
<tr>
<td>33</td>
<td>FA4-18 port blade</td>
</tr>
<tr>
<td>36</td>
<td>FC4-48 port blade</td>
</tr>
<tr>
<td>39</td>
<td>FC10-6 port blade</td>
</tr>
<tr>
<td>50</td>
<td>CP8 control processor blade</td>
</tr>
<tr>
<td>52</td>
<td>Core8 switch blade</td>
</tr>
<tr>
<td>37</td>
<td>FC8-16 port blade</td>
</tr>
<tr>
<td>55</td>
<td>FC8-32 port blade</td>
</tr>
<tr>
<td>51</td>
<td>FC8-48 port blade</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the status of the blade as one of the following:</td>
</tr>
<tr>
<td>VACANT</td>
<td>The slot is empty.</td>
</tr>
<tr>
<td>INSERTED, NOT POWERED ON</td>
<td>The blade is present in the slot but is turned off.</td>
</tr>
<tr>
<td>POWERING UP</td>
<td>The blade is present and powering on.</td>
</tr>
<tr>
<td>LOADING</td>
<td>The blade is present, powered on, and loading the initial configuration.</td>
</tr>
</tbody>
</table>
slotShow

DIAG RUNNING POST1
The blade is present, powered on, and running the POST (power-on self-test).

DIAG RUNNING POST2
The blade is present, powered on, and running the pre-boot power on self tests.

INITIALIZING The blade is present, powered on, and initializing hardware components.

ENABLED The blade is on and fully enabled.

ENABLED (User Ports Disabled)
The blade is on but the external ports have been disabled with the `bladeDisable` command.

ENABLED (SAS Virtualization Disabled)
The blade is on, but due to an incompatibility between the FOS image and the SAS or Application image, the SAS Virtualization services are disabled. Only applies to the FA4-18 blade.

DISABLED The blade is powered on but disabled.

FAULTY The blade is faulty because an error was detected.

UNKNOWN The blade is inserted but its state cannot be determined.

Operands
This command supports the following operands:

-p In addition to the basic slot status view, displays the following information about power consumption:
  • Direct current (DC) power consumption for each Blade in Watts.
  • Total alternate current (AC) Power Consumption in Watts.
  • AC efficiency, as a percentage of total and BTU.
  • Power efficiency in Watts/port and Watts/Gb.

-m In addition to the basic slot status view, displays the Brocade model name for each blade.

Examples
To display a basic view of all slots and their status:

```
switch:user> slotshow
Slot Blade Type ID Status

 1 SW BLADE 51 FAULTY
 2 SW BLADE 51 DISABLED
 3 SW BLADE 55 ENABLED(User Ports Disabled)
 4 SW BLADE 51 DIAG RUNNING POST2
 5 CORE BLADE 52 ENABLED
 6 CP BLADE 50 ENABLED
 7 CP BLADE 50 ENABLED
 8 CORE BLADE 52 ENABLED
 9 UNKNOWN VACANT
10 AP BLADE 33 LOADING
11 SW BLADE 55 DIAG RUNNING POST1
12 SW BLADE 51 INSERTED, NOT POWERED ON 1
```
To display power consumption information:

```
switch:user> slotshow -p
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade Type</th>
<th>ID</th>
<th>DC Power</th>
<th>Status</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW BLADE</td>
<td>17</td>
<td>33</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SW BLADE</td>
<td>36</td>
<td>73</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SW BLADE</td>
<td>39</td>
<td>120</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AP BLADE</td>
<td>31</td>
<td>140</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CP BLADE</td>
<td>16</td>
<td>63</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CP BLADE</td>
<td>16</td>
<td>63</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AP BLADE</td>
<td>31</td>
<td>140</td>
<td>ENABLED</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>UNKNOWN</td>
<td></td>
<td>-</td>
<td>VACANT</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>UNKNOWN</td>
<td></td>
<td>-</td>
<td>VACANT</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>UNKNOWN</td>
<td></td>
<td>-</td>
<td>VACANT</td>
<td></td>
</tr>
</tbody>
</table>

Total AC Power Consumption:
- 852 watts AC @ 90% efficiency (2908 BTU)

Power Efficiency:
- 9.91 watts per port, 2.48 watts per Gb

To display Brocade model names for each blade in the chassis:

```
switch:user> slotshow -m
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Blade Type</th>
<th>ID</th>
<th>Model Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AP BLADE</td>
<td>33</td>
<td>FA4-18</td>
<td>ENABLED</td>
</tr>
<tr>
<td>2</td>
<td>SW BLADE</td>
<td>55</td>
<td>FC8-32</td>
<td>ENABLED</td>
</tr>
<tr>
<td>3</td>
<td>SW BLADE</td>
<td>37</td>
<td>FC8-16</td>
<td>ENABLED</td>
</tr>
<tr>
<td>4</td>
<td>SW BLADE</td>
<td>39</td>
<td>FC10-6</td>
<td>ENABLED</td>
</tr>
<tr>
<td>5</td>
<td>CORE BLADE</td>
<td>52</td>
<td>CORE8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>6</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>7</td>
<td>CP BLADE</td>
<td>50</td>
<td>CP8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>8</td>
<td>CORE BLADE</td>
<td>52</td>
<td>CORE8</td>
<td>ENABLED</td>
</tr>
<tr>
<td>9</td>
<td>SW BLADE</td>
<td>37</td>
<td>FC8-16</td>
<td>ENABLED</td>
</tr>
<tr>
<td>10</td>
<td>SW BLADE</td>
<td>51</td>
<td>FC8-48</td>
<td>ENABLED</td>
</tr>
<tr>
<td>11</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td>VACANT</td>
</tr>
<tr>
<td>12</td>
<td>SW BLADE</td>
<td>51</td>
<td>FC8-48</td>
<td>ENABLED</td>
</tr>
</tbody>
</table>

See Also bladeDisable, bladeEnable, chassisShow, slotPowerOff, slotPowerOn
snmpConfig

Manages the SNMP agent configuration.

Synopsis

```
snmpConfig --show | --set | --default [snmpv1 | snmpv3 | accessControl | mibCapability | systemGroup | seclevel]
```

Description

Use this command to manage the configuration of the SNMP agent in the switch. The configuration includes SNMPv1 and SNMPv3 configuration, access control list (ACL), MIB capability, system group, and security level settings. The command supports set, reset to default, and display operations.

All values successfully changed by this command take effect immediately and are persistent across power cycles and reboots.

Notes

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command supports the following operands:

```
--show

Displays the SNMP agent configuration data of the specified category.
```

```
--set

Sets the SNMP agent configuration data of the specified category. This operand displays the current settings and then prompts you to change the values for each parameter.
```

```
--default

Sets the SNMP agent configuration data for a specified item to the default values. Generally, these default values might be available in the configuration database. It sets to factory default settings if the SNMP agent configuration parameters are not available in the configuration database.
```

```
--show, --set, and --default support the following arguments:

snmpv1

Selects SNMPv1-related configuration parameters. These parameters include the community string, trap recipient IP address, and trap severity level associated with each trap recipient IP address.

snmpv3

Selects SNMPv3-related configuration parameters. These parameters include user name, authentication protocol and password, SNMPv3 trap recipients IP address, associated user index, and trap severity level.

accessControl

Selects access-control-related parameters. These parameters include access host subnet area and access permission (read-write).

mibCapability

Selects configuration parameters related to the SNMP agent’s MIBs and trap capability parameters. These parameters include MIBs and traps supported by the SNMP agent.

systemGroup

Selects configuration parameters related to the system group. These parameters include sysDescr, sysLocation, sysContact, and authentication failure trap.

secLevel

Sets SNMP security level.
SNMPv1 Configuration Parameters

The agent supports six communities and associated trap recipients and trap recipient severity level supported. The first three communities are for read-write (rw) access and the last three are for read-only (ro) access. The default value for the trap recipient of each community is 0.0.0.0. The length of the community string should be in range of 2 to 16 characters. The default values for the community strings are:

- Community 1: Secret C0de
- Community 2: OrigEquipMfr
- Community 3: private
- Community 4: public
- Community 5: common
- Community 6: FibreChannel

When FCS policy is enabled, community strings can be changed on the primary FCS switch only, and only the primary FCS switch propagates changes across the fabric.

For an SNMP management station to receive a trap generated by the agent, the administrator must configure a trap recipient to correspond to the IP address of the management station. In addition, the trap recipient must be able to pass the access control list (ACL) check as described in the Access Control category.

Trap Recipient Severity Level

When an event occurs and its severity level is at or below the set value, the Event Trap traps (swEventTrap, connUnitEventTrap and swFabricWatchTrap), are sent to configured trap recipients. By default, this value is set at 0, implying that no Event Trap is sent. Possible values are:

- 0 None
- 1 Critical
- 2 Error
- 3 Warning
- 4 Informational
- 5 Debug

SNMPv3 Configuration Parameters

Two user roles, snmpadmin and snmpuser are supported. snmpadmin provides read-write access and snmpuser provides read-only access. Entries are added to the USM table corresponding to each role. A total of three entries for snmpadmin and snmpuser respectively are supported.

Separate default passwords are provided for creation of authKey and privKey for each entry. The default set of passwords is published and the default algorithm (MD5/SHA) is used to create the initial set of auth keys. You can change these passwords using this option. You have the option to select the authentication protocol MD5/SHA or no authentication for each entry.

Select the following combination of protocols:

- NoAuth/NoPriv
- Auth/NoPriv
- Auth/Priv
The user name must be between 2 and 32 characters long. Note that the default user names are defined with the noAuth and noPriv protocol. The factory default SNMPv3 user names are:

- User 1: snmpadmin1
- User 2: snmpadmin2
- User 3: snmpadmin3
- User 4: snmpuser1
- User 5: snmpuser2
- User 6: snmpuser3

The --default option sets the user name and password to default.

If FCS policy is enabled, the configuration has to be updated on both primary and nonprimary switches, and unlike community strings, user names and passwords are not distributed for other switches in the fabric.

When new passwords are entered for any user entry, new authKey and privKey are generated. The new passwords must be updated on the client (e.g., MIB browser) as well. AuthKey and privKey can also be updated with the delta key mechanism provided by the SNMPv3 protocol.

The system prompts for password confirmation if any protocol is selected other than NoAuth/NoPriv. Protocol passwords must be between 1 and 20 characters.

Note that in order for an SNMP management station to receive SNMPv3 traps generated by the agent, the administrator must configure a trap recipient value to correspond to the IP address of the management station. In addition, the trap recipient must pass the ACL check as described in the accessControl section. The trap recipient must be associated with one of the six users of SNMPv3 and trap severity level. The factory default value for the SNMPv3 trap recipient of each user is 0.0.0.0.

Access Control Configuration Parameters
The ACL check is as follows: there are six ACLs to restrict SNMP get/set/trap operations to hosts under a host-subnet-area. Host-subnet-area is defined by comparing nonzero IP octets. For example, an ACL of 192.168.64.0 enables access by any hosts that start with the specified octets. The connecting host is enabled to set each host-subnet-area to be read-write or read-only. The closest match out of six entries is given access. The ACL check is turned off when all six entries contain 0.0.0.0. The default values of all six entries are 0.0.0.0.

MIB Capability Configuration Parameters
The mibCapability option turns certain MIBs and TRAPS on or off. If SNMP MIB is disabled, then corresponding traps also are disabled. If any trap group is disabled, then corresponding individual traps also are disabled.

- FA-MIB Specifying yes means you can access FA-MIB variables with an SNMP manager. The default value is yes.
- FICON-MIB Specifying yes means you can access FICON-MIB variables with an SNMP manager. The default value is yes.
- HA-MIB Specifying yes means you can access Entity-MIB and HA-MIB variables with an SNMP manager. The default value is yes.
- FCIP-MIB Specifying yes means you can access FCIP-MIB variables with an SNMP manager. The default value is yes.
SCSI-MIB
Specifying yes means you can access FCIP-MIB variables with an SNMP manager. The default value is yes.

SW-TRAP
Specifying yes means the SNMP management application can receive SW-TRAPS from the switch. The default value is “yes”. You may also turn individual SW Traps on or off. The individual SW traps are swFCPortScn, swEventTrap, swFabricWatchTrap and swTrackChangesTrap.

FA-TRAP
Specifying yes means the SNMP management application can receive FA-TRAPS from the switch. The default value is “yes”. You may also turn individual FA Traps on or off. The individual FA Traps are connUnitStatusChange, connUnitEventTrap, connUnitSensorStatusChange and connUnitPortStatusChange.

SW-EXTTRAP
Specifying yes means you can receive SSN in the SW traps. The default value is “no”.

FICON-TRAP
Specifying yes means the SNMP management application can receive FICON traps from the switch. The default value is “yes”. You may also turn individual FICON Traps on or off. The individual FICON Traps are link RN ID Device Registration, linkRNIDDeviceDeRegistration, linkLIRRListenerAdded, linkLIRRListenerRemoved and linkRLIRFailureIncident.

HA-TRAP
Specifying yes means the SNMP management application can receive HA traps from the switch. The default value is “yes”. You may also turn individual individual HA Traps on or off. The individual HA Traps are fruStatusChanged, cp Status Changed, and fruHistoryTrap.

System Group Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysDescr</td>
<td>The system description. The default value is Fibre Channel Switch.</td>
</tr>
<tr>
<td>sysLocation</td>
<td>The location of the system (switch). The default value is End User Premise.</td>
</tr>
<tr>
<td>sysContact</td>
<td>The contact information for this system (switch). The default value is Field Support.</td>
</tr>
</tbody>
</table>
| authTraps | When enabled, the authentication trap (authenticationFailure) is transmitted to a configured |}

Security Level Parameters

The **--show** option displays the current SNMP security and SNMP SET security levels. Use **--set secLevel** to modify existing settings:

<table>
<thead>
<tr>
<th>Security level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP security level</td>
<td>Specifies security level for all SNMP requests.</td>
</tr>
<tr>
<td>SNMP SET security level</td>
<td>Specifies security level for SNMP SET requests only.</td>
</tr>
</tbody>
</table>

Values are:

- **0** No security.
- **1** Authentication only.
- **2** Authentication and Privacy.
- **3** OFF
To display the SNMPv1 configuration:

```
switch:admin> snmpConfig --show snmpv1
SNMPv1 community and trap recipient configuration:
  Community 1: Secret C0de (rw)
    Trap recipient: 10.32.147.113
    Trap recipient Severity Level: 0
  Community 2: OrigEquipMfr (rw)
    Trap recipient: 1080::8:800:200C:1234
    Trap recipient Severity Level: 0
  Community 3: private (rw)
    No trap recipient configured yet
  Community 4: public (ro)
    No trap recipient configured yet
  Community 5: common (ro)
    No trap recipient configured yet
  Community 6: FibreChannel (ro)
    No trap recipient configured yet
```

To set the SNMPv1 configuration of a switch:

```
switch:admin> snmpConfig --set snmpv1
SNMP community and trap recipient configuration:
  Community (rw): [Secret C0de]
  Trap Recipient's IP address: [0.0.0.0] 1080::8:800:200C:1234
  Community (rw): [OrigEquipMfr]
    string size must be between 2 and 16 - please re-enter
  Community (rw): [OrigEquipMfr]
    Trap Recipient's IP address: [1080::8:800:200C:1230] 10.32.147.113
  Community (rw): [private]
    Trap Recipient's IP address: [0.0.0.0]
  Community (ro): [public]
    Trap Recipient's IP address: [0.0.0.0]
  Community (ro): [common]
    Trap Recipient's IP address: [0.0.0.0]
  Community (ro): [FibreChannel]
    Trap Recipient's IP address: [0.0.0.0]
```

To set the access control configuration:

```
switch:admin> snmpconfig --set accessControl
SNMP access list configuration:
  Access host subnet area in dot notation: [0.0.0.0] 192.168.0.0
    Read/Write? (true, t, false, f): [true]
  Access host subnet area in dot notation: [0.0.0.0] 10.32.148.0
    Read/Write? (true, t, false, f): [false]
  Access host subnet area in dot notation: [0.0.0.0] 10.33.0.0
    Read/Write? (true, t, false, f): [false]
    Committing configuration...done.
```
To display the mibCapability configuration:

```
switch:admin> snmpconfig --show mibCapability
FE-MIB: YES
SW-MIB: YES
FA-MIB: YES
FICON-MIB: YES
HA-MIB: YES
FCIP-MIB: YES
ISCSI-MIB: YES
SW-TRAP: YES
swFCPortScn: YES
swEventTrap: YES
swFabricWatchTrap: YES
swTrackChangesTrap: YES
FA-TRAP: YES
connUnitStatusChange: YES
connUnitEventTrap: YES
connUnitSensorStatusChange: YES
connUnitPortStatusChange: YES
SW-EXTTRAP: YES
FICON-TRAP: YES
linkRNIDDeviceRegistration: YES
linkRNIDDeviceDeRegistration: YES
linkLIRRListenerAdded: YES
linkLIRRListenerRemoved: YES
linkRLIRFailureIncident: YES
HA-TRAP: YES
fruStatusChanged: YES
cpStatusChanged: YES
fruHistoryTrap: YES
FCIP-TRAP: YES
linkUpTrap: YES
linkDownTrap: YES
```

To restore the systemGroup configuration to default values:

```
switch:admin> snmpconfig --default systemGroup
*****
This command will reset the agent's system group
configuration back to factory default
*****
sysDescr = Fibre Channel Switch
sysLocation = End User Premise
sysContact = Field Support
authTraps = 0 (OFF)

*****
Are you sure? (yes, y, no, n): [no] y
```

To set the security level:

```
switch:admin> snmpconfig --set secllevel
Select SNMP Security Level
(0 = No security, 1 = Authentication only,
 2 = Authentication and Privacy, 3 = No Access): (0..3) [0] 1

Select SNMP SET Security Level
(0 = No security, 1 = Authentication only,
 2 = Authentication and Privacy, 3 = No Access): (1..3) [1]
```
See Also none

Refer to the following publications for further information on SNMP:

Fabric OS MIB Reference

SW_v5_x.mib, “Switch Management Information & Switch Enterprise Specific Trap”

RFC1157, “A Simple Network Management Protocol (SNMPv1)”

spinFab

Runs functional test of switch-to-switch ISL cabling and trunk group operation.

Synopsis
spinfab [-nmegs count][-ports itemlist][-setfail mode]

Description
Use this command to verify the intended functional operation of the ISL links between switches. At the maximum speed of 4 Gbps, set the routing hardware such that test frames received by each E_Port retransmit on the same E_Port. Next, send several frames to the neighbor port attached to each active E_Port specified. The default action for such frames is to route them back to the sender, which never occurs for normal traffic. The frames circulate until the test stops them.

The frames are continuously transmitted and received in all ports in parallel. The port LEDs flicker green rapidly while the test is running. While the frames are circulating, the RX frame count and port CRC and encoder error statistics are monitored and error messages may be generated if a port stops or a low-level error occurs. Every one million frames, the circulating frames are captured to verify that they are still circulating and that they are still in order. In this manner, the entire path to the remote switch can be verified, as can the proper in-order delivery operation of any trunk groups present.

The switch remains in normal operation while this test is running; however, some performance degradation occurs due to the ISL links being saturated with test frames. Because of this, you should use caution when running this test on live fabrics. Consider only testing one trunk group or ISL link at a time, and do not run the tests for extended periods of time.

Use portLoopBackTest with appropriate parameters. The test will be local to the port for ISL link-failure isolation. If this test fails, replace the cable with a loop-back plug and run portLoopBackTest to verify the local switch and media. If these pass, the fault lies in the cable or remote switch and media.

When trunk groups are present, the entire trunk group must be included in the range of ports to test or false failures can occur. If multiple ISL links are present between two switches that support trunking, then it is likely that trunk groups are present and all ports between the two switches should be tested at the same time.

Note
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands
This command has the following operands:

- **-nmegs** count
 Specify in millions the number of frames to send. The test progresses until the specified number of frames has been transmitted on each port. The default value is 10 million frames. This command only approximately counts the frames and the actual number of frames sent will be slightly larger, particularly at 2 Gbps link speeds.

- **-ports** itemlist
 Specify a list of user ports to test. By default, all of the ISL ports in the current switch are tested. Refer to itemList help pages for further details.
-setfail mode

Instruct spinFab how to mark failed ports. Specify 1 to mark failing ports as FAILED. Specify 0 not to mark failed ports as FAILED. This test normally logs errors but does not set the port status to FAILED. This parameter is provided to force the failing ports to be marked as FAILED in the same manner as other diagnostics. In test or qualification environments without live traffic, this command may be useful with large -nmegs counts. This mode is disabled by default.

Examples

To test cascading ISL links:

```
switch:admin> spinfab -ports 1/0 - 1/2
spinfab running...
spinfab: Completed 11 megs, status: passed.
  port 0 test status: 0x00000000 -- passed.
  port 1 test status: 0x00000000 -- passed.
  port 2 test status: 0x00000000 -- passed.
Test Complete: "spinfab" Pass 10 of 10
Duration 0 hr, 0 min & 41 sec (0:0:41:877).
```

diag

Diagnostics

If the test detects failures, it may report one or more of the following error messages:

```
DATA
ERR_STAT
ERR_STATS
ERR_STATS_2LONG
ERR_STATS_BADEOF
ERR_STATS_BADOS
ERR_STATS_C3DISC
ERR_STATS_CRC
ERR_STATS_ENCIN
ERR_STATS_ENCOUT
ERR_STATS_TRUNC
ERR_STAT_2LONG
ERR_STAT_BADEOF
ERR_STAT_BADOS
ERR_STAT_C3DISC
ERR_STAT_CRC
ERR_STAT_ENCIN
ERR_STAT_ENCOUT
ERR_STAT_TRUNC
FINISH_MSG_ERR
INIT
MBUF_STATE_ERR
NO_SEGMENT
PORT_ABSENT
PORT_DIED
PORT_ENABLE
PORT_M2M
PORT_STOPPED
PORT_Wrong
RXQ_RAM_PERR
STATS
STATS_C3FRX
STATS_FRX
STATS_FTX
TIMEOUT
XMIT
```
Refer to the Fabric OS Message Reference for more information.

See Also itemList, portLoopbackTest
sshUtil

Manages public key authentication.

Synopsis

```
sshutil allowuser user name
sshutil showuser
sshutil importpubkey
sshutil showpubkeys
sshutil delpubkeys
sshutil genkey
sshutil exportpubkey
sshutil delprivkey
sshutil help
```

Description

Use this command to enable and manage SSH public key authentication on a switch. SSH public key authentication provides a mechanism for authenticating an authorized user without a password. SSH public key authentication is more secure than password authentication and can be used to securely access services that require automatic login.

SSH public key authentication works as follows:

An authorized user generates a pair of encryption keys (public and private) on a local machine (a switch or a server). Messages encrypted with the private key can only be decrypted by the public key, and vice versa. The private key remains on the local machine; the public key is exported to a remote host. The remote host responds to login requests by sending a brief message encrypted with the public key. The private key on the local host decrypts the message, and the login succeeds.

Use the `sshutil` command to do the following:

- Configure a user to perform public key authentication and to manage keys on a switch.
- Generate a private/public key pair on the local switch.
- Import a public key from a remote host to the local switch.
- Export the public key from the local switch to a remote host.
- Delete the public keys associated with the configured user on the local switch.
- Delete the private key on the local switch.

Notes

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Outgoing public key authentication from the switch to a remote host is restricted to Fabric OS commands which use secure copy (SCP), such as `configDownload/configUpload`.

This command supports generation of a public/private key pair on the switch to enable outgoing connections between a switch and a remote host. To set up incoming connections, you must first generate the public/private key pair on a remote host and then import the public key to the switch. Use the SSH utility `ssh-keygen -t dsa` to generate the keys on the remote host. Refer to your UNIX system documentation for details on this command.
sshUtil

Operands

This command supports the following operands:

allowuser user name

Configures the specified user to perform public key authentication and all related management operations. This operation can only be performed by the default admin. The default admin is, by default, a configured user. Only one user can be configured at any given time. When the default Admin configures a user, successful execution of this command deletes the previously configured user and all public keys associated with this user.

The following operand is required:

user name

Specifies login name for the configured user. The user must be in the switch user database and must have admin privileges on the switch.

showuser

Displays the currently configured user. This operation can only be performed by the default admin.

importpubkey

Imports a public key from a remote host to the local switch. This operation supports authentication for incoming connections. For this operation to succeed, a public/private key pair must be generated on the remote host prior to the import by issuing `ssh-genkey -t dsa` (a UNIX command). `importpubkey` can only be performed by a configured user. Once the public key is imported successfully, the configured user can perform public key authentication with the switch from the remote host, on which the private key resides.

`importpubkey` prompts for the following input parameters:

IP Address

Enter the IP address for the remote host. IPv4 and IPv6 addresses are supported.

remote directory

Enter the path to store the public key. The default directory where SSH stores public keys is ~username/.ssh.

login name

Enter the user name for the configured user.

password

Enter the password for the configured user.

showpubkeys

Displays all imported public keys associated with the configured user. Public keys generated on the switch are not shown. This option can only be performed by the configured user.

delpubkeys

Deletes all imported public keys associated with the configured user on the switch. This option can only be performed by the configured user. Deletion of a configured user's public keys effectively blocks incoming connections from this user that rely on public key authentication with the switch.

genkey

Generates a private/public key pair on the local switch. Keys are generated with Digital Signature Algorithm (DSA) encryption. This option can be performed only by a configured user. This option enables authentication for outgoing connections from the switch to a remote host. You must export the public key to a remote host to complete the setup. For incoming connections, the private/public key must first be generated on the remote host by issuing `ssh-genkey -t dsa` (a UNIX command), and then importing the public key from the remote host to the switch using the `sshutil import` command.
genkey prompts for user input on the following parameters:

passphrase

Accepts a string of arbitrary length. This operand is optional, but creating a pass-phrase is strongly recommended. Good pass phrases are 10-30 characters long, are not simple sentences or otherwise easily guessable and contain a mix of upper and lowercase letters, numbers, and non-alphanumeric characters. There is no way to recover a lost pass phrase. If the pass phrase is lost or forgotten, a new key must be generated and copied to the corresponding public key to other machines.

exportpubkey

Exports the public key from the switch to a specified remote host to support outgoing connections from the switch to a remote host. This option can only be performed by a configured user. The successfully exported public key must be appended to the authorized_keys file on the remote host. Use the `cat ~/.ssh/outgoing.pub >> ~/.ssh/authorized_keys` command to append the file.

exportpubkey prompts for IP Address, remote directory, login name and password. Refer to **importpubkey** for a description of these parameters.

delprivkey

Deletes the private key for outgoing connection from the switch. This option can only be performed by a configured user. Deletion of a configured user's private keys effectively blocks outgoing connections initiated by this user that rely on public key authentication with a remote host.

help

Displays command usage.

Examples

To configure a user for public key authentication:

```
switch:admin> sshutil allowuser username

Allowed user has been successfully changed to username.
```

To display the configured user:

```
switch:username> sshutil showuser username
```

To set up SSH public key authentication on a switch for incoming connections:

1. Generate a private/public key pair on a remote host (accept default directory and file name):

   ```
   username@remotehost> ssh-keygen -t dsa
   Generating public/private dsa key pair.
   Enter file in which to save the key (/users/home/username/.ssh/id_dsa):
   Enter passphrase (empty for no passphrase): passphrase
   Enter same passphrase again: passphrase
   Your identification has been saved in /users/home/username/.ssh/id_dsa.
   Your public key has been saved in /users/home/username/.ssh/id_dsa.pub.
   The key fingerprint is:
   3 0:9f:ae:b6:7f:7e:55:e4:b2:7a:51:f0:95:44:5c:d1 username@host
   ```

2. Import the public key from the remote host to the local switch:

   ```
   username@remotehost> sshutil importpubkey
   Enter IP address: Remote host IP Address
   Enter remote directory: ~username/.ssh
   Enter public key name (must have .pub suffix): id_dsa.pub
   Enter login name: username
   ```
Password:
public key is imported successfully.

3. Connect to switch using remote ssh client with the -i private_key option:

 username@remotehost> ssh username@switch IP address -i id_dsa

To display the imported public keys on a switch:

 switch:username> sshutil showpubkeys

user's public keys
ssh-dss AAAAB3NzaC1kc3MAAAACBANxRuRsJoI0FFJtGuZVLfsvrZDYPplWuFoUmTcmuNvpTnd+yoZ
u3C/1Au930HTmhxeke/NWRIdij2MJS8ytT30a0u4bf9M5NB8Pt453P/+7VHHxNYsh+Z++Dv1hfcTeb
0s53bdf7j1yYSUdj1k+w/EsNTazO0Cs0+riomo4l2NAAAFQDCuhKHCtSHD8PRYu5Ee1yWQYKT/wAAAIAo
AMvr1oq0JYXmXfd0Vkc7AImzFYgRa/FOxZBe4JDkCAxztFK5wnAFyUbTWEoC955myGq2RydMrSNM
9wLCAf2DTtxXxHFlujAI5REL5NGd2qRwo2Sk5HLkqQYM1w9r9vFKqN23wV3H2q7+tyR1XFwE416ee
chdwWpmjgAAAIAEAgxqia1vY4o/cBq1Py621PaZTcfOHS3jjdKgSO8KPCVEnyx4gxmqvihtyeWAY
dBdK4CFgyhut16/aQmdFj6iyyiNR2SGV7X9qkqjPN8H4EhIPXGxoDVOFYLVdt3V3KuxVeEI+vTBI2KJd
PmmLfyEK2qCH0lwBx+Huu2P2BuU= username@host

To delete all imported public keys on a switch:

 switch:username> sshutil delpubkeys

WARNING: It deletes all the ssh public keys for user. Do you want \n to proceed(Yes or No, default is No)?yes

ssh public keys associated to username are deleted.

To set up SSH public key authentication on a switch for outgoing connections:

1. Generate a private/public key pair on the local switch:

 switch:username> sshutil genkey

Enter passphrase (empty for no passphrase): pass phrase
Enter same passphrase again: pass phrase
Key pair generated successfully.

2. Export the public key to a remote host:

 switch:username> sshutil exportpubkey

Enter IP address: remote host IP Address
Enter remote directory: ~username/.ssh
Enter login name:username
Password: public key out_going.pub is exported successfully.

3. Append the public key to the authorized_keys file on the remote host:

 username@remotehost> cat ~/.ssh/outgoing.pub >> ~/.ssh/authorized_keys

To delete the private key on a switch:

 switch:username> sshutil delprivkey

private key is deleted successfully.

See Also none
statsClear

Clears port and diagnostic statistics.

Synopsis

statsclear [--slot slotnumber] [-uports itemlist] [-bports itemlist] [-use_bports value]

Description

Use this command to clear the port and diagnostics statistics for the specified list of blade or user ports.

You can issue this command on the FR4-18i blade in a Brocade chassis; however, the command is not supported by the Brocade platform and does not effect any other feature operations. This availability is offered to maintain consistency across a mixed-blade environment.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

The following are optional:

--slot slotnumber Specifies the slot on which to operate. If this option is not specified, the default slot is assumed. The default slot is 0 and designed to operate on fixed-port-count products, if -use_bports sets with nonzero value.

-uports itemlist Specifies the list of user ports for which statistics are to be cleared.

-bports itemlist Specifies the list of blade ports for which statistics are to be cleared.

-use_bports value Specify a nonzero value to clear the diagnostics statistics for the blade ports specified in -bports clears. A value of zero (0) clears the user ports specified in -uports. The default value is 0.

Examples

To clear port and diagnostic statistics:

switch:admin> statsclear -bports 1/10-1/62 -use_bports 1

See Also

itemList
stopPortTest

Terminates the running portTest.

Synopsis
stopPortTest [-ports itemlist]

Description
Use this command to stop the currently running portTest. Refer to the portTest command for more information.

If portTest is running in non-singlemode, use stopPortTest to stop the test.

Note
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands
This command has the following operand:

-ports itemlist Specify a list of user ports to test. By default, all the user ports in the switch are tested. Refer to itemList help pages for further details.

Examples
To stop the portTest command:

switch:admin> stopPortTest

See Also
portLoopbackTest, portTest, portTestShow, spinFab
supportFfDC

Modifies or displays the first-fault data capture (FFDC) daemon.

Synopsis supportFfDC [--disable | --enable | --show]

Description Use this command to disable or enable the FFDC events, or to display the current configuration. If disabled, the daemon does not capture any data even when a message with FFDC attributes is logged. FFDC is enabled by default.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

--disable Disables the FFDC.
--enable Enables the FFDC.
--show Displays the FFDC configuration parameters.

When executed without operands, the command prints the usage.

Examples To display the FFDC configuration:

switch:admin> supportFfDC --show
First Failure Data Capture (FFDC) is disabled.

To enable the FFDC events:

switch:admin> supportFfDC --enable
First Failure Data Capture (FFDC) is enabled.

See Also none
supportFtp

Sets, clears, or displays support FTP parameters, or a time interval to check the FTP server.

Synopsis

```
supportftp [-S]
supportftp -s [-h hostip][-u username][-p password][-d remotedirectory]
supportftp -t hours
supportftp -R
supportftp -e
```

Description

Use this command to set, clear, or display support FTP parameters, or a time interval to check the FTP server. This command displays IPv4 and IPv6 addresses.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following mutually exclusive operands:

- **-S**
 Displays the FTP parameters.

- **-s**
 Sets the FTP parameters. -s has the following optional operands:

 - **-h hostip**
 Specifies the FTP host IP address. It must be an IP address. `hostip` should be less than 48 characters.

 - **-u username**
 Specifies the FTP user name. `username` should be less than 48 characters.

 - **-p password**
 Specifies the FTP user password. If the user name is anonymous, the password is not needed. `password` should be less than 48 characters.

 - **-d remotedirectory**
 Specifies the remote directory for storing trace dump files. `supportFtp` cannot take a slash (/) as a directory name. `remotedirectory` should be less than 48 characters.

- **-t hours**
 Sets the time interval for checking the FTP server. The -t operand has the following required operand:

 `hours` checks the connectivity of FTP server at the indicated time interval (in hours).

- **-R**
 Removes all files from the switch; //clears parameters

- **-e**
 Enables auto file transfer.

If no parameter is not specified, the `supportFtp` command defaults to `supportFtp -S`.

Examples

To set the FTP parameters:

```
switch:admin> supportftp -s -h 1080::8:800:200C:417A -u njoe -p password -d support
supportftp: ftp parameters changed.
```

To display the FTP parameters:

```
switch:admin> supportftp
```
supportFtp

Host IP Addr: 1080::8:800:200C:417A
User name: njoe
Remote Dir: support
FTP Auto check: Off

To set FTP parameters interactively:

```
switch:admin> supportftp -s
Host IP Addr[1080::8:800:200C:417A]: 192.168.67.126
User Name[njoe]: admin
Password[********]: password
Remote Dir[support]: temp
Auto file transfer parameters changed
```

To display a time interval to check the FTP server:

```
switch:admin> supportftp -t 24
supportftp: ftp check period changed.
```

To enable auto file transfer:

```
switch:admin> supportftp -e
support auto file transfer enabled.
```

To disable auto file transfer:

```
switch:admin> supportftp -d
support auto file transfer disabled.
```

See Also supportSave, supportShow, traceDump
supportSave

Saves RASLOG, TRACE, supportShow, core file, FFDC data, and other support information

Synopsis

supportsave

supportsave [-n] [-c] [-k] [-u user_name -p password] -h host_ip -d remote_dir [-l ftp | scp]
supportsave [-R]
supportsave [-U -d remote_dir]

Description

Use this command to collect RASLOG, TRACE, supportShow, core file, FFDC data and other support information to a remote FTP location. On platforms that support USB, the information can also be stored on an attached USB device. On a dual-CP system, information is be saved for the local and remote CP. SupportShow information is available on Active and Standby CPs. To reduce the chance of missing the correct trace dump, supportSave retrieves old (the existing dump before the command) and new (the dump triggered by the command) trace dumps.

The files generated by this command are compressed before being sent off the switch. The core files and panic dumps remain on the switch after the command is run. The FFDC data are removed after the command has finished.

If there are BP blades installed on the switch, a support file (a.tar.gz file) is generated from each slot.

This command accepts IPv4 and IPv6 addresses. If the configured IP address is in IPv6 format, the RAS auto file transfer and event notification to syslog will not work in the case where the Fabric OS version is downgraded. It is required to reconfigure auto file transfer and syslog with IPv4 IP addresses.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

When invoked without operands, this command goes into interactive mode. The following operands are optional:

- Does not prompt for confirmation. This operand is optional; if omitted, you are prompted for confirmation.
- Uses the FTP or SCP parameters saved by the supportFtp command. This operand is optional; if omitted, specify the FTP or SCP parameters through command line options or interactively. To display the current FTP parameters, run supportFtp (on a dual-CP system, run supportFtp on the active CP).

The -c operand is mutually exclusive with -u, -p, -h, and -d.

-k Specifies that the supportFtp auto file transfer configuration transfer only core and FFDC files in non-interactive mode.

-u user_name Specifies the user name for the FTP or SCP server. This operand is optional; if omitted, anonymous FTP is used.

-p password Specifies the password for the FTP or SCP server. This operand is optional with FTP; if omitted, anonymous FTP is used.

-h host_ip Specifies the IPv4 or IPv6 address for the remote server.
-d remote_dir Specifies the remote directory to which the file is to be transferred. When saving to a USB device, the predefined /support directory must be used.

-R Removes all core files on the CP and BP. This option is exclusive with all other options.

-l ftp|scp Specifies the transfer protocol as either FTP or SCP.

If you plan to use secure copy (SCP) to transfer files, it is important to test the supportSave command prior to its use with various scp mode services. Because the supportSave command makes several access requests to copy files, it is important that the scp mode service be configured so that passwords are not required for each attempted transfer by the supportSave command. Failure to pretest and properly configure the service could result in significant delays in obtaining transferred output from the supportSave command.

When using secure copy (SCP), supportSave may create a directory specified by the -d option if it does not already exist and the parent directory has the appropriate permissions. Use of FTP requires the directory to exist on the remote server.

-U Saves support data to an attached USB device. When using this option, a target directory must be specified with the -d option.

Examples To save RASLOG, TRACE, supportShow, and other support information to an FTP server in interactive mode:

```
switch:admin> supportsave
This command will collect RASLOG, TRACE, supportShow, core file, FFDC data and other support information and then transfer them to a FTP/SCP server or a USB device. This operation can take several minutes.
NOTE: supportSave will transfer existing trace dump file first, then automatically generate and transfer latest one. There will be two trace dump files transferred after this command.
OK to proceed? (yes, y, no, n): [no] y
```

Host IP or Host Name: 192.168.126.115

Saving support information for switch:Stealth200E, module:CONSOLE0...
...ave_files/Stealth200E-S0-200802171129-CONSOLE0.gz: 1.77 kB 45.62 kB/s
Saving support information for switch:Stealth200E, module:RASLOG...
...ve_files/Stealth200E-S0-200802171129-RASLOG.ss.gz: 47.98 kB 1.26 MB/s
Saving support information for switch:Stealth200E, module:TRACE_OLD...
.../Stealth200E-S0-200802171130-old-tracedump.dmp.gz: 232.85 kB 5.91 MB/s
Saving support information for switch:Stealth200E, module:TRACE_NEW...
.../Stealth200E-S0-200802171130-new-tracedump.dmp.gz: 327.31 kB 8.18 MB/s
Saving support information for switch:Stealth200E, module:ZONE_LOG...
...files/Stealth200E-S0-200802171131-ZONE_LOG.ss.gz: 6.59 kB 199.43 kB/s
Saving support information for switch:Stealth200E, module:RCS_LOG...
...e_files/Stealth200E-S0-200802171131-RCS_LOG.ss.gz: 1.17 kB 38.15 kB/s
Saving support information for switch:Stealth200E, module:NS_EVLOG...
...files/Stealth200E-S0-200802171131-NS_EVLOG.ss.gz: 2.79 kB 87.24 kB/s
Saving support information for switch:Stealth200E, module:FSPF_LOG...
...files/Stealth200E-S0-200802171132-FSPF_LOG.ss.gz: 137.00 B 3.81 kB/s
Saving support information for switch:Stealth200E, module:CORE_FFDC...
...files/Stealth200E-S0-200802171132-CORE_FFDC.tar.gz: 652.66 kB 8.92 MB/s
Saving support information for switch:Stealth200E, module:CHKCONFIG...
...files/Stealth200E-S0-200802171132-CHKCONFIG.ss.gz: 290.00 B 7.54 kB/s
To save RASLOG, TRACE, supportShow, core file, FFDC data, and other information to an FTP server in interactive mode on a dual-CP system:

```
switch:admin> supportsave
This command will collect RASLOG, TRACE, supportShow, core file, FFDC data and other support information and then transfer them to a FTP/SCP server or a USB device. This operation can take several minutes.
NOTE: supportSave will transfer existing trace dump file first, then automatically generate and transfer latest one. There will be two trace dump files transferred after this command.
OK to proceed? (yes, y, no, n): [no] y
Host IP or Host Name: 192.168.126.115
User Name: admin
Password:
Protocol (ftp or scp): ftp
Remote Directory: /users/home/admin/support
```

```
Saving support information for switch: Stealth200E, module:CHKRPM...
...tSave_files/Stealth200E-S0-200802171133-CHKRPM.gz: 969.00 B  24.08 kB/s
 Saving support information for switch: Stealth200E, module:SSLOG...
...ave_files/Stealth200E-S0-200802171134-SSLOG.ss.gz: 1.78 kB  47.60 kB/s
 Saving support information for switch: Stealth200E, module:SUPPORTSHOW...
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...(output truncated)
```

```
Saving support information for switch: Stealth200E, module:CHKRPM...
...tSave_files/Stealth200E-S0-200802171133-CHKRPM.gz: 969.00 B  24.08 kB/s
 Saving support information for switch: Stealth200E, module:SSLOG...
...ave_files/Stealth200E-S0-200802171134-SSLOG.ss.gz: 1.78 kB  47.60 kB/s
 Saving support information for switch: Stealth200E, module:SUPPORTSHOW...
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...(output truncated)
```
Saving support information for switch:art_saturn1, module:VARLOGTIME...
...e_files/art_saturn1-S6-200802171211-VARLOGTIME.gz: 281.00 B 8.00 kB/s
Saving support information for switch:art_saturn1, module:BURNINSTAT...
...e_files/art_saturn1-S6-200802171211-BURNINSTAT.gz: 134.00 B 3.67 kB/s
Saving support information for switch:art_saturn1, module:BURNINERR...
...files/art_saturn1-S6-200802171211-BURNINERR.ss.gz: 2.35 kB 67.80 kB/s
Saving support information for switch:art_saturn1, module:RTE...
...tSave_files/art_saturn1-S6-200802171211-RTE.ss.gz: 1.78 kB 50.95 kB/s
Saving support information for switch:art_saturn1, module:ISCSID_DBG...
...e_files/art_saturn1-S6-200802171211-ISCSID_DBG.gz: 46.00 B 1.24 kB/s
Saving support information for switch:art_saturn1, module:CH...
...pportSave_files/art_saturn1-S6-200802171211-CH.gz: 7.43 kB 174.74 kB/s
Saving support information for switch:art_saturn1, module:AGDUMP...
...e_files/art_saturn1-S6-200802171211-AGDUMP.ss.gz: 100.00 B 2.93 kB/s
Saving support information for switch:art_saturn1, module:CONSOLE1...
...ave_files/art_saturn1-S6-200802171211-CONSOLE1.gz: 7.45 kB 217.17 kB/s
Saving support information for switch:art_saturn1, module:SSAVELOG...
...ave_files/art_saturn1-S6-200802171211-sslog.ss.gz: 1.88 kB 53.35 kB/s
SupportSave completed

See Also supportShow
supportShow

Displays switch information for debugging purposes.

Synopsis

supportshow [[slotnumber/]portnumber1-portnumber2] [lines]

Description

Use this command to display support information from groups of preselected Fabric OS and Linux
commands and other support and debugging information. You can specify the range of ports for
which this information displays. These commands are organized by groups, but note that the order
of the groups listed next is not the same as executed by the command.

This is a diagnostic command and should only be run for diagnostic support.

SupportShow executes commands in the following command groups. Use supportShowCfgenable
or supportShowCfgenable to modify the settings for each group.

- os: OS group commands, enabled by default.
- exception: Exception group commands, enabled by default.
- port: Port group commands, enabled by default.
- fabric: Fabric group commands, enabled by default.
- services: Service group commands, enabled by default.
- security: Security group commands, enabled by default.
- network: Network group commands, enabled by default.
- portlog: Portlog group commands, enabled by default.
- system: System group commands, enabled by default.
- extend: Extend group commands, disabled by default.
- filter: Filter group commands, disabled by default.
- perfmon: Performance Monitor group commands, disabled by default.
- ficon: FICON group commands, disabled by default.
- iswitch: FC Router group commands, disabled by default.
- asic_db: ASIC DB group commands, disabled by default.
- iscsi: ISCSI group commands, disabled by default.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

This command should only be run when requested by Brocade support personnel.

Output generated by this command may vary by switch configuration and platform. Output may
change without notice.
Operands

This command has the following operands:

slotnumber/portnumber1-portnumber2
 Specify the range of ports to display. If the slotnumber/portnumber parameter is omitted, all ports in the switch display in the per-port outputs. The slotnumber must be provided when specifying a range of ports on multi-bladed products.

lines
 Specifies the number of lines of portLogDump output to display. If this parameter is used, the slotnumber/portnumber parameter is required.

Examples

To display switch information for debugging:

switch:admin> supportshow
Date:
Sun Feb 17 12:31:37 UTC 2008
Time Zone:
Time Zone Hour Offset: 0
Time Zone Minute Offset: 0
Version:
Kernel: 2.6.14.2
Fabric OS: v6.1.0_main_bld23
Made on: Wed Feb 13 06:59:17 2008
Flash: Thu Feb 14 18:38:31 2008
BootProm: 4.6.6

supportshow groups enabled:
 os enabled
 exception enabled
 port enabled
 fabric enabled
 services enabled
 security enabled
 network enabled
 portlog enabled
 system enabled
 extend disabled
 filter disabled
 perfmon disabled
 ficon disabled
 iswitch enabled
 asic_db enabled
 iscsi enabled
 ag disabled

**** Begin start_port_log_cmd group ****
portlogdump:
time task event port cmd args

Thu Feb 14 18:43:12 2008
18:43:12.562 PORT debug 16 c48d6c7c,c48d6c78,c48d6c7c,abaa0f0f
18:43:21.821 FSSK event 0 0 00020000,00000000,00000000,COMP
18:43:22.022 FSSK event 0 0 00010000,00000000,00000000,COMP
(output truncated)

See Also

supportFtp, supportSave, supportShowCfgDisable, supportShowCfgEnable, supportShowCfgShow, traceDump
supportShowCfgDisable

Disables a group of commands under the `supportShow` command.

Synopsis

```
supportshowcfgdisable os | exception | port | fabric | services | security | network | portlog | systemextend | filter | perfmon | ficon | iswitch | asic_db | iscsi
```

Description

Use this command to disable a group of commands under the `supportShow` command. Use the `supportShowCfgEnable` command to enable groups of commands. Refer to Chapter 6, "supportShow Reference", for more information.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

- `os` Disables the OS group commands.
- `exception` Disables the exception group commands.
- `port` Disables the port group commands.
- `fabric` Disables the fabric group commands.
- `services` Disables the service group commands.
- `security` Disables the security group commands.
- `network` Disables the network group commands.
- `portlog` Disables the portlog group commands.
- `system` Disables the system group commands.
- `extend` Disables the extend group commands.
- `filter` Disables the filter group commands.
- `perfmon` Disables the Performance Monitor group commands
- `ficon` Disables the FICON group commands.
- `iswitch` Disables the FC Router group commands.
- `asic_db` Disables the ASIC DB group commands.
- `iscsi` Disables the ISCSI group commands.

Examples

To disable the OS group of commands under the `supportShow` command:

```
switch:admin> supportshowcfgdisable os
Config update Succeeded
```

See Also

`supportShow`, `supportShowCfgEnable`, `supportShowCfgShow`
supportShowCfgEnable

Enables a group of commands to be displayed under the supportShow command.

Synopsis supportshowcfgenable os | exception | port | fabric | services | security | network | portlog | system | extend | filter | perfmon | ficon | iswitch | asic_db

Description Use this command to enable a group of commands to be displayed under the supportShow command. Use the supportShowCfgDisable command to disable groups of commands.

Refer to Chapter 6, “supportShow Reference”, for more information.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, “Understanding Admin Domain Restrictions” and Appendix A, “Command Availability” for details.

Operands This command has the following operands:

os Enables the OS group commands.
exception Enables the exception group commands.
port Enables the port group commands.
fabric Enables the fabric group commands.
services Enables the service group commands.
security Enables the security group commands.
network Enables the network group commands.
portlog Enables the portlog group commands.
system Enables the system group commands.
extend Enables the extend group commands.
filter Enables the filter group commands.
perfmon Enables the Performance Monitor group commands.
ficon Enables the FICON group commands.
iswitch Enables the FC Router group commands.
asic_db Enables the ASIC DB group commands.
iscsi Enables the ISCSI group commands.

Examples To enable a group of commands under the supportShow command:

switch:admin> supportshowcfgenable os
Config update Succeeded

See Also supportShow, supportShowCfgDisable, supportShowCfgShow
supportShowCfgShow

Displays the groups of commands enabled for display by the `supportShow` command.

Synopsis

```
supportShowCfgShow
```

Description

Use this command to display the groups of commands enabled for display by the `supportShow` command. Use the `supportShowCfgEnable` and the `supportShowCfgDisable` commands to modify which groups are displayed.

Refer to [Chapter 6, “supportShow Reference”](#), for more information.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

none

Examples

To display which groups of commands are enabled in the `supportShow` command:

```
switch:admin> supportShowCfgShow
os enabled
exception enabled
port enabled
fabric enabled
services enabled
security enabled
network enabled
portlog enabled
system enabled
extend disabled
filter disabled
perfmon disabled
ficon disabled
iswitch enabled
asic_db enabled
iscsi enabled
```

See Also

`supportShow`, `supportShowCfgDisable`, `supportShowCfgEnable`
switchBeacon

Sets switch beaconing mode on or off.

Synopsis

switchbeacon [mode]

Description

Use this command to enable or disable switch beaconing mode. Switch beaconing can be used to
locate a failing unit.

When beaconing mode is turned on, the port LEDs flash amber, left to right and right to left, from
port 0 to the highest port number and back to port 0. The beaconing mode continues until you turn
it off.

The beaconing LED pattern continues until you turn it off. Beaconing mode takes over the port
LEDs. Other commands are still executable and functional. The normal flashing LED pattern
(associated with an active, faulty or disabled port for example) is suppressed and only the
beaconing pattern is shown. However, if diagnostic frame-based tests (such as portLoopbackTest)
are executed, two patterns are interleaved. The diagnostic test flickers the LEDs green and the
beaconing mode runs the LEDs amber at the same time.

Use the switchShow command to display the status of beaconing.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands

This command has the following operand:

mode Specify 1 to enable beaconing mode or 0 to disable beaconing mode. This
operand is optional.

If no operand is specified, the current value is displayed.

Examples

To turn beaconing mode on:

switch:admin> switchbeacon 1

To turn beaconing mode off:

switch:admin> switchbeacon 0

See Also

switchShow
switchCfgPersistentDisable

Disables a switch persistently.

Synopsis

```
switchcfgpersistentdisable
```

Description

Use this command to persistently disable the switch. All Fibre Channel ports are taken offline. If the switch was part of a fabric, the remaining switches reconfigure. The switch remains disabled even after a reboot.

The disable process can be observed and verified by watching the front panel LEDs change to slow flashing yellow as each port is disabled.

A persistently disabled switch can be temporarily enabled using the `switchEnable` command. A temporarily enabled switch remains disabled after a reboot.

Notes

Performance Monitoring cannot be added to any port on a persistently disabled switch.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

none

Examples

To disable a switch persistently:

```
switch:admin> switchcfgpersistentdisable
```

See Also

`switchDisable`, `switchEnable`, `switchCfgPersistentEnable`, `switchShow`
switchCfgPersistentEnable

Enables a switch persistently.

Synopsis switchCfgPersistentEnable

Description Use this command to persistently enable the switch. All Fibre Channel ports that passed the power-on self-test (POST) are enabled and come online if connected to a device, or remain offline if disconnected. The switch might need to be enabled if it was previously disabled to make configuration changes or to run diagnostics.

If the switch is connected to a fabric, it rejoins the fabric. After this command is issued, the 10 second fabric stability count down is displayed. If this switch remains the principal switch at the end of the count down, then it assigns itself a domain ID. If another switch assumes the principal role, then this switch becomes a subordinate switch, and accepts a domain ID from the principal. Refer to the FC-SW specification for a complete description of this process.

The enable process can be observed and verified by watching the front panel LEDs change from slow flashing yellow as each port is enabled. The LEDs change to green for online ports, or can remain black for disconnected ports, or yellow for ports that do not initialize.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To configure the switch as persistently enabled:

```
switch:admin> switchCfgPersistentEnable
10  9  8  7  6  5  4  3  2  1
fabric: Principal switch
fabric: Domain 1
```

See Also switchDisable, switchEnable, switchCfgPersistentDisable, switchShow
switchCfgSpeed

Configures all ports of a switch to a particular speed.

Synopsis switchCfgSpeed speed_level

Description Use this command to configure the speed of all the ports on a switch to a particular level. The configuration is saved in flash memory and persists across switch reboots or power cycles. If any port on the switch is not capable of the specified speed setting, an error message displays for that port.

The output of portShow displays the achieved speed level and portCfgSpeed displays the user-configured speed setting.

Notes The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

speed_level Specify the speed of a port. This operand is required. Valid values are as follows:

0 Auto sensing mode. The port automatically configures for the highest speed.
1 1-Gbps mode. The port is fixed at 1 Gbps.
2 2-Gbps mode. The port is fixed at 2 Gbps.
4 4-Gbps mode. The port is fixed at 4 Gbps.
8 8-Gbps mode. The port is fixed at 8 Gbps.

Examples To set the speed level for all ports on a switch:

switch:admin> switchCfgSpeed 0
Committing configuration...done.

See Also portCfgSpeed, portShow
switchCfgTrunk

Enables or disables trunking on all the ports of a switch.

Synopsis switchCfgTrunk mode

Description Use this command to enable or disable trunking on all the ports of a switch. Use portCfgTrunkPort to enable or disable trunking on a single port.

When the command is executed to update the trunking configuration, the ports to which the configuration applies are disabled and subsequently re-enabled with the new trunking configuration. Traffic through these ports may be temporarily disrupted.

Disabling trunking fails if a Trunk Area (TA) is enabled on the port. Use the portTrunkArea command to disable the TA on all ports before disabling trunking.

Notes Enabling trunking requires an ISL Trunking license. You may disable trunking without a license.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands The following operand is required:

 mode Specify 1 to enable trunking on all ports. Specify 0 to disable trunking on all ports.

Examples To disable trunking on all ports of a switch:

 switch:admin> switchCfgTrunk 0
 Committing configuration...done.

See Also portCfgShow, portCfgTrunkPort, portShow, portTrunkArea, switchShow
switchDisable

Disables the switch.

Synopsis switchdisable

Description Use this command to disable the switch. All Fibre Channel ports are taken offline; if the switch was part of a fabric, the remaining switches reconfigure.

The switch must be disabled before making configuration changes (using configure or configDefault) or before running many of the diagnostic tests. All commands that require the switch to be disabled send an error if invoked while the switch is enabled.

Notes The switch does not need to be disabled before rebooting or powering off.

As each port is disabled, the front panel LED changes to a slow flashing yellow.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To disable the switch:

```
switch:admin> switchdisable
```

See Also switchCfgPersistentDisable, switchCfgPersistentEnable, switchEnable, switchShow
switchEnable

Enables the switch.

Synopsis switchenable

Description Use this command to enable the switch. All Fibre Channel ports that passed POST are enabled.
They can come online if connected to a device, or remain offline if disconnected. Use switchEnable
if you disable the switch to make configuration changes or to run diagnostics.

If the switch is connected to a fabric, it rejoins the fabric. If this switch remains the principal switch,
then it assigns itself a domain ID. If another switch assumes the principal role, then this switch
becomes a subordinate switch and accepts a domain ID from the principal.

As each port is enabled, the front panel LED changes to green for online ports, black for
disconnected ports, or yellow for uninitialized ports.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To enable a switch:

 switch:admin> switchenable

See Also switchCfgPersistentDisable, switchCfgPersistentEnable, switchDisable, switchShow
switchName

Displays or sets the switch name.

Synopsis switchname [name]

Description Use this command to display or set the switch name. All switches have a symbolic name that is primarily used for switch management. This name is shown in the Fabric OS CLI prompt, under each switch icon on the Fabric Web page, and in the output of various Fabric OS commands, such as fabricShow.

Use this command with the name operand to assign a new switch name. Enter this command with no operand to display the current switch name.

Changing the switch name causes a domain address format RSCN to be issued (refer to the FC-FLA specification for a description of RSCNs).

Notes The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

name Specify a new name for the switch. name can include up to 15 characters, must begin with a letter, can consist of letters, digits, hyphens, and underscore characters, and no spaces. This operand is optional; if omitted, this command displays the current switch name.

Examples To change a switch name to dilbert (note the change in the prompt text):

switch:admin> switchname dilbert
dilbert:admin> switchname
dilbert

See Also chassisShow, switchShow
switchShow

Displays switch and port status.

Synopsis
switchshow [-portcount] [-iscsi]

Description
Use this command to display switch and port status information. Output may vary depending on the switch model.

Switch summary information includes the following:

- **switchName**
 Switch name.

- **switchType**
 Switch model and revision numbers.

- **switchState**
 Switch state: Online, Offline, Testing, or Faulty.

- **switchMode**
 Switch operation mode: Native, Interop, or Access Gateway.

- **switchRole**
 Switch role: Principal, Subordinate, or Disabled.

- **switchDomain**
 Switch domain ID: 0-31 or 1-239.

- **switchId**
 Switch embedded port D_ID.

- **switchWwn**
 Switch World Wide Name (WWN).

- **switchBeacon**
 Switch beaconing state: On or Off.

- **bladeBeacon**
 Blade beaconing state: On or Off.

- **zoning**
 The name of the active zone in parentheses. Active only when Access Gateway mode is disabled.

- **FC Router**
 FC Router’s state: On or Off.

- **FC Router BB Fabric ID**
 The backbone fabric ID for FC routing.

The switch summary is followed by one-line description for non-EX_Ports and one or two lines for EX_Ports:

- **Area**
 Part of the 24-bit port ID, which consists of domain, area number, and optional AL_PA. Area column is only displayed for non-slot based platforms.

- **Index**
 Index follows Area up to 255. Then it continues to the maximum port of the platform. Index identifies the port number relative to the switch. Index column is only displayed on enterprise-class platforms.

- **Slot**
 Slot number; 1-4 and 7-10.

- **Port**
 Port number; 0-15, 0-31 or 0-47.

- **Address**
 The 24-bit Address Identifier. Address column is only displayed for slot-based platforms.

- **Media**
 Media types include:

 - `-`
 no module present

 - `sw`
 shortwave laser

 - `w`
 longwave laser
cu copper
id serial ID

Speed The speed of the port:

- 1/8G 125 Mbps
- 1/4G 250 Mbps
- 1/2G 500 Mbps
- 1G 1 Gbps fixed transfer speed
- N1 1 Gbps negotiated transfer speed
- 2G 2 Gbps fixed transfer speed
- N2 2 Gbps negotiated transfer speed
- 4G 4 Gbps fixed transfer speed
- N4 4 Gbps negotiated transfer speed
- 8G 8 Gbps fixed transfer speed
- N8 8 Gbps negotiated transfer speed
- 10G 10 Gbps fixed transfer speed
- N10 10 Gbps negotiated transfer speed
- AN Auto negotiating
- UN Unknown

State Port state information:

- No_Card No interface card present.
- No_Module No module (GBIC or other) present.
- Mod_Val Module validation in process.
- Mod_Inv Invalid module.
- No_Light Module not receiving light.
- No.Sync Module receiving light but out of sync.
- In.Sync Module receiving light and in sync.
- Laser_Flt Module signaling a laser fault.
- Port_Flt Port marked faulty.
- Diag_Flt Port failed diagnostics.
- Lock_Ref Locking to the reference signal.
- Testing Running diagnostics.
- Offline Connection not established (for virtual ports only).
- Online Port is up and running.

Proto Protocol support by GbE port.

- ISCSI Ports support iSCSI.
switchShow

FCIP

Ports support FCIP.

comment

Optionally displays:

Disabled
Port is disabled.

Bypassed
Port is bypassed (loop only).

Loopback
Port is in loopback mode.

E_Port
Fabric port; displays WWN and name of attached switch. If the port is configured as EX_Port, the WWN of the attached switch is the same as the router.

F_Port
Point-to-point port; displays WWN of attached N_Port.

G_Port
Point-to-point but not yet E_Port or F_Port.

L_Port
Loop port; displays number of NL_Ports.

EX_Port
Router port; displays WWN of the attached edge switch.

Mirror Port
The port is a mirror port.

(Trunk master)
Port is the master port in a group of trunking ports.

(Trunk port, master is port #x)
Port is configured as a trunking port; the master port is port #x.

(upstream)
E_Port is an upstream path toward the principal switch of the fabric.

(downstream)
E_Port is a downstream path away from the principal switch of the fabric.

Persistently Disabled
This port has been disabled with the portCfgPersistentDisable command.

FICON
Persistent DID
This port has been disabled, because the switch could not obtain its configuration domain ID during the fabric reconfiguration when ficonMode was enabled. See the ficonMode help page for more information.

Fabric ID conflict
Two different fabrics have been assigned the same fabric ID (EX_Ports only).

Fabric ID oversubscribed
One fabric has been assigned two different fabric IDs (EX_Ports only).

Notes
If a port is configured as a long distance port, the long distance level is displayed in the format of Lx, where x represents the long distance level number. See portCfgLongDistance for the level description.

The port state for disabled E_Ports display as In_Sync when the port is the interswitch link (ISL) between a Brocade 48000 and a Brocade. If the ISL is between a Brocade 48000 and a Brocade 4100 or 200E, the disabled E_Port displays as No_Sync.

On a Brocade 7600 switch, if the SAS image is not consistent with the FOS image, the message "SAS Virtualization Disabled" is displayed.

When a port is configured as an N_Port and is online, switchShow displays its type as an N_Port. Also, switchShow displays the WWN of the border switch attached to this N_Port as a 24-bit Port Identifier assigned to this port by the enterprise fabric.
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

In an AD context, if one of the L_Ports or NPIV Ports is a part of the current AD, the complete device information attached to the port is displayed.

Operands

This command has the following operands:

- **-portcount**
 Displays the number of ports on the switch.

- **-iscsi**
 Displays the number of ports on the iSCSI sessions associated with GbE ports in a switch.

Examples

To display the port count:

```bash
switch:admin> switchShow -portcount
ports= 64
```

To display GbE ports with iSCSI sessions:

```bash
switch:admin> switchshow -iscsi
Ports of Slot 1   ge0 ge1 ge2 ge3   ge4 ge5 ge6 ge7
-----------------+---+---+---+---+-----+---+---+---
Sessions            0   0   0   0     0   0   0   0
```

To display switch information:

```bash
switch:admin> switchshow
switchName:     top_4a3_a10
switchType:     42.1
switchState:    Online
switchMode:     Native
switchRole:     Subordinate
switchDomain:   3
switchId:       fffc03
switchWwn:      10:00:00:60:69:e2:09:be
AD Feature:     Not Active
Current AD:     0
zoning:         ON (bot_cfg)
switchBeacon:   OFF
blade4 Beacon:  OFF
blade8 Beacon:  OFF
FC Router:      OFF
FC Router BB Fabric ID: 1
Index Slot Port Address Media Speed State     Proto
===================================================================
[output truncated]
80  8  0  035000  id    N4   Laser_Flt        Disabled (Persistent)
81  8  1  035100  --   N4   No_Module        Disabled (Persistent)
82  8  2  035200  --   N4   No_Module        Disabled (Persistent)
83  8  3  035300  --   N4   No_Module        Disabled (Persistent)
84  8  4  035400  --   N4   No_Module        Disabled (Persistent)
85  8  5  035500  --   N4   No_Module        Disabled (Persistent)
86  8  6  035600  id    N4   No_Light         Disabled (Persistent)
87  8  7  035700  id    N4   No_Sync          Disabled (Persistent)
88  8  8  035800  id    N1   Online           F-Port
10:00:00:00:c9:25:3d:43
To display a switch in Access Gateway mode:

```
switch:admin> switchshow
switchName: switch
switchType: 34.0
switchState: Online
switchMode: Access Gateway Mode
switchWwn: 10:00:00:05:1e:35:10:57
switchBeacon: OFF
```

<table>
<thead>
<tr>
<th>Area</th>
<th>Port</th>
<th>Media</th>
<th>Speed</th>
<th>State</th>
<th>Proto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>id</td>
<td>N2</td>
<td>Online</td>
<td>F-Port</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>id</td>
<td>N2</td>
<td>Online</td>
<td>F-Port</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>id</td>
<td>N2</td>
<td>Online</td>
<td>F-Port</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>id</td>
<td>N2</td>
<td>No_Light</td>
<td>Disabled (N_Port Login in progress)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>id</td>
<td>N2</td>
<td>No_Light</td>
<td>Disabled (N_Port Login in progress)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>id</td>
<td>N2</td>
<td>Online</td>
<td>F-Port</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>id</td>
<td>N2</td>
<td>Online</td>
<td>F-Port</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>id</td>
<td>N2</td>
<td>No_Light</td>
<td>Disabled (N_Port Login in progress)</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>id</td>
<td>N4</td>
<td>No_Light</td>
<td>Disabled (N_Port Login in progress)</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>id</td>
<td>N2</td>
<td>Online</td>
<td>F-Port</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>id</td>
<td>N2</td>
<td>Online</td>
<td>F-Port</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>id</td>
<td>N2</td>
<td>Online</td>
<td>F-Port</td>
</tr>
</tbody>
</table>

See Also portCfgLongDistance, switchDisable, switchEnable, switchName
switchStatusPolicySet

Sets the policy parameters that determine overall switch status.

Synopsis  switchstatuspolicyset

Description Use this command to set policy parameters for calculating the overall status of the switch
enclosure. The policy parameter values determine how many failed or faulty units of each
contributor are allowed before triggering a status change in the switch from HEALTHY to MARGINAL
or DOWN. The status of the switch can be found by issuing the switchStatusShow command. The
existence of policies such as Fans, PowerSupplies, WWN, CP, and Blade might differ from platform
to platform.

The command displays the current parameters in a three-column table format similar to what is
shown in Table 20. The command then prompts you to change the values for each policy
parameter.

TABLE 20  Example of contributor, values, and status

<table>
<thead>
<tr>
<th>Contributor</th>
<th>DOWN</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerSupplies</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Temperatures</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fans</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>WWN</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Blade</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Flash</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MarginalPorts</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>FaultyPorts</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MissingSFPs</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Any single contributor can force the overall status of the switch to MARGINAL or DOWN. For
example, assuming that the switch contributor values are set to the default values, if there is one
faulty port in a switch, then this contributor would set the overall switch status to MARGINAL. If two
ports were faulty, then this contributor would set the overall switch status to DOWN.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples To change the switch policies:

switch:admin> switchstatuspolicyset

To change the overall switch status policy parameters

The current overall switch status policy parameters:

----------------------------------
| Down | Marginal |
----------------------------------
PowerSupplies  2  1
Temperatures  2  1
Fans  2  1
WWN  0  1
CP  0  1
Blade  0  1
CoreBlade  1  1
Flash  0  1
MarginalPorts  2  1
FaultyPorts  2  1
MissingSFPs  0  0

Note that the value, 0, for a parameter, means that it is NOT used in the calculation.
** In addition, if the range of settable values in the prompt is (0..0),
** the policy parameter is NOT applicable to the switch.
** Simply hit the Return key.

The minimum number of
Bad PowerSupplies contributing to DOWN status: (0..4) [3] 2
Bad PowerSupplies contributing to MARGINAL status: (0..4) [0] 1
Bad Temperatures contributing to DOWN status: (0..28) [2]
Bad Temperatures contributing to MARGINAL status: (0..28) [1]
Bad Fans contributing to DOWN status: (0..3) [2]
Bad Fans contributing to MARGINAL status: (0..3) [1]
Down WWN contributing to DOWN status: (0..2) [0]
Down WWN contributing to MARGINAL status: (0..2) [1]
Down CP contributing to DOWN status: (0..2) [0]
Down CP contributing to MARGINAL status: (0..2) [1]
Down Blade contributing to DOWN status: (0..8) [0]
Down Blade contributing to MARGINAL status: (0..8) [1]
Down CoreBlade contributing to DOWN status: (0..2) [0] 1
Down CoreBlade contributing to MARGINAL status: (0..2) [1]
Out of range Flash contributing to DOWN status: (0..1) [0]
Out of range Flash contributing to MARGINAL status: (0..1) [1]
MarginalPorts contributing to DOWN status: (0..448) [2]
MarginalPorts contributing to MARGINAL status: (0..448) [1]
FaultyPorts contributing to DOWN status: (0..448) [2]
FaultyPorts contributing to MARGINAL status: (0..448) [1]
MissingSFPs contributing to DOWN status: (0..448) [0]
MissingSFPs contributing to MARGINAL status: (0..448) [0]

Policy parameter set has been changed

See Also switchStatusPolicyShow, switchStatusShow
switchStatusPolicyShow

Displays the policy parameters that determine overall switch status.

Synopsis switchstatuspolicyshow

Description Use this command to view the current policy parameters set for the switch. These policy
parameters determine the number of failed or non-operational units allowed for each contributor
before triggering a status change in the switch.

The command displays the current parameters in a three-column format similar to what is shown in
Table 21. The first column indicates the contributor, the second column indicates the minimum
number that contributes to the DOWN status, and the third column indicates the minimum number
that contributes to the MARGINAL status. The parameters can be set by the switchStatusPolicySet
command. The existence of policies such as Fans, PowerSupplies, CP, WWN, and Blade may differ
from platform to platform.

<table>
<thead>
<tr>
<th>Contributor</th>
<th>DOWN</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerSupplies</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Temperatures</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fans</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>WWN</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Blade</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Flash</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MarginalPorts</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>FaultyPorts</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MissingSFPs</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The policy parameters determine the number of failed or non-operational units for each contributor
that trigger a status change in the switch. For example, if the FaultyPorts DOWN parameter is set to
3, and three ports fail in the switch, then the status of the switch changes to DOWN.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands none

Examples

switch:admin> switchstatuspolicyshow
The current overall switch status policy parameters:

<table>
<thead>
<tr>
<th>Contributor</th>
<th>Down</th>
<th>Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerSupplies</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Temperatures</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fans</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>WWN</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CP</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Blade</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
switchStatusPolicyShow

<table>
<thead>
<tr>
<th></th>
<th>Value1</th>
<th>Value2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MarginalPorts</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>FaultyPorts</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MissingSFPs</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

See Also  switchStatusPolicySet, switchStatusShow
switchStatusShow

Displays overall switch status.

Synopsis   switchstatusshow

Description Use this command to display the overall status for a switch that is configured with IPv4 and IPv6 addresses. In addition, users with a Fabric Watch license are able to view the list of unhealthy ports.

This command displays the overall switch status, and the status of the following contributors:

- Power supplies
- Temperatures
- Fans
- WWN servers (dual-CP systems only)
- Standby CP (dual-CP systems only with HA enabled)
- Blades (bladed systems only)
- Flash
- Marginal ports
- Faulty ports
- Missing SFPs

Status values are HEALTHY, MARGINAL, or DOWN, depending on whether thresholds established by switchStatusPolicySet have been exceeded. The overall status is based on the most severe status of all contributors.

Note Refer to switchStatusPolicyShow for details on the calculation of contributors and overall switch status.

Operands none

Examples To display a switch health report:

To retrieve a switch health report for a switch that is configured with an IPv6 address:

switch:user> switchstatusshow
Switch Name:     switch
IP address:      1080::8:800:200C:417A
SwitchState: MARGINAL
Duration:        80:12

Power supplies monitor       HEALTHY
Temperatures monitor         HEALTHY
Fans monitor                 HEALTHY
Flash monitor                MARGINAL
Marginal ports monitor       HEALTHY
Faulty ports monitor         HEALTHY
Missing SFPs monitor         HEALTHY

All ports are healthy
To retrieve a switch health report for a switch that is configured with an IPv4 address:

```bash
switch:user> switchstatusshow
Switch Name: switch IP address: 10.32.89.26
SwitchState: MARGINAL Duration: 80:12

Power supplies monitor HEALTHY
Temperatures monitor HEALTHY
Fans monitor HEALTHY
Flash monitor MARGINAL
Marginal ports monitor HEALTHY
Faulty ports monitor HEALTHY
Missing SFPs monitor HEALTHY

All ports are healthy
```

See Also switchStatusPolicySet, switchStatusPolicyShow
switchUptime

Displays the amount of time the switch has been operating.

Synopsis  switchuptime

Description Use this command to display the current time and the amount of time that the switch has been operational.

Operands none

Examples To view the uptime for the switch:

    switch:user> switchuptime
    9:50pm   up for 20 mins

See Also none
switchViolation

Dumps the DCC violations for a switch.

Synopsis  switchViolation --dump -dcc

Description Use this command to display all Device Connection Control (DCC) violations that have occurred on
a switch. Internally the command searches "errdumpall" for the DCC violations. For each DCC
violation, the command displays the device WWN and the port where the violation occurred.

Operands This command has the following operands. If executed without operands, the command prints the
usage.

--dump Displays specified policy violation.
-dcc Specifies the violation type as DCC.

Notes This command can be executed on both active and standby CPs. This command does not support
High Availability (HA).

Examples To display DCC violations for a switch:

switch:admin> switchViolation --dump -dcc
Device WWN          Port
-------------------  ----
22:00:00:04:cf:75:59:87        10

See Also none
**syslogdFacility**

Changes the syslog facility.

**Synopsis**

```plaintext
syslogdFacility [-l level]
```

**Description**

Use this command to change the syslog facility to LOG_LOCAL0, LOG_LOCAL1, LOG_LOCAL2, LOG_LOCAL3, LOG_LOCAL4, LOG_LOCAL5, LOG_LOCAL6, or LOG_LOCAL7.

Syslog daemon (syslogd) is a process available on most UNIX systems that reads and forwards system messages to the appropriate log files or users, depending on the system configuration.

The specified facility is used when forwarding messages to the servers added through the command `syslogdIpAdd`. The default facility is LOG_LOCAL7.

**Note**

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

This command has the following operand:

- `-l level`

  Specifies the syslog facility. The range is from 0 through 7. This operand is optional; if omitted, the current facility is displayed.

**Examples**

To set the syslog facility to LOG_LOCAL1:

```plaintext
switch:admin> syslogdFacility -l 1
Syslog facility changed to LOG_LOCAL1
```

**See Also**

`syslogdIpAdd`, `syslogdIpRemove`, `syslogdIpShow`
**syslogdIpAdd**

Configures a switch to forward system messages to specified servers.

**Synopsis**

```bash
syslogdipadd ip_address | host_name
```

**Description**

Use this command to configure a switch to forward all error log entries to the syslog demon (syslogd) of one or more specified servers. The syslog daemon is a process available on most UNIX systems that reads and forwards system messages to the appropriate log files or users, depending on the system configuration. Up to six servers are supported.

You can specify a syslogd server in one of two ways:

- By IP address: The `syslogdipadd` command accepts IPv4 and IPv6 addresses.
- By host name: The host must have a DNS entry and accept DNS requests. The DNS name service must be configured on the switch with `dnsconfig` before the host name can be added with the `syslogdipadd` command. If the host does not accept DNS requests, `syslogdipadd` fails.

Only one syslogd server can be specified at any given time. To configure more than one server, the command must be executed for each server.

**Note**

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

This command has the following operands:

- `ip_address` Specifies the IP address of the server running syslogd in either IPv4 or IPv6 format.
- `host_name` Specifies the name of the machine that is running syslogd. Use `dnsconfig` to configure the DNS service before running `syslogdipadd` with the `host_name` parameter.

**Examples**

To add an IP address to the list of machines to which system messages are sent:

```
switch:admin> syslogdipadd 1080::8:800:200C:417A
```

```
switch:admin> syslogdipshow
syslog.1 1080::8:800:200C:417A
```

To add a second IP address to the existing syslogd server configuration:

```
switch:admin> syslogdipadd 192.168.163.234
```

```
switch:admin> syslogdipshow
syslog.1 1080::8:800:200C:417A
syslog.2 192.168.163.234
```

To add a host name to the list of machines to which system messages are sent:

1. Get the DNS name server info on the host you wish to add:

```
sysadmin:myhost> nslookup myhost
Server: nameserver.corp.brocade.com
Address: 192.168.126.120
Name: myshost.brocade.com
```

```
sysadmin:myhost> syslogdipadd myhost
```

```
sysadmin:myhost> syslogdipshow
syslog.1 1080::8:800:200C:417A
syslog.2 192.168.163.234
```
2. **Add the DNS name server to the switch:**

   ```
 switch:admin> dnsconfig
 Enter option
 1 Display Domain Name Service (DNS) configuration
 2 Set DNS configuration
 3 Remove DNS configuration
 4 Quit
 Select an item: (1..4) [4] 2

 Enter Domain Name: [] brocade.com
 Enter Name Server IP address in dot/colon notation: [] 192.168.126.120
 Enter Name Server IP address in dot/colon notation: [] 192.168.126.120
 DNS parameters saved successfully

 Enter option
 1 Display Domain Name Service (DNS) configuration
 2 Set DNS configuration
 3 Remove DNS configuration
 4 Quit
 Select an item: (1..4) [4] 4
   ```

3. **Add host name to the list of syslogd servers on the switch:**

   ```
 switch:admin> syslogdIpAdd myhost
 switch:admin> syslogdIpShow
 syslog.1 myhost
   ```

**See Also**  
errShow, syslogdFacility, syslogdIpRemove, syslogdIpShow
syslogdIpRemove

Removes the IP address of a syslog daemon.

Synopsis  
syslogdIpRemove ip_address

Description  
Use this command to remove the IP address of the server that is running the syslogd process and to which system messages are sent. IPv6 and IPv4 syslogd address configurations are supported.

Note  
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  
The following operand is required:

ip_address  
Specifies the IP address of the server running syslogd.

Examples  
To remove the address 1080::8:800:200C:417A from the list of machines to which system messages are sent:

switch:admin> syslogdIpRemove 1080::8:800:200C:417A

See Also  
errShow, syslogdFacility, syslogdIpAdd, syslogdIpShow
syslogdIpShow

Displays all syslog daemon IP addresses.

Synopsis   syslogdIpShow

Description Use this command to display all syslog daemon IP addresses in the configuration database. IPv4 and IPv6 addresses are supported.

Operands none

Examples To display all syslog daemon IP addresses configured on a switch:

switch:admin> syslogdIpShow
syslog.1 1080::8:800:200C:417A

See Also  errShow, syslogdFacility, syslogdIpAdd, syslogdIpRemove
sysShutDown

Provides a graceful shutdown to protect the switch file systems.

Synopsis    sysshutdown

Description On standalone platforms, use this command to shut down the switch operating system.
On enterprise-class platforms, when sysShutDown is called on the active control processor (CP),
the command shuts down the active CP, standby CP, and any AP blades.

After executing this command, manually power off the system. To reboot the system, manually turn
the power switch on.

Notes   This command is not supported on the standby CP.
The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability"
for details.

Operands   none

Examples   To perform a system shutdown on a standalone platform:

        switch:admin> sysshutdown
        This command will shutdown the operating systems on your switch.
        You are required to power-cycle the switch in order to restore operation.
        Are you sure you want to shutdown the switch [y/n]? y
        Broadcast message from root (ttyS0) Mon Sep 12 17:52:12 2005...
        The system is going down for system halt NOW !!
        INIT: Switching to runlevel:
        INIT: Sending processes the TERM signal
        ess095:root> Unmounting all filesystems.
        The system is halted
        flushing ide devices: hda
        Power down.

To perform a system shutdown from the active CP on a dual-CP enterprise-class platform:

        switch:admin> sysshutdown
        This command will shutdown the operating systems on your switch.
        You are required to power-cycle the switch in order to restore operation.
        Are you sure you want to shutdown the switch [y/n]? y
        This is the active Cp
        2005/09/13-01:15:13, [FSSM-1003], 414,, WARNING, Brocade48000, HA State out of sync
        HA is disabled
        Broadcast message from root (ttyS0) Tue Sep 13 01:15:14 2005...
        The system is going down for system halt NOW !!
        INIT: Switching to runlevel: 0
        INIT: Sending processes the TERM signal
        Unmounting all filesystems.
        umount2: Device or resource busy
        umount: /tmp: device is busy
        The system is halted
To perform a system shutdown of the FR4-18i AP blade from the active CP:

```
switch:admin> sysshutdown
This command will shutdown the operating systems on your switch.
You are required to power-cycle the switch in order to restore operation.
Are you sure you want to shutdown the switch [y/n]? y
This is the active Cp
2005/11/16-05:47:20, [FSSM-1003], 5641,, WARNING, Brocade12000, HA State out of sync
HA is disabled
Stopping blade 2
Shutting down the blade....
Stopping blade 8
Shutting down the blade....

Broadcast message from root (ttyS0) Wed Nov 16 05:47:20 2005...

The system is going down for system halt NOW !
INIT: Switching to runlevel: 0
INIT: Sending processes the TERM signal
Unmounting all filesystems.
umount2: Device or resource busy
umount: /tmp: device is busy
The system is halted
flushing ide devices: hda
Power down.
ppc440gx System Halted
```

To attempt a system shutdown from the standby CP (not supported):

```
switch:admin> sysshutdown
Shut down the whole system is not support from the standby CP
For shut down the whole system
please run the sysshutdown from the active CP
```

See Also  haDisable
systemVerification

Runs a suite of diagnostic tests on all switches in a fabric.

Synopsis

systemverification [-parameters | -short][-fru type -unit id]
[-parameters | -short | -factory | -paramaters][-fru type -unit number]

Description

Use this command to run a comprehensive, system-wide test of all switches in a system. The command initiates a burn-in run on all switches within the current system. The optional -fru and -unit parameters allow you to focus the testing to a single blade in a multi-blade system.

The run can be terminated by issuing a Ctrl-C from the initiating terminal. All of the burn-in features are operational during the systemVerification command. The burninErrShow displays the stored burn-in errlogs; the logs by blade are saved in /var/log/verify.slot files. On fixed-port-count products, the slot defaults to 0.

The command monitors the testing and terminates the burn-in activity if all the elements fail. Each failing slot only outputs the first observed failure. Because this monitoring is a polling activity, the command number output might not be the exact command number that failed.

After the testing terminates, the burninStatus command output displays, and the burninErrShow messages for the failing slots display. If all slots pass, then only the burninStatus command output displays.

The burn-in tests are designed to operate with switches connected to a fabric and restrict the frame loopback to inside the unit. If loopback plugs are installed in all ports, the burn-in parameter min_lb_mode can be changed to 1 to test the Fibre Channel through the loopback plug.

Notes

The switch must be offline for this command to run.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

-parameters

Invokes the diagSetCycle command before starting the burn-in run. This allows you to modify the burn-in parameters prior to the run. These diagSetCycle parameters are copied to all switches in the system and override the original settings in the database. If the diagSetCycle parameters are not specified, the run uses the previously stored values. This option does not perform a burninErrClear operation prior to starting the testing operation.

-short

Sets the burn-in parameters that control the number of frames to 1. The primary use for this command is software regression testing, or quick validation that all hardware is operational. The shorter test cycle does not have enough test time to detect intermittent errors. This option performs a burninErrClear operation prior to starting the testing operation.

-fru type

Tests a single FRU in the system. Valid values are BLADE, PS, FAN, and WWN; however, only BLADE is supported at this time. Since only one FRU type is supported, this parameter is optional, but -unit is required for single FRU testing.

-unit id

Tests a single FRU in the system. Specify a FRU ID of type of BLADE. The FRU ID is the slot number of the FRU to be tested.
Diagnostics

Each diagnostic test in this suit reports its own set of error messages when detecting a failure. Refer to the Diagnostics section of individual diagnostic test help pages. These messages are available only in the log file.

Refer to the Fabric OS Message Reference for more information.

Examples

To initiate a system verification test on all switches in the fabric:

```
switch:admin> systemverification -short
systemverification: Setting parameters for short run.
CURRENT - KEYWORD : DEFAULT
1 - number_of_runs : 1
2 - vib : 2
10 - thermal : 10
SYSTEMVERIFICATION - label : BURNIN
2 - min_lb_mode : 2
1 - tbr_passes : 1
1 - prt_on : 1
1 - cntmem_on : 1
1 - cmi_on : 1
1 - retention_on : 1
1 - cam_on : 1
1 - flt_passes : 50
1 - sta_passes : 25
1 - plb_nframes : 100
1 - txd_nframes : 50
1 - xpt_nframes : 200
1 - bpt_nframes : 20
1 - slk_nmegs : 50
1 - bpt_all_nframes : 30
1 - slk_all_nmegs : 50
systemverification: Arming the burnin run on switch 0.
systemverification: Starting burnin on Switch 0
systemverification: Monitoring progress of the burnin activity.
```

```
State Status Run Cmd TotCmds Script
COMPLETED PASS 1 22 22 switchburnin.sh
```

See Also  

burninErrShow, burninStatus, diagSetBurnin, diagSetCycle
tempShow

Displays temperature readings.

Synopsis tempshow

Description Use this command to display the current temperature readings of all temperature sensors in a switch. For each sensor, this command displays the slot number (if applicable), the sensor state, and the temperature. The temperature readings are given in both Centigrade and Fahrenheit.

Note Refer to the hardware reference manual for your switch to determine the normal temperature range.

Operands none

Examples To display temperature and status sensors:

switch:user> tempshow

<table>
<thead>
<tr>
<th>Index</th>
<th>Slot</th>
<th>State</th>
<th>Centigrade</th>
<th>Fahrenheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Ok</td>
<td>41</td>
<td>105</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Ok</td>
<td>39</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Ok</td>
<td>26</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Ok</td>
<td>27</td>
<td>80</td>
</tr>
</tbody>
</table>

See Also fanShow, psShow, sensorShow, slotShow
timeOut

Sets or displays the idle timeout value for a login session.

Synopsis  timeout [timeval]

Description Use this command without operand to display the current timeout value (in minutes) after which idle
logins are automatically terminated.

Use this command with the timeval operand to set the login timeout value to the specified interval. A value of 0
disables timeout of login sessions.

The new timeout value takes effect with the next logins.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer
To chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operand:

    timeval Specify the number of minutes for the Telnet timeout value. Valid values are 1 to 99,999, or 0 to disable
login timeouts. This operand is optional; if omitted, the command displays the current timeout value.

Examples To set the idle timeout to 10 minutes:

    switch:admin> timeout 10
    IDLE Timeout Changed to 10 minutes
    The modified IDLE Timeout will be in effect after NEXT login

See Also none
topologyShow

Displays the unicast fabric topology.

Synopsis  topologyshow [domain]

Description Use this command to display the fabric topology as it appears to the local switch. The display varies depending on the hardware configuration. The following rules apply:

1. On all switches, the command displays the number of domains in the fabric and the local Domain IDs. If translate domains are configured, existing translate domains and associated ports are displayed.

2. On an edge fabric, the command displays the following additional details for all domains in the fabric (including local translate domains):
   - All possible paths from the local switch to each of the remote domains.
   - For each path, the cost, the associated output port on the local switch, the path cost, and the number of hops from the local switch to the destination switch.
   - A summary of all ports that are routed through that path.

3. On a backbone fabric, the command displays details for remote domains only. Details for local translate domains are not displayed.

4. If there are two switches in the Backbone and the edge fabric is directly connected to both of those switches, topologyshow does not display the description of the translate domain associated with that edge fabric. In this case the translate domain is considered local to both of the switches in the backbone.

5. If there is only one switch in the backbone, no domain details are displayed (all domains are local).

Depending on the fabric, the display may contain the following fields:

Local Domain ID The domain number of local switch.

Local Translate Domain x owned by port
   The port number associated with the local translate domain x.

Domain The domain number of destination switch.

Metric The cost of reaching destination domain.

Name The name of the destination switch.

Path Count The number of currently active paths to the destination domain.

Hops The maximum number of hops to reach destination domain.

Out Port The port to which incoming frames are forwarded to reach the destination domain.

In Ports The input ports that use the corresponding out port to reach the destination domain. This is the same information provided by portRouteShow and uRouteShow but in a different format.
**Total Bandwidth**  The maximum bandwidth of the out port. A bandwidth that is less than 0.512 Gbps is adjusted to the nearest power of 2 value. A bandwidth in the range of 0.512 Gbps Included) to 1 Gbps (not included) is adjusted to the 0.512 Gbps value. No adjustment takes place if the bandwidth is greater or equal to 1 Gbps.

**Bandwidth Demand**  
The maximum bandwidth demand by the in ports.

**Flags**  
Always D, indicating a dynamic path. A dynamic path is discovered automatically by the FSPF path selection protocol.

**Operands**  
The following operand is optional:

- **domain**  
  Specify the destination domain for which to display the topology information.

**Examples**  
To display the topology on a single switch: domain is local, details are not displayed.

```
switch:user> topologyshow

1 domains in the fabric; Local Domain ID: 97

When executed from an edge fabric, **topologyshow** displays details for all domains, including local domains and local translate domains:

switch:user> topologyshow

6 domains in the fabric; Local Domain ID: 7

Domain: 1
Metric: 10500
Name: fcr_xd_1_1
Path Count: 1

 Hops: 2
 Out Port: 11
 In Ports: 0 1 2 3 4 5 6 7 8 9 15
 Total Bandwidth: 8.000 Gbps
 Bandwidth Demand: 1275 %
 Flags: D

Domain: 2
Metric: 1000
Name: fcr_fd_2
Path Count: 1

 Hops: 2
 Out Port: 15
 In Ports: 0 1 2 3 4 5 6 7 8 9 11
 Total Bandwidth: 2.000 Gbps
 Bandwidth Demand: 4000 %
 Flags: D

Domain: 3
Metric: 10500
Name: fcr_xd_3_5
Path Count: 1
```
The command is executed from the backbone in a fabric with five switches. The fabric has five domains, but details are only shown for the three remote domains, not for the two local translate domains.

```
switch:user> topologyshow

5 domains in the fabric; Local Domain ID: 2
Local Translate Domain 4 owned by port: 24
Local Translate Domain 5 owned by port: 23 33

Domain: 1
Metric: 500
Name: pengsaturn104
Path Count: 1

 Hops: 1
 Out Port: 0
 In Ports: 23 24 33 38 39
 Total Bandwidth: 8.000 Gbps
 Bandwidth Demand: 350%
 Flags: D

Domain: 3
Metric: 10500
Name: fcr_xd_3_6
Path Count: 1

 Hops: 2
 Out Port: 0
```
In Ports: 23 24 33 38 39
Total Bandwidth: 8.000 Gbps
Bandwidth Demand: 350 %
Flags: D

See Also fcrXlateConfig, portRouteShow, uRouteShow
traceDump

Displays, initiates, or removes a trace dump.

Synopsis

```
traceDump [-S][-s slot]
traceDump -n [-s slot]
traceDump -r [-s slot]
traceDump -R
```

Description

Use this command to initiate a background trace dump, to remove the content of a trace dump, or to display the dump status on the switch.

If there is no parameter specified, this command defaults to `traceDump -S`.

The default remote file name format is `chassisname-S#-YYYYMMDDHHMMSS.dmp`, in which # is the slot number (0 on nonbladed systems) and `YYYYMMDDHHMMSS` (year-month-day-hour-minute-second) is the trace dump time. If a non-bladed system has an embedded BP, two trace dumps will be generated, an `*.dmp` file for the main switch and a `*.tar.gz` archive for the embedded BP.

Operands

This command has the following mutually exclusive operands:

- `-S` Displays dump status.
- `-n` Initiates a background trace dump.
- `-r` Removes the content of a trace dump.
- `-R` Removes the content of a trace dump from all slots.

This command has the following optional operand:

- `-s slot` Specifies the slot number from which a trace dump is generated. If this is not supplied, the trace dump is generated from the local slot. This operand is optional.

Examples

To initiate a background trace dump from slot 5:

```
switch:admin> tracedump -n -s 5
```

To remove a trace dump:

```
switch:admin> tracedump -r
trace dump removed
```

See Also

supportFtp, supportSave, supportShow
trackChangesHelp

Displays information on the track-changes commands.

**Synopsis**

`trackchangeshelp`

**Description**

Use this command to display information about the track-changes commands.

**Examples**

To display information on the track-changes commands:

```
switch:admin> trackchangeshelp
trackChangesSet Configure alert for login/logout/config update
trackChangesShow Displays status of track changes
```

**See Also**

`trackChangesSet`, `trackChangesShow`
trackChangesSet

Enables or disables the track-changes feature.

Synopsis

trackChangesSet [mode][, snmptrapmode]

Description

This command enables or disables the track-changes feature. An SNMP-TRAP mode can also be enabled. Trackable changes are:

- Successful login
- Unsuccessful login
- Logout
- Config file change from task
- Track-changes on
- Track-changes off

The output from the track-changes feature is dumped to the error log for the switch. Use errDump or errShow to view the error log.

Note

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands

This command has the following operands:

mode

Specify 1 to enable the track-changes feature or 0 to disable the feature. The default (if no operand is specified) is to disable the track-changes feature. This operand is optional.

snmptrapmode

Specify 1 to enable errors to be sent to the SNMP-TRAP in addition to the erlog or specify 0 to disable the SNMP-TRAP messages. The default (if no operand is specified) is to disable SNMP-TRAP messages. This operand is optional.

Examples

To enable the track-changes feature:

switch:admin> trackChangesSet 1, 1
Committing configuration...done.
switch:admin> trackChangesShow
Track changes status: ON
Track changes generate SNMP-TRAP: YES

See Also

snmpConfig, trackChangesHelp, trackChangesShow
trackChangesShow

Displays status of the track-changes feature.

Synopsis trackchangesshow

Description Use this command to display status of the track-changes feature. It shows whether the feature is enabled or disabled and if SNMP traps are generated.

The output from the track-changes feature is dumped to the error log for the switch. Use the errDump command or errShow command to view the error log.

Operands none

Examples To display the status of the track-changes feature:

switch:admin> trackchangesshow
Track changes status: ON
Track changes generate SNMP-TRAP: YES

See Also trackChangesHelp, trackChangesSet
trunkDebug

Debugs a trunk link failure.

Synopsis    trunkdebug port1 port2

Description Use this command to debug a trunk link failure. This command reports one of the following messages, based on the trunking properties of the two specified ports:

- Switch does not support trunking
- Trunking license required
- Trunking not supported in switch interop mode
- port port_id is not E_Port
- port port_id trunking disabled
- port port_id speed is not 2G or 4G
- port port_id and port port_id are not in same port group
- port port_id and port port_id connect to different switches
- port port_id and port port_id connect to the switch WWN
- port port_id is not a trunking port due to: E_Port being disabled, or trunking might be disabled at remote port
- port port_id and port port_id cannot trunk, please check link length to make sure difference is less than 400 m

Note    The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:

port1        Specify the area number of port 1. Use the switchShow command to view the area numbers for a port. This operand is required.

port2        Specify the area number of port 2. Use the switchShow command to view the area numbers for a port. This operand is required.

Examples To debug a trunk connection:

switch:admin> trunkdebug 43 44
Switch does not support trunking

switch:admin> trunkdebug 62 63
port 62 and 63 are trunked together

See Also    portCfgTrunkPort, switchCfgTrunk, trunkShow
trunkShow

Displays trunking information.

Synopsis  trunkshow

Description Use this command to display trunking information of both E_Ports and EX_Ports. The following fields display:

Trunking Group Number Displays each trunking group on a switch. All the ports that are part of this trunking group are displayed.

Port to port connections Displays the port-to-port trunking connections.

WWN Displays the WWN of the connected port.

Domain Displays the domain IDs of the switches directly connected to the physical ports. In case of a FC Router backbone fabric interlinking several edge fabrics, the domain ID displayed for an E_Port trunk refers to a domain of a switch within the backbone fabric, whereas the domain ID displayed for an EX_Port trunk refers to the domain ID of a switch in the edge fabric. It may so happen that both the backbone and the edge fabric may have same domain ID values assigned to switches, as they are independent fabrics. In such a situation, you may get a clear picture by referring to switchShow output for additional information on the port types of the local switch and WWNs of the remote switches. See EXAMPLES, below.

deskew The time difference for traffic to travel over each ISL compared to the time to the shortest ISL in the group. The number corresponds to nanoseconds divided by 10. The firmware automatically sets the minimum deskew value of the shortest ISL to 15.

Master Displays whether this trunking port connection is the master port connection for the trunking group.

Operands none

Examples To display trunking information for a switch:

switch:admin> trunkshow
1: 6 -> 4 10:00:00:60:69:51:43:04 deskew 15 MASTER
2:15 -> 13 10:00:00:60:69:51:43:04 deskew 16 MASTER
12 -> 12 10:00:00:60:69:51:43:04 deskew 15
14 -> 14 10:00:00:60:69:51:43:04 deskew 17
13 -> 15 10:00:00:60:69:51:43:04 deskew 16
3:24 -> 14 10:00:00:60:69:51:42:dd deskew 15 MASTER
To display trunking information for a switch that is part of an FC Router backbone fabric interlinking several edge fabrics (see the EX_Port with WWN "10:00:00:05:1e:35:b3:03" and the E_Port with WWN "10:00:00:05:1e:37:12:13" in the output below):

```
switch:admin> trunkshow
 4: 49-> 0 10:00:00:05:1e:35:b3:03 4 deskew 16 MASTER
 54-> 2 10:00:00:05:1e:35:b3:03 4 deskew 16
 53-> 5 10:00:00:05:1e:35:b3:03 4 deskew 16
 50-> 6 10:00:00:05:1e:35:b3:03 4 deskew 15
 51-> 4 10:00:00:05:1e:35:b3:03 4 deskew 16
 52-> 7 10:00:00:05:1e:35:b3:03 4 deskew 67
 55-> 3 10:00:00:05:1e:35:b3:03 4 deskew 16
 48-> 1 10:00:00:05:1e:35:b3:03 4 deskew 15

 5: 71-> 22 10:00:00:05:1e:37:12:13 4 deskew 17 MASTER
 67-> 17 10:00:00:05:1e:37:12:13 4 deskew 16
 70-> 20 10:00:00:05:1e:37:12:13 4 deskew 16
 69-> 21 10:00:00:05:1e:37:12:13 4 deskew 16
 66-> 18 10:00:00:05:1e:37:12:13 4 deskew 17
 68-> 23 10:00:00:05:1e:37:12:13 4 deskew 17
 64-> 16 10:00:00:05:1e:37:12:13 4 deskew 15
 65-> 19 10:00:00:05:1e:37:12:13 4 deskew 16

switch:admin> switchshow
 48 4 0 013000 id N4 Online EX-Port (Trunk port, master is Slot 4 Port 1)
 49 4 1 013100 id N4 Online EX-Port 10:00:00:05:1e:35:b3:03 "SW4100_33" (fabric id = 100)(Trunk master)
 52 4 2 013200 id N4 Online EX-Port (Trunk port, master is Slot 4 Port 1)
 51 4 3 013300 id N4 Online EX-Port (Trunk port, master is Slot 4 Port 1)
 52 4 4 013400 id N4 Online EX-Port (Trunk port, master is Slot 4 Port 1)
 53 4 5 013500 id N4 Online EX-Port (Trunk port, master is Slot 4 Port 1)
 54 4 6 013600 id N4 Online EX-Port (Trunk port, master is Slot 4 Port 1)
 55 4 7 013700 id N4 Online EX-Port (Trunk port, master is Slot 4 Port 1)
 64 7 0 014000 id N4 Online E-Port (Trunk port, master is Slot 7 Port 7)
 65 7 1 014100 id N4 Online E-Port (Trunk port, master is Slot 7 Port 7)
 66 7 2 014200 id N4 Online E-Port (Trunk port, master is Slot 7 Port 7)
 67 7 3 014300 id N4 Online E-Port (Trunk port, master is Slot 7 Port 7)
 68 7 4 014400 id N4 Online E-Port (Trunk port, master is Slot 7 Port 7)
 69 7 5 014500 id N4 Online E-Port (Trunk port, master is Slot 7 Port 7)
 70 7 6 014600 id N4 Online E-Port (Trunk port, master is Slot 7 Port 7)
 71 7 7 014700 id N4 Online E-Port 10:00:00:05:1e:37:12:13 "SW4900_43" (downstream)(Trunk master)
```

See Also portCfgTrunkPort, switchCfgTrunk
tsClockServer

Displays or sets the Network Time Protocol (NTP) Server addresses.

Synopsis  tsClockServer [ipaddr [: ipaddr ...]]

Description  Use this command to synchronize the local time of the Principal or Primary FCS switch to one or more external NTP servers.

This command accepts a list of NTP server addresses. The NTP server addresses can be passed in either IPV4 or IPV6 address format or as a DNS server name. When multiple NTP server addresses are specified, tsClockServer sets the first reachable address for the active NTP server. The remaining addresses are stored as backup servers, which can take over if the active NTP server fails.

The time server daemon synchronizes fabric time by sending updates of the Principal or Primary FCS local switch time periodically to every switch in the fabric. The time server daemon runs on all switches in the fabric, but only the Principal switch (when FCS policy is not enabled) or the Primary FCS switch (when FCS policy is enabled) connect to the NTP server (if specified) and broadcasts time service updates.

All switches in the fabric maintain the current clock server IP address in nonvolatile memory. By default, this value is LOCL, that is, the local clock of the Principal or the Primary FCS switch is the default clock server. Changes to the clock server IP addresses on the Principal or Primary FCS switch are propagated to all switches in the fabric.

Use this command without parameters to display the active NTP server and the configured NTP server list. Specify the ipaddr operands to set the clock server IP addresses and enable fabric-wide clock synchronization with the specified clock server. A value of LOCL may be specified as operand to set the clock server back to default.

Each ipaddr specified should be the IP address of an NTP server and should be accessible from the switch. The NTP server must support a full NTP client. When a clock server IP address other than LOCL is specified but is not used by the fabric, a warning is displayed and logged. When a clock server IP address other than LOCL is specified, the date command is restricted to display only. Refer to the date command help for details.

Notes  When FCS policy is enabled, this command can be run on all switches to view the clock server value. However, you can only modify the clock server value from the Primary FCS switch.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  This command has the following operand:

ipaddr  Specify the IP address of the NTP server or LOCL to use the local clock of the Principal or Primary FCS switch as the clock server. If more than one IP address is specified, separate the IP addresses by semicolons and enclose the list in double quotation marks. This operand is optional; if omitted, the current NTP server configuration is displayed. The default NTP server is LOCL.

Examples  To display the default clock server:

switch:admin> tsClockServer
LOCL
To set the NTP server to a specified IP address:

```
switch:admin> tsclockserver 123.123.123.123
Updating Clock Server configuration...done.
```

```
switch:admin> tsclockserver
123.123.123.123
```

To configure multiple NTP servers:

```
switch:admin> tsclockserver "12.134.125.24; 12.234.87.01"
Updating Clock Server configuration...done.
```

See Also  date
tsTimeZone

Displays or sets the system time zone.

**Synopsis**

tstimezone --interactive
tstimezone timezone

tstimezone --old hourOffset [, minuteOffset]

**Description**

Use this command to display or set the system time zone.

All switches maintain the current time zone setup in nonvolatile memory. Changing the time zone on a switch updates the local time zone setup and is reflected in local time calculations.

All switches are by default in the 0,0 time zone; which is GMT. If all switches in a fabric are located in the same time zone, you may leave the default time zone setup.

Time zone is used in computing local time for error reporting and logging. An incorrect time zone setup does not affect the switch operation in any way.

System services started during the switch boot reflect a time zone change only at the next reboot.

The time zone can be specified in two ways, by name or in an hours and minutes offset format:

1. The offset format is specified with the --old option, followed by an hour offset value and optionally a minute offset value.
2. The time zone name format uses the timezone database, which automatically adjusts for Daylight Saving Time.

By default, the switch is in offset mode (--old), with zero offsets, that is, time is displayed in GMT. Use tsTimeZone timezone to change the offset format to the timezone name format.

When executed without parameters, this command displays the current time zone configuration in the format in which it was set.

- Negative hour offset values mean that the local time is behind GMT; for example, -8,0 is GMT-08:00.
- Positive hour offset values mean that the local time is ahead of GMT; for example, 3,0 is GMT+03:00.

**Note**

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

This command has the following operands:

- **--old**
  Specifies the time zone in the offset format.

  **hourOffset**
  Specifies the number of hours relative to GMT. This operand must be specified as an integer. Valid values are -12 through 12. This operand is required with the --old option.

  **minuteOffset**
  Specifies the number of minutes relative to hour offset. This operand must be specified as an integer and is valid only with the --old option. Valid values are -30, 0, or 30. This operand is optional; if not specified, the value defaults to 0.
tsTimeZone

timezonename  Specifies the name of a time zone from the time zone database. Use tstimezone --interactive for a listing of valid time zone name.

--interactive  Interactively sets the timezone in name format.

Examples  To display the current time zone setup and then change it to GMT-3:30:

switch:admin> tstimezone
Time Zone Hour Offset: 0
Time Zone Minute Offset: 0

switch:admin> tstimezone -3,-30
Updating Time Zone configuration...done.
System Time Zone change will take effect at next reboot.

switch:admin> tstimezone
Time Zone Hour Offset: -3
Time Zone Minute Offset: -30

To set the current timezone to the zone to Pacific Time using the interactive command mode:

switch:admin> tsTimeZone --interactive
Please identify a location so that time zone rules can be set correctly.
Please select a continent or ocean.
1) Africa
2) Americas
3) Antarctica
4) Arctic Ocean
5) Asia
6) Atlantic Ocean
7) Australia
8) Europe
9) Indian Ocean
10) Pacific Ocean
11) none - I want to specify the time zone using the Posix TZ format.
Enter number or control-D to quit : 2
Please select a country.
1) Anguilla  18) Ecuador  35) Paraguay
2) Antigua & Barbuda  19) El Salvador  36) Peru
3) Argentina  20) French Guiana  37) Puerto Rico
4) Aruba  21) Greenland  38) St Kitts & Nevis
5) Bahamas  22) Grenada  39) St Lucia
6) Barbados  23) Guadeloupe  40) St Pierre
7) Belize  24) Guatemala  41) St Vincent
8) Bolivia  25) Guyana  42) Suriname
9) Brazil  26) Haiti  43) Trinidad & Tobago
10) Canada  27) Honduras  44) Turks & Caicos Is
11) Cayman Islands  28) Jamaica  45) United States
12) Chile  29) Martinique  46) Uruguay
13) Colombia  30) Mexico  47) Venezuela
14) Costa Rica  31) Montserrat  48) Virgin Islands (UK)
15) Cuba  32) Netherlands Antilles  49) Virgin Islands (US)
16) Dominica  33) Nicaragua
17) Dominican Republic  34) Panama
Enter number or control-D to quit : 45

Please select one of the following time zone regions.
1) Eastern Time
2) Eastern Time - Michigan - most locations
3) Eastern Time - Kentucky - Louisville area
4) Eastern Time - Kentucky - Wayne County
5) Eastern Time - Indiana - most locations
6) Eastern Time - Indiana - Crawford County
7) Eastern Time - Indiana - Starke County
8) Eastern Time - Indiana - Switzerland County
9) Central Time
10) Central Time - Indiana - Daviess, Dubois, Knox, Martin, Perry, Pulaski
11) Central Time - Indiana - Pike County
12) Central Time - Michigan - Dickinson, Gogebic, Iron & Menominee
13) Central Time - North Dakota - Oliver County
14) Mountain Time
15) Mountain Time - south Idaho & east Oregon
16) Mountain Time - Navajo
17) Mountain Standard Time - Arizona
18) Pacific Time
19) Alaska Time
20) Alaska Time - Alaska panhandle
21) Alaska Time - Alaska panhandle neck
22) Alaska Time - west Alaska
23) Aleutian Islands
24) Hawaii

Enter number or control-D to quit ?18

The following information has been given:

    United States
    Pacific Time

Therefore TZ='America/Los_Angeles' will be used.
Local time is now:     Tue Feb 26 15:15:22 PST 2008.
Universal Time is now:   Tue Feb 26 23:15:22 UTC 2008.
Is the above information OK?
1) Yes
2) No
Enter number or control-D to quit ?1
System Time Zone change will take effect at next reboot

To revert back to the offset format and verify the configuration:

    switch admin> tstimezone --old 2

    switch admin> tstimezone
    Time Zone Hour Offset: 2
    Time Zone Minute Offset: 0

See Also  date
turboRamTest

Performs a turbo SRAM logic test.

Synopsis  turboramtest [--slot slotnumber][-passcnt count][-ports itemlist]

Description  This command verifies the on chip SRAM located using the turbo-RAM BIST circuitry. It also tests one SRAM in each quadrant of every chip, in parallel.

The test flow for each SRAM is as follows:
1. Fill RAM with alternating FFFF 0000 pattern. (Subtest 1: turboram memory fill)
2. For each incrementing address, read FFFF 0000 pattern and write 0000 FFFF. (Subtest 2: turbo-ram r-m-w inc)
3. For each incrementing address, read 0000 FFFF pattern and write FFFF 0000. (Subtest 3: turbo-ram r-m-w inc 2)
4. For each decrementing address, read FFFF 0000 pattern and write 0000 FFFF. (Subtest 4: turbo-ram r-m-w dec)
5. For each decrementing address, read 0000 FFFF pattern and write FFFF 0000. (Subtest 5: turbo-ram r-m-w dec 2)
6. Repeat steps 1 through 5 with AAAA 5555 pattern.

Note  The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  This command has the following optional operands:

--slot slotnumber  Specifies the slot number on which the diagnostic operates. The ports specified are relative to this slot number. The default is 0 and designated to operate on fixed-port-count products.

-passcnt count  Specifies the number of times to perform this test. The default value is 1.

-ports itemlist  Specifies a list of blade ports to test. By default, all the blade ports in the specified slot are tested. Refer to the itemList command help page for more information.

Examples  To execute this test:

switch:admin> turboramtest -passcnt 2 -ports 2/0-2/63
Running Turbo RAM Test .......... passed.

Diagnostics  When the test detects a failure, it may report one or more of the following error messages:

DIAG-WTEST
DIAG-INC_RWTEST
DIAG-DEC_RWTEST
DIAG-RAMINIT_TO

Refer to the Fabric OS Message Reference for more information.

See Also  none
upTime

Displays length of time the system has been operational.

Synopsis  uptime

Description  This command displays the current time, how long the system has been running, how many users are currently logged on, and the system load averages for the past 1, 5, and 15 minutes.

If the uptime is less than 60 seconds, the time is displayed in seconds. For times greater than or equal to 60 seconds, the time is displayed in minutes. The output format adjusts accordingly.

Operands  none

Examples  To display the length of time the system has been operational:

    switch:admin> uptime
    12:03am  up 4:56, 3 users, load average: 1.17, 1.08, 1.08

See Also  date, fastboot, reboot
uRouteConfig

Configures a static route.

Synopsis  
urouteconfig in_area domain out_area

Description  
Use this command to configure static routes. A static route is assigned to a specific path (defined by port number out_area) and does not change when a topology change occurs unless the path used by the route becomes unavailable.

After this command is issued, if out_area port is associated with a valid minimum-cost path, all frames coming in from the in_area port addressed to domain are forwarded through the out_area port. If the out_area port is not associated with such a path, the routing assignment is not immediately affected by this command. However, the static route is remembered so that it can be enforced if this port becomes part of a valid path in the future.

If a static route requires hardware resources that are already used, a platform conflict warning message is displayed and the configuration does not take effect.

When using static routes, load sharing may be affected. The switch attempts to optimize load sharing, but if too many routes are statically configured to use the same output port, a fair load sharing may not be achievable.

To prevent routing loops, static route requests involving non-minimum-cost paths are not enforced.

Notes  
Static route configuration is not supported on the Brocade 300, 4900, 5100, 5300, 7500, 7600, and DCX platforms. On the Brocade 48000, Static route configuration is not supported on Brocade directors set to chassis configuration option 5 by chassisConfig.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  
This command has the following operands:

  in_area  Specifies the input port to be statically routed. The in_area parameter can refer to either an F_Port or an E_Port.

  domain  Specifies the destination domain.

  out_area  Specifies the output port to which traffic is forwarded.

Examples  
To configure a static route for all traffic coming in from port 1 and addressed to domain 2 to go through port 5:

  switch:admin> urouteconfig 1 2 5
  done.

  switch:admin> urouteshow 1/1 2

  Local Domain ID: 1

  In Port    Domain    Out Port    Metric    Hops    Flags    Next (Dom, Port)
  -------------------------------
    1         2          5        500       1       S           2,5

See Also  
configShow, interfaceShow, uRouteRemove, uRouteShow
uRouteRemove

Removes a static route.

Synopsis  urouteremove in_area domain

Description Use this command to remove a previously configured static route.

After this command is issued, the route to domain for in_area might change to use a different output port, but only if dynamic load sharing (DLS) is set. If DLS is not set, the route remains as is, with its route attribute changed from static to dynamic.

Note The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands This command has the following operands:
in_area Specify the input port of the static route to remove. in_area can be either an F_Port or an E_Port.
domain Specify the destination domain of the static route to remove.

Examples To remove a static route for all traffic coming in from port 1 and addressed to domain 2:

switch:admin> urouteremove 1 2

done.

See Also configShow, dlsShow, uRouteConfig, uRouteShow
uRouteShow

Displays unicast routing information.

Synopsis  
urouteshow [slotnumber[/][portnumber] [domain]

Description  
Use this command to display the unicast routing information for a port, as it is known by the FSPF path selection and routing task. The routing information describes how a frame that is received from a port on the local switch is to be routed to reach a destination switch.

The following information displays:

- **Local Domain ID**: Domain number of local switch.
- **In Port**: Port from which a frame is received. Except for the cases in which you perform a port swap or enable extended-edge PID (PID Format 2) on a switch, the value is equal to the Area field displayed by the `switchShow` command. Refer to *Fabric OS Administrator’s Guide* for more information regarding the extended-edge PID format.
- **Domain**: Destination domain of incoming frame.
- **Out Port**: Port to which the incoming frame is to be forwarded. Except for the cases in which you perform a port swap or enable extended-edge PID (PID Format 2) on a switch, the value is equal to the Area field displayed by the `switchShow` command. For port swap operations, the value is equal to the Swport field displayed by the `portSwapShow` command. Refer to *Fabric OS Administrator’s Guide* for more information regarding the extended-edge PID format.
- **Metric**: Cost of reaching the destination domain.
- **Hops**: Maximum number of hops required to reach the destination domain. If the number of hops are different for some multiple equal cost paths (to reach the same domain), then it displays the maximum number.
- **Flags**: Indicates rout type as either dynamic (D) or static (S). A dynamic route is discovered automatically by the FSPF path selection protocol. A static route is assigned using the command `uRouteConfig`.
- **Next (Dom, Port)**: Domain and port number of the next hop. These are the domain number and the port number of the switch to which Out Port is connected.

The information provided by this command should match what is provided by `portRouteShow` and `topologyShow`.

Operands  
This command has the following operands:

- **slotnumber**: For bladed systems only, specify the slot number of the input port whose routes are displayed, followed by a slash (/).
- **portnumber**: Specify the number of the input port whose routes are to be displayed, relative to its slot for bladed systems. Use `switchShow` to display a list of valid ports. This operand is optional; if omitted, the command displays routing information for all input ports in the switch.
- **domain**: Specify a remote domain in the fabric for which routing information is to be displayed. This operand is optional; if omitted, the routing information for all domains in the fabric is displayed.
### Examples

To display the routing information of all the active ports:

```
switch:admin> urouteshow
Local Domain ID: 3
In Port Domain Out Port Metric Hops Flags Next (Dom, Port)

 0 1 11 1000 1 D 1,0
 1 2 0 1500 2 D 4,0
 4 0 500 1000 1 D 4,0
 16 1 27 1000 1 D 1,1
 27 2 16 1500 2 D 4,16
```

To display the routing information of port 11 to domain 4 only:

```
switch:admin> urouteshow 1/11, 4
Local Domain ID: 3
In Port Domain Out Port Metric Hops Flags Next (Dom, Port)

 11 4 16 500 1 D 4,16
```

### See Also
- portRouteShow
- topologyShow
- uRouteConfig
- uRouteRemove
usbStorage

Manages data files on an attached USB storage device.

Synopsis

usbstorage [-e | --enable]
usbstorage [-d | --disable]
usbstorage [-l | --list]
usbstorage [-r | --remove application area]
usbstorage [-h | --help]

Description

Use this command to control a USB device attached to the Active CP. When the USB device is enabled, other applications, such as supportSave, firmwareDownload, firmwareKeyupdate, or configDownload/cfgUpload can conveniently store and retrieve data from the attached storage device. Refer to the help pages for these commands for specific information on how the USB device is accessed by each application.

Notes

This command is available only on the Active CP.

This command is not available on all platforms. Refer to the Fabric OS Administrator's Guide for details.

Operands

All operands are exclusive. Only one operand can be specified, followed by suboperands if applicable.

-e | --enable

Enables the USB device. The USB device must be enabled before the list and remove functions are available.

-d | --disable

Disables an enabled USB device. This command prevents access to the device until it is enabled again. This command may fail if USB storage is busy doing a read/write operation.

-r | --remove application area

Removes data in a specified application storage space. Valid applications are: firmware, support, config, firmwarekey. A specified application must be followed by an application area. Any existing file in a given application directory can be specified. This command removes all data associated with the specified application area.

-l | --list

Lists the content of the USB device up to two levels down from the root directory.

-h | --help

Displays command usage

Examples

To enable an attached USB device:

    switch:admin> usbstorage -e
    USB storage enabled

To list the contents of the attached USB device:

    switch:admin> usbstorage -l
    firmwarekey\       0B       2007 Aug 15 15:13
    support\         106MB    2007 Aug 24 05:36
    support1034\      105MB    2007 Aug 23 06:11
    config\           0B       2007 Aug 15 15:13
To remove an application area:

    switch:admin> usbStorage -r firmware FW_v6.0.0

To disable an attached USB device:

    switch:admin> usbStorage -d
    USB storage disabled

See also  supportSave, firmwareDownload, configUpload, configDownload, firmwareKeyupdate
userConfig

Manages user accounts.

Synopsis

userconfig
userconfig --show [username | -a]
userconfig --showad -a AD_ID
userconfig --add username -r I role [-h I AD_ID][-a AD_ID list] [-d description] [-x]
userconfig --change username -r I role [-h I AD_ID][-a AD_ID list] [-d I description] [-x] [-e yes | no] [-u]
userconfig --delete username
userconfig --adadd | --addeletead username [-h AD_ID][-a AD_ID list]
userconfig --help

Description

Use this command to manage a user account on a switch by configuring the account's role and the Admin Domains that account may access. An account is assigned a single role. An account can access multiple Admin Domains, but only one Admin Domain at a time. New accounts created take on the role specified during account creation. Valid roles are listed below. Valid roles are listed below.

This command can be executed on any switch. When the userConfig command completes, account information is saved persistently.

The account database can be distributed manually to other switches in the fabric by using the distribute command. Target switches must be configured to accept the database. Accounts that are not consistent with the distributed database are overwritten. Account recovery from backup or access to backup data is no longer supported as of Fabric OS v6.0.

This command supports the following roles:

User
Non-administrative use, such as monitoring system activity.

Operator
A subset of administrative tasks for routine switch maintenance.

SwitchAdmin
Administrative use excluding security, user management, and zoning.

ZoneAdmin
Zone management only.

FabricAdmin
Administrative use excluding user management and AD management.

BasicSwitchAdmin
Administrative use with a subset of Admin-level access, mostly for monitoring with limited switch (local) commands.

Admin
All administrative commands.

SecurityAdmin
All switch security and user management functions.

Notes

The userConfig command operates on the switch-local user database only, regardless of whether the switch is configured to use RADIUS authentication or not.

The account database supports a maximum of 256 customer created accounts.
The backup account database is no longer supported on switches running Fabric OS v6.0 or later. As a consequence, account recovery from backup as well as backup display option (former --show -b option) are no longer supported in Fabric OS v6.0 or later.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

**Operands**

When executed without operands, this command displays the usage. The following operands are supported:

--show

Displays user account information. Only accounts with SecurityAdmin and Admin roles can show information about accounts other than the current login account. The following operands are optional:

- **username**
  
  Specifies account login name. When no operand is specified, the command displays the current account information.

- **-a**
  
  Displays information about all accounts.

--showad

Displays Admin Domain permissions. The following operand is required:

- **-a **AD_ID_list**
  
  For each AD in AD_ID_list, displays a list of users that include that AD in their AD permissions. Specify a range (1-5) or a list of AD_IDs separated by comma (1,2,3), or a combination of both (1-5,7). Only users with SecurityAdmin or Admin role may execute this command.

--add

--change

Creates a new user account or modifies an existing user account. The following rules apply:

- You cannot change the role, AD permissions, or home AD of any default account.
- You cannot change the role, AD permissions, or description of accounts at the same or higher authorization level.
- You cannot change the role, AD permissions, or home AD of your own account.
- No account can disable itself.
- AD permissions must be a subset of the AD permissions of the account that creates or modifies a user account.

The following operands are supported with the --add and --change options:

**username**

Specifies the login name of the account to be created or modified. Enter a valid login name to modify an existing account. For new accounts, the name must be unique, between 8 and 40 characters long, and must begin with an alphabetic character. User names are case-sensitive and can contain alpha-numeric characters, periods (.), and underscore (_) characters. The account name cannot be the same as a role name.

**-r role**

Specifies the role for the account. Valid roles are: User, SwitchAdmin, ZoneAdmin, FabricAdmin, BasicSwitchAdmin, Operator, or Admin. This operand is required with the --add option; it is optional with the --change option.
userConfig

-**h** *AD_ID*  
  Specifies the home Administrative Domain. This operand is optional. If no AD is specified with the **--add** option, the system assigns the lowest numbered Administrative Domain the user is authorized to access.

-**a** *AD_ID_list*  
  Specifies the Administrative Domains the user is authorized to access. *AD_ID_list* and the existing AD permissions for *username* must be a subset of the AD permissions of the account that executes this command. This operand is optional. If no AD list is specified with the **--add** option, AD0 is assigned by default. Use comma-separated lists, ranges, or both, for example -a 0,9,10-15,244.

-**d** *description*  
  Provide a text description for the new account. This operand is optional. The maximum length is 40 printable ASCII characters except colon. Some characters that are interpreted by the shell("", ", ! etc.) and some ASCII text may require prepending with the `\' character.

-**x**  
  Optionally specifies an expired password that must be changed the first time the user logs into a new or modified account. This command also prompts for an initial password.

The following optional operands are available only with the **--change** option:

-**e** *yes|no*  
  Enables or disables an account. Specify "yes" to enable or "no" to disable an account. Once an account is disabled, the CLI sessions associated with the account are terminated.

-**u**  
  Unlocks the specified user account. User accounts can get locked when they make several attempts to log in with an invalid password. Refer to paswdCfg for more information.

**--delete username**  
Deletes the specified account from the switch. This command prompts for confirmation before proceeding. Once an account is deleted, the CLI sessions associated with the account are terminated.

The following rules apply to account deletion:

- You cannot delete a default account.
- You cannot delete your own account.
- *AD_ID_list* and the existing AD permissions for *username* must be a subset of the AD permissions of the account that runs the userConfig **--delete** command.

**--addad**

**--deletead**

Adds one or more ADs to a user account or deletes ADs from a user account. The following operands are supported:

*username*  
 Specifies the account login name.
-h AD_ID  This operand is optional.

- If home AD is specified with the --addad option, it must be one of the ADs in AD_ID_list. If a home AD is not specified and username did not previously have a home AD, the home AD is set to the lowest numbered AD in the user's AD permissions.
- If a home AD is specified with the --deletead option, it must be one of the ADs in the AD permissions remaining after the ADs specified in AD_ID_list have been removed. If a home AD is not specified, the current home AD remains unchanged, if it is still in the user's AD permissions. If a home AD is not specified and current home AD is deleted, the new home AD is set to the lowest numbered AD in the user's AD permissions.

The existing AD permission for username, and the AD_ID_list must be a subset of the AD permissions of the account executing this command.

-a AD_ID_list  Specifies the AD IDs to be added or deleted. Specify a range (1-5) or a list of AD_IDs separated by comma (1,2,3), or a combination of both (1-5,7).

--help  Displays command usage.

Examples  To add a new account:

```
switch:admin> userconfig --add joe -r admin -d "Joe Smith"
Setting initial password for joe
Enter new password:
Re-type new password:
Account joe has been successfully added.
```

To display current account information:

```
switch:admin> userconfig --show joe
Account name: joe
Role: admin
Description: Joe Smith
Enabled: Yes
Password Last Change Date: Unknown
Password Expiration Date: Not Applicable
Locked: No
AD membership: 0
Home AD: 0
```

To change account attributes:

```
switch:admin> userconfig --change joe -e no
Broadcast message from root Sat Apr 2 03:03:32 2005...
Security Policy, Password or Account Attribute Change: joe will be logged out
Attribute for account joe has been successfully changed.
```

To add an account named bob with role ZoneAdmin and AD member list 1,4,10,11,12,13,14 and Home AD 4:

```
switch:admin> userConfig --add bob -r ZoneAdmin -a 1,4,10-14 -h 4
```

To change account bob's AD member list to 128 and 129, Home AD to 128:

```
switch:admin> userConfig --change bob -a 128,129
```
To add AD 0 & 255 to bob's AD member list. Home AD is unchanged:

```
switch:admin> userConfig --addad bob -a 0,AD255
```

To delete AD 128 from bob's AD member list. New home AD is set to 0:

```
switch:admin> userConfig --deletead bob -a 128 -h 0
```

See Also  none
userRename

Renames the user login name.

Synopsis  userrename old_username new_username

Description Use this command to change an existing account login name to a new login name. The following rules apply:

1. new_username must begin with a letter and contain only alphanumeric characters or underscores.
2. new_username must be between 1 and 40 characters long.
3. new_username must be different from any existing account login name.
4. If old_username is a default login name, new_username cannot be another default login name.
5. If new_username is a default login name, it must indicate the same role as old_username.

Notes This command is not supported on all platforms.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands The following operands are required. Operands are case-sensitive.

old_username Specifies the current user login name.

new_username Specifies the new user login name.

Examples To rename the admin-level login name from "USERID" to "admin":

switch:admin> userrename USERID admin

See Also none
version

Displays firmware version information.

Synopsis

version

Description

Use this command to display firmware version information and build dates.

The command output includes the following:

- **Kernel**: The version of switch kernel operating system.
- **Fabric OS**: The version of switch Fabric OS.
- **Made on**: The build date of firmware running in switch.
- **Flash**: The build date of firmware stored in flash proms.
- **BootProm**: The version of the firmware stored in the boot PROM.

Usually the Made on and Flash dates are the same, because the switch starts running flash firmware at power-on. However, in the time period between `firmwareDownload` and the next `reboot`, the dates can differ.

Operands

none

Examples

To display the firmware version information in a switch:

```
switch:admin> version
Kernel: 2.6.14.2
Fabric OS: v6.1.0
Made on: Wed Feb 13 06:59:17 2008
Flash: Thu Feb 14 18:38:31 2008
BootProm: 4.6.6
```

See Also

`firmwareDownload`, `reboot`
wwn

Displays or sets the World Wide Name (WWN) of the switch.

Synopsis  

wwn [-sn | name]

Description  

Use this command to display or change the WWN associated with a switch and to display the switch serial number. All switches have a numeric address that is the unique Fibre Channel address used for communicating with the switch. Alternately, use switchShow to display the switch WWN.

A WWN must have eight colon-separated fields, each consisting of one or two hexadecimal digits between 0 and ff. Spaces are not allowed.

Changes made by this command require a switch reboot to take effect. You may defer rebooting the system. However, the switch must restart before any firmwareDownload or (for bladed systems) CP failover occurs; otherwise, the switch may behave in unexpected ways.

Note  

This command should be used with caution. Features tied to the switch WWN, such as licenses, may no longer work after the WWN has been changed.

The execution of this command is subject to Admin Domain restrictions that may be in place. Refer to chapter 1, "Understanding Admin Domain Restrictions" and Appendix A, "Command Availability" for details.

Operands  

This command has the following operands:

name       Specifies the new World Wide Name for the switch. This operand is optional; if omitted, this command displays the current WWN.

-sn         Specifies that the switch serial number be printed following the current WWN. This operand is optional; if omitted, this command displays only the current WWN.

Examples  

To display the switch WWN:

switch:admin> wwn
10:00:00:60:69:00:54:e9

To change the switch WWN:

switch:admin> wwn 10:00:ff:ff:ff:80:02:3c

The switch must be rebooted for the new WWN to take effect.
Reboot now? (yes, y, no, n): [yes] y
Rebooting switch 0 ...

[system reboots]

To display the change:

switch:admin> wwn
10:00:ff:ff:ff:80:02:3c
To display the switch WWN and serial number:

switch:admin:admin> wwn -sn

WWN: 10:00:00:05:1e:01:23:e0
SN: RC030000089

See Also switchShow
zone

Performs specific zone operations, manages Traffic Isolation (TI) Zones, and Frame Redirect (RD) Zones.

Synopsis

zone --help

To perform specific zone operations:

zone --copy [source_AD.] source_zone_object [dest_zone_object][-f]
zone --expunge *zone_object*
zone --validate [[-f | [-m mode] [*zone_object*]]]

To create and manage traffic Isolation zones:

zone --create -t objecttype [-o optlist] name -p portlist
zone --add [-o optlist] name -p portlist
zone --remove name -p portlist
zone --delete | activate | deactivate -p portlist
zone --show [name]

To perform specific Frame Redirect (RD) zone operations:

zone --rdcreate host_wwn target_wwn vi_wwn vt_wwn policy FCR_supported
zone --rddelete name

Description

The zone command supports three types of operations: specific zone operations, creation/management of Traffic Isolation Zones, and creation and management of Frame Redirect (RD) Zones.

1. Use the --copy, --expunge, and --validate options to perform specific zoning operations. These commands follow a batched-transaction model.

2. Use the --create, --add, --remove, --delete, --activate, --deactivate, and --show options to manage Traffic Isolation (TI) Zones.

TI zones control the flow of inter-switch traffic by provisioning certain E_Ports to carry only traffic flowing from a specific set of source ports. The provision (a.k.a TI Zone) is part of the defined zone configuration and does not appear in the effective zone configuration. A Maximum of 255 TI Zones can be created in one fabric.

TI zones over FCR provide the ability to lock down a request and corresponding response to the same VE_Port tunnel for a given pair of devices in two separate fabrics. TI over FCR has two working parts:

- TI within edge fabric routes traffic between a real device and a Proxy device to a specified EX_Port.
- TI within backbone fabric locks down the route within the backbone fabric based on EX_Ports and devices involved.

TI zones over FCR is supported only on switches running Fabric OS v6.1.0 or later. Participating devices need to be LSAN Zoned to enforce TI.
3. Use the `--rdcreate` and `--rddelete` options to manage Frame Redirect (RD) Zones.

RD zones allow frames to be redirected to devices that can perform additional processing on these frames (for example, encryption). The feature uses a combination of RD zones and Name Server changes to map real device WWNs to Virtual PIDs. This allows redirecting a flow between a host and target to a device that can perform its functionality without reconfiguring the host and target.

The RD Zone is part of the defined zone configuration and does not appear in the effective zone configuration. Use `cfgSave` to save the RD zone changes to the defined configuration. Use `cfgShow` to display the RD zones.

When you create the first RD zone, two additional zone objects are created automatically: A base zone "red_______base" and a zone configuration "r_e_d_i_r_c__fg". These additional zone objects are required by the implementation. These zone objects must remain on the switch as long as other redirect zones are defined. Do not remove these objects, unless redirection is no longer required and no other redirect zones exist.

Use `zoneDelete` to remove the base RD zone, "red_______base". Use `cfgDelete` to remove the RD zone configuration "r_e_d_i_r_c__fg".

**Notes**

TI zones are not supported in fabrics involving switches running firmware versions preceding Fabric OS v6.0. However, the existence of a TI Zone in such a fabric is backward compatible and does not disrupt fabric operation in switches running earlier firmware versions.

The current zone commands `zoneCreate`, `aliCreate`, `cfgCreate`, etc., cannot be used to manage special zones, such as TI Zones or RD zones.

**Operands**

This command takes as an operand an action and its associated arguments. When executed without operands, the command displays the usage.

```
--help
```

Displays command usage.

```
1. Commands for performing specific zone operations:

--copy
```

Copies all the specified zone objects from the `source_AD` into the current AD. The current AD transaction buffer is used for this operation. The following operands are optional:

```
source_AD.
```

Specifies the source Admin Domain and the zone objects. If unspecified, objects are copied within the current AD.

```
source_zone_object
```

Specifies the zone object under the `source_AD`. The zone object can be a zone configuration, a zone alias, or several zones. If a source zone object is not specified, all zone configurations are copied over to the current Admin Domain.

```
dest_zone_object
```

Identifies the destination zone object the within the current Admin Domain. If `dest_zone_object` is not specified, `source_zone_object` is copied (with the same name). If the destination zone object is not already present in the Admin Domain, one is created (with type as `source_zone_object`).

```
-f
```

Overwrites existing zone object without confirmation.
zone

--expunge

Removes all references to the specified zone object and then deletes the zone object. The command displays the list of zone objects to be deleted and prompts you before deleting. The removal of the zone object could result in other zone object removal, triggering a recursive deletion. For example, removing the last zone member from a zone results in the zone deletion. The following operand is required:

zone_object

Specifies a zone object. A zone object can be a zone member, zone alias, or a zone. The zone object must be enclosed in quotation marks.

--validate

Lists all zone members that are not part of the current zone enforcement table.

If a zone member is specified using D,P in the Admin Domain membership list, all zone elements specified with WWNs associated with that D,P are considered for zone enforcement. If a device WWN is specified in the Admin Domain member list, the corresponding D,P the device WWN is not considered for zone enforcement. The zone database used as input to this command is specified using mode. If the optional zone object name is specified, the validation is completed on that zone object alone; otherwise, all zones in the zone database are validated.

The following operands are optional:

-f

Specifies that all the zone members that are not enforceable should be expunged in the transaction buffer. This pruning operation affects both the transaction buffer and the defined buffer. You cannot not specify a mode option or a zone object together with the -f option.

zone_object

Specifies a zone object. A zone object can be a zone member, a zone alias, or a zone.

mode

Specifies the zone database location. Supported mode flag values are:

0 Uses the zone database from the current transaction buffer.
1 Uses the zone database stored in the persistent storage.
2 Uses the currently enforced zone database.

If no mode options are given, the validated output of all the three buffers are displayed.

"zone_object"

Specifies a zone object. A zone object can be a zone member, a zone alias, or a zone.

2. Creating and managing TI Zones

Use these commands to create and manage TI Zones.

--create | --add | --remove

Creates a TI Zone with specified options and portlist, or adds portlist members and the failover option to existing TI zones.

The remove option removes port list members from existing zones. Removal of the last member from an active TI zone generates a warning. If the last member of a TI zone is removed, the TI zone name is removed from the defined TI zone list.
The following operands are supported:

objectype
Specifies the zone object type. This operand is supported only with the --create option. To create a TI zone, the value is ti.

-o optlist
Specifies list of options to control failover mode. If this option is not specified the zone is created, by default, with failover enabled, and the zone will be activated. This operand is supported only with the --create and --add options.

Valid Values for optlist are:

a
Activates the specified zone.

d
Deactivates the specified zone.

n
Disables failover mode. In non-failover mode, when the last ISL of a TI Zone goes offline and there is an alternative ISL, the alternative ISL is not used and
the switch generates a SCN/RSCN to indicate that no ISL is available. When
the ISL of the TI Zone comes online again, the route is set up again and the
switch generates another SCN/RSCN.

f
Enables failover mode. In failover mode, when the last ISL of a TI Zone goes
offline and there is an alternative ISL, the alternative ISL is used and the
switch does NOT generate any SCN/RSCN. If the ISL of that TI Zone comes
online again, traffic is rerouted immediately to the original ISL.

name
Specifies the name of the zone to be created, added or deleted.

-p portlist
Specifies the lists of ports to be included, added or removed from a TI zone.
The syntax for portlist is "D,I" (Domain, Index). The port list must be enclosed
in quotation marks. List members must be separated by semicolons, followed
by a space. When you create TI zones over FCR, for a TI within an Edge fabric
use ".1" in to denote Front and Xlatephantom in the E_Port list. When creating a TI zone within the Backbone fabric specify "Port WWN" in portlist to indicate devices talking across fabrics.

--activate | --deactivate name
Activates or deactivates TI zones. If more than one zone is specified, the list
of zone names must be enclosed in double quotation marks; zone names
must be separated by semicolons.

--delete name
Deletes TI zones from the defined TI zone lists. This command prompts for
confirmation.

--show [name]
Displays zone name, port lists, failover option, and status for the specified
zones. Without any specified name, this command displays all TI zones in the
defined configuration.

3. Creating and managing RD Zones:

--rdcreate
Creates a RD Zone for the specified members. The following operands are
required:

host_wwn
Specifies the port world wide name of the host.

target_wwn
Specifies the port world wide name of the target.

vi_wwn
Specifies the port world wide name of the virtual initiator (VI).

vt_wwn
Specifies the port world wide name of the virtual target (VT).
**policy restartable | nonrestartable**

Specifies the policy as either restartable or nonrestartable. A restartable policy causes traffic flow to revert to the physical host/target configuration in the event the virtual device should fail. When policy is specified as nonrestricted and one of the virtual devices goes offline, the physical devices are considered as offline and no traffic is allowed between the original host and target.

**support FCR | nonFCR**

Indicates whether or not this RD zone is to function across a Fibre Channel router (FCR). Specify FCR to support FCR. Specify nonFCR if you do not wish to support FCR.

**--rddelete**

Deletes the RD Zone specified by name. RD Zones are unique in that the zone name is not user-defined. It is derived based on members and the specified configuration. Use `cfgShow` to display currently implemented RD zone by name.

**Examples**

1. Specific zone operation commands:

   The following example shows a scenario of an invalid configuration. If you attempt to create a zone z10 with an alias a10, then create a zone with name a10, z10 expects a10 to be an alias and results in an invalid configuration.

   To validate all zones in the currently enforced zone database:

   ```
 switch:admin> zonecreate z10,a10
 switch:admin> zonecreate a10, 1,2
 switch:admin> zone --validate
 Defined configuration:
 zone: a10 1,2*
 zone: z10 a10~
 Effective configuration:
 No Effective configuration: (No Access)
 --
 ~ - Invalid configuration
 * - Member does not exist
 # - Invalid usage of broadcast zone
   ```

   The reason for not being in the current enforcement table could be one of the following:

   - The device is not online.
   - The device is online but is not Admin Domain-aware.
   - The device is online but it is not part of the current Admin Domain.

   To copy cur_cfg1 zone configuration from the root zone database (ADO) to the current Admin Domain:

   ```
 switch:admin> zone --copy ADO.cur_cfg1
   ```

   To copy backup_zn zone from the root zone database (ADO) to the current Admin Domain:

   ```
 switch:admin> zone --copy ADO.backup_zn
   ```
To copy backup_zn zone from the root zone database (AD0) to the current Admin Domain, with Admin Domain member list filtering:

```
switch:admin> zone --copy -f AD0.backup_zn
```

To delete all references associated with zone member 100,5:

```
switch:admin> zone --expunge "100,5"
You are about to expunge one configuration or member. This action could result in removing many zoning configurations recursively. [Removing the last member of a configuration removes the configuration.]
Do you want to expunge the member? (yes, y, no, n): [no] yes
```

To validate all zones in the zone database in the current transaction buffer:

```
switch:admin> zone --validate -m 0
```

To validate all zones in the zone database in the persistent storage:

```
switch:admin> zone --validate -m 1
Defined configuration:
 cfg: cfg1 zone1
 cfg: cfg2 zone1; zone2
 zone: zone1 1,1; ali1
 zone: zone2 1,1; ali2
 alias: ali1 10:00:00:05:1e:35:81:7f*; 10:00:00:05:1e:35:81:7d*
 alias: ali2 10:00:00:05:1e:35:81:09*; 10:00:00:05:1e:35:81:88*

-~ Invalid configuration
* Member does not exist
```

To validate all zones in the zone database in the defined configuration:

```
switch:admin> zone --validate -m 1
```

To validate all zones in the zone database in the effective configuration:

```
switch:admin> zone --validate -m 1
```

To prune all the zone members that are not enforceable:

```
switch:admin> zone --validate -f
You are about to prune the zone configurations, based on zone --validate output.
Do you want to prune the zone configurations (yes, y, no, n): [no] y
```

2. Traffic isolation zone commands:

To create a traffic isolation zone with failover enabled (default).

```
switch:admin> zone --create -t ti red_zone -p "1,1; 2,4; 1,8; 2,6"
```

Create and activate a traffic isolation zone with failover disabled and deactivated:

```
switch:admin> zone --create -t ti -o dn red_zone -p "1,1; 2,4; 1,8; 2,6"
```

To add E_Port and N_Port member as a portlist to an existing TI zone:

```
switch:admin> zone --add red_zone -p "3,4; 3,6"
```
To add option to disable/enable failover for a TI zone:
```
switch:admin> zone --add -o n red_zone
switch:admin> zone --add -o f green_zone -p "3,4"
```

To remove portlist members from an existing TI zone.
```
switch:admin> zone --remove blue_zone -p "3,4; 3,6"
```

To activate the TI zone "blue_zone":
```
switch:admin> zone --activate blue_zone
```

To deactivate the TI zone "red_zone":
```
switch:admin> zone --deactivate red_zone
```

To delete the TI zone "blue_zone":
```
switch:admin> zone --delete blue_zone
```

To display all TI zones in the defined configuration:
```
switch:admin> zone --show
 Defined TI zone configuration:
 TI Zone Name: greenzone
 Port List: 2,2; 3,3; 5,3; 4,11
 Status: Activated Failover: Enabled
 TI Zone Name: bluezone
 Port List: 1,2; 1,3; 3,3; 4,5
 Status: Activated Failover: Enabled
 TI Zone Name: purplezone
 Port List: 9,2; 9,3; 8,3; 8,5
 Status: Deactivated Failover: Disabled
```

To display the status of "blue_zone" in the defined configuration:
```
switch:admin> zone --show blue_zone
 Zone Name: blue_zone:
 List of port: 1,2; 1,3; 3,3; 4,5
 Failover: Enabled
 Status: Activated
```

To create an FCR TI Zone within an Edge fabric where a host should talk to target1 and target4 through port number 2 on an Edge fabric switch with a domain ID of 3. In this example, "3,1"is the host, "5,250"and "5.251"are the proxy targets, and the remaining members are E_Ports:
```
switch:admin> zone --create -t ti fcr_edge_ti_zone -p "3,1; 5,250; 5,251; 3,2; 4,-1; 5, -1"
```

To create an FCR TI Zone within a Backbone where a host, target1, and target4 communicate over VE_Ports consisting of FCR1's port number 4 and FCR2's port number 7:
```
switch:admin> zone --create -t ti for_ti_zone> p "1,1; 2,1;host_PWWN; target1_PWWN; target4_PWWN; 1,4; 2,7"
```
3. Frame Redirect Zone Commands:


```
```

This command creates the following zone objects:

4. RD zone "red_0917_10_10_10_10_10_10_10_10_20_20_20_20_20_20_20_20", with a restrictedly policy and no FCR support.

5. The base zone object, "red_______base".

6. The RD zone configuration, "r_e_d_i_r_c__fg".

To display the newly created zone objects:

```
switch:admin> cfgshow
Defined configuration:
 cfg: myHTcfg myHostTarget
cfg: r_e_d_i_r_c__fg
 red_______base;
 red_0917_00_3f_3f_3f_23_24_25_26_3f_3f_3f_30_32_00_00_00
zone: myHostTarget
 00:3f:3f:3f:23:24:25:26; 3f:3f:3f:30:32:00:00:00
zone: red_0917_00_3f_3f_3f_23_24_25_26_3f_3f_3f_30_32_00_00_00
 00:3f:3f:3f:23:24:25:26; 3f:3f:3f:30:32:00:00:00;
 3f:3f:3f:30:30:00:00:00; 3f:3f:3f:30:31:00:00:00
zone: red_______base
 00:00:00:00:00:00:00:04; 00:00:00:00:00:00:00:00; 00:00:00:00:00:00:00:02;
 00:00:00:00:00:00:00:00; 00:00:00:00:00:00:00:00;

Effective configuration:
 cfg: myHTcfg
zone: myHostTarget
 00:3f:3f:3f:23:24:25:26
 3f:3f:3f:30:32:00:00:00
```

To delete an RD Zone named "red_0917_10_10_10_10_10_10_10_10_20_20_20_20_20_20_20_20":

```
switch:admin> zone --rddelete red_0917_10_10_10_10_10_10_10_10_20_20_20_20_20_20_20_20
```

See Also ad, zoneHelp
zoneAdd

Adds a member to the zone.

Synopsis   zoneadd "zoneName", "member;member"

Description Use this command to add one or more members to an existing zone.

This command changes the defined configuration. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the cfgSave command. For the change to become effective, enable the configuration with the cfgEnable command.

Note   When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands   The following operands are required:
"zoneName"   Specify the name of an existing zone. Quotation marks are optional.
"member"    Specify a member or list of members to be added. The list must be enclosed in quotation marks. Members must be separated by semicolons. Valid values can be one or more of the following:
A switch domain and port area or index number pair; for example, "2, 20".
View the area or index numbers for ports using the switchShow command.
•   Node or port WWN.
•   Zone alias name.

Examples   To add aliases for three disk arrays to “Blue_zone”:
sw5:admin> zoneadd "Blue_Zone", "array3; array4; array5"

See Also   zoneCreate, zoneDelete, zoneRemove, zoneShow
zoneCreate

Creates a zone.

Synopsis  
zonecreate "zonename", "member[; member...]"

Description  
Use this command to create a new zone, or to create a “broadcast” zone.

A broadcast zone is a special zone that specifies the nodes that can receive broadcast traffic. This zone must be named "broadcast". Only one "broadcast" zone can exist within a fabric. This type of zone is enforced by the hardware; the switch controls the data transfer to a port.

This command changes the defined configuration. For the change to be preserved across switch reboots, save it to nonvolatile memory with the cfgSave command. For the change to become effective, enable the zone configuration with the cfgEnable command.

Note  
When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands  
The following operands are required:

"zonename"  
Specify a unique name for the zone to be created. Quotation marks are optional. A zone name must begin with a letter and followed by any number of letters, digits, or underscore characters. Names are case-sensitive. For example, "Zone_1" and "zone_1" indicate different zones. Zone names are limited to 64 characters. Spaces are ignored.

"member"  
Specify a member or a list of members to be included in the zone. The list must be enclosed in quotation marks. Members must be separated by semicolons. The list must have at least one member; empty lists are not allowed.

A member can be specified in one or more of the following ways:

•  
  **Domain and port area or index number pair:** Specify a port by domain and port area or index number, for example, "2, 20" specifies port index number 20 on switch domain 2. When a zone member is specified by port index number, then all devices connected to that port are in the zone. If this port is an arbitrated loop, then all devices on the loop are in the zone. Use switchShow for a list of valid port area or index numbers.

•  
  **World Wide Name:** Specify a World Wide Name as eight hex numbers separated by colons, for example "10:00:00:60:69:00:00:8a". Zoning compares the WWN with the node and port names presented by a device in a login frame (FLOGI or PLOGI). When a zone member is specified by node name, then all ports on that device are in the zone. When a zone member is specified by port name, then only that single device port is in the zone.

•  
  **Zone alias name:** Specify a zone alias name using the same format as a zone name. Refer to aliCreate command help for zone alias naming requirements.

When creating a zone, you can combine different ways of specifying zone members. For example, a zone defined with the following members: "2,12; 2,14; 10:00:00:60:69:00:00:8a" would contain all devices connected to switch 2, ports 12 and 14, and to the device with the World Wide Name "10:00:00:60:69:00:00:8a" (either node name or port name), at the port in the fabric to which it is connected.
Examples  To create three zones using a combination of port numbers and zone aliases:

    sw5:admin> zonecreate "Purple_zone", "1,0; loop1"

    sw5:admin> zonecreate "Blue_zone", "1,1; array1; 1,2; array2"

    sw5:admin> zonecreate "Green_zone", "1,0; loop1; 1,2; array2"

See Also  zoneAdd, zoneDelete, zoneRemove, zoneShow
zoneDelete

Deletes a zone.

Synopsis  
zoneDelete "zonename"

Description  
Use this command to delete a zone.

This command changes the defined configuration. For the change to be preserved across switch reboots, save the configuration to non-volatile memory using the `cfgSave` command. For the change to become effective, enable the configuration with the `cfgEnable` command.

Notes  
When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands  
The following operands are required:

"zonename"  
Specify the name of the zone to be deleted. Quotation marks are optional.

Examples  
To delete the zone “Blue_zone”:

```
switch:admin> zoneDelete "Blue_zone"
```

See Also  
`zoneAdd`, `zoneCreate`, `zoneRemove`, `zoneShow`
zoneHelp

Displays a description of zoning commands.

Synopsis     zonehelp

Description  Use this command to display short descriptions of zoning commands.

Operands     none

Examples     To display zone command help information:

switch:admin> zonehelp
alladd         Add a member to a zone alias
allcreate      Create a zone alias
alldelte       Delete a zone alias
allremove      Remove a member from a zone alias
allshow        Print zone alias information
cfgactvshow    Display Effective zone configuration information
cfgadd         Add a member to a configuration
cfgclear       Clear all zone configurations
cfgcreate      Create a zone configuration
cfgdelete      Delete a zone configuration
cfgdisable     Disable a zone configuration
cfgenable      Enable a zone configuration
cfgmcdtmode    Configure legacy MCDT zoning behavior
cfgregmove     Remove a member from a configuration
cfgsave        Save zone configurations in flash
cfgsaveactivetodefined Moves the effective configuration to the defined
configuration
cfgshow        Print zone configuration information
cfgsize        Print size details of zone database
cfgtransabort  Abort zone configuration transaction
cfgtransshow   Print zone configurations in transaction buffer
defzone        Activates or deactivates a default zone
configuration.
nszonemember   Display the information of all the online devices
which are zoned with the given device.
zone           Copies/Removes/Validates zone objects
zoneadd        Add a member to a zone
zonecreate     Create a zone
zonedelte      Delete a zone
zonehelp       Print zoning help info
zoneobjectcopy Copies a zone object
zoneobjectexpunge Expunges a zone object
zoneobjectrename Rename a zoning Object
zoneremove     Remove a member from a zone
zoneshow       Print zone information

See Also     none
zoneObjectCopy

Copies a zone object.

Synopsis  
zoneObjectCopy "objectName", "newName"

Description  
Use this command to make a copy of an existing zone object and give it a new name. The resulting  
object is of the same type as the original object. You can use this command for all zone object  
types, including cfg, zone, and alias.

This command changes the defined configuration. For the change to be preserved across switch  
reboots, save the configuration to nonvolatile memory with the cfgSave command. For the change  
to become effective, enable the configuration with the cfgEnable command.

Note  
When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands  
The following operands are required:

"objectName"  
The name of the object that you want to copy. Quotation marks are optional.

"newName"  
The name of the object that you want created. Quotation marks are optional.

A zone configuration name must begin with a letter followed by any number of letters, numbers,  
and underscores. Names are case-sensitive. For example, "Cfg_1" and "cfg_1" are different zone  
configurations. Blank spaces are ignored.

Refer to the zoneCreate command for more information on name and member specifications

Examples  
To create a configuration containing three zones:

```
switch:admin> cfgshow **
 cfg: USA_cfg Red_zone; White_zone; Blue_zone
switch:admin> zoneobjectcopy "USA_cfg", "UK_cfg"
switch:admin> cfgshow **
 cfg: UK_cfg Red_zone; White_zone; Blue_zone
 cfg: USA_cfg Red_zone; White_zone; Blue_zone
```

See Also  
cfgAdd, cfgClear, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow,  
zoneObjectRename
zoneObjectExpunge

Expunges a zone object.

Synopsis  zoneObjectExpunge "objectName"

Description Use this command to expunge a zone object. In addition to deleting the object, this command also
removes the object from the member lists of all other objects. After successful execution of this
command, the specified object no longer exists the database. You can use this command for all
zone object types, including cfg, zone, and alias.

This command changes the defined configuration. For the change to be preserved across switch
reboots, save the configuration to nonvolatile memory with the cfgSave command. For the change
to become effective, enable the configuration with the cfgEnable command.

Note When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands This command has the following operand:

"objectName" The name of the object that you want to expunge. Quotation marks are
optional. This operand is required.

Examples To create a configuration containing three zones:

switch:admin> cfgshow
Defined configuration:
cfg:   USA_cfg    Red_zone; White_zone; Blue_zone
zone:  Blue_zone
   1,1; array1; 1,2; array2
zone:  Red_zone
   1,0; loop1
zone:  White_zone
   1,3; 1,4
alias: array1 21:00:00:20:37:0c:76:8c; 21:00:00:20:37:0c:71:02
alias: array2 21:00:00:20:37:0c:76:22; 21:00:00:20:37:0c:76:28
alias: loop1 21:00:00:20:37:0c:76:85; 21:00:00:20:37:0c:71:df

switch:admin> zoneObjectExpunge "White_zone"

switch:admin> cfgshow
Defined configuration:
cfg:   USA_cfg    Red_zone; Blue_zone
zone:  Blue_zone
   1,1; array1; 1,2; array2
zone:  Red_zone
   1,0; loop1
zone:  White_zone
   1,3; 1,4
alias: array1 21:00:00:20:37:0c:76:8c; 21:00:00:20:37:0c:71:02
alias: array2 21:00:00:20:37:0c:76:22; 21:00:00:20:37:0c:76:28
alias: loop1 21:00:00:20:37:0c:76:85; 21:00:00:20:37:0c:71:df

See Also   cfgAdd, cfgClear, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow, zoneObjectCopy,
zoneObjectRename
zoneObjectRename

Renames a zone object.

Synopsis

zoneObjectRename "objectName", "newName"

Description

Use this command to rename a zone object. You can use this command for all zone object types, including cfg, zone, and alias.

This command changes the defined configuration. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the cfgSave command. For the change to become effective, enable the configuration must be enabled with the cfgEnable command.

Note

When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands

The following operands are required:

"objectName" The name of the object you want to rename.

"newName" The new name of the object.

A zone configuration name must begin with a letter that can be followed by any number of letters, numbers, and underscores. Names are case-sensitive. For example, "Cf_1" and "cfg_1" are different zone configurations. Quotation marks are optional. Spaces are ignored.

Refer to the zoneCreate command for more information on name and member specifications.

Examples

To create a configuration containing three zones:

switch:admin> cfgshow "*"
    cfg:   USA_cfg    Red_zone; White_zone; Blue_zone
switch:admin> zoneObjectrename "USA_cfg", "UK_cfg"
switch:admin> cfgshow "*"
    cfg:   UK_cfg     Red_zone; White_zone; Blue_zone

See Also
cfgAdd, cfgClear, cfgDelete, cfgDisable, cfgEnable, cfgRemove, cfgSave, cfgShow, zoneObjectCopy
zoneRemove

Removes a member from a zone.

Synopsis zoneremove "zonename", "zoneMemberList"

Description Use this command to remove one or more members from an existing zone.
If all members are removed, the zone is deleted.

This command changes the defined configuration. For the change to be preserved across switch reboots, save the configuration to nonvolatile memory with the cfgSave command. For the change to become effective, enable the configuration with the cfgEnable command.

Notes When FCS policy is enabled, this command can be issued only from the primary FCS switch.

Operands The following operands are required:
"zonename" Specify the name of the zone from which to remove a member. Quotation marks are optional.
"zoneMemberList" Specify a member or a list of members to be removed from the specified zone. The list must be enclosed in quotation marks. Members must be separated by semicolons. A member can be one or more of the following:

• A switch domain and port area or index number pair; for example, "2,20". Use switchShow for a list of valid port area or index numbers.
• A World Wide Name
• A zone alias name

Examples To remove "array2" from "Blue_zone":

switch:admin> zoneremove "Blue_zone", "array2"

See Also zoneAdd, zoneCreate, zoneDelete, zoneShow
zoneShow

Displays zone information.

Synopsis  
zoneShow ["pattern"][, mode]

Description  
Use this command to display zone configuration information.

If no parameters are specified, all zone configuration information (both defined and enabled) is displayed. Refer to cfgShow for a description of this display.

If a parameter is specified, it is used as a pattern to match zone configuration names, and those that match in the defined configuration are displayed.

Notes  
When FCS policy is enabled, this command can be issued on any FCS switch in the fabric.

Operands  
This command has the following operands:

"pattern"  
A POSIX-style regular expression used to match zone configuration names. The pattern must be enclosed in quotation marks. This operand is optional. Patterns can contain:

- A question mark (?) to match any single character.
- An asterisk (*) to match any string of characters.
- A range of characters to match any character within the range: for example, [0-9] or [a-f].

mode  
Specify 0 to display the contents of the transaction buffer (the contents of the current transaction), or specify 1 to display the contents of the nonvolatile memory. The default value is 0. This operand is optional.

Examples  
To display all zones beginning with the letters “A” through “C”:

switch:admin> zoneshow "^[A-C]*"
zone: Blue_zone 1,1; array1; 1,2; array2

See Also  
zoneAdd, zoneCreate, zoneDelete, zoneRemove
This chapter summarizes the commands that are available only on the primary Fabric Configuration Server (FCS) when FCS policy is enabled.

Primary FCS commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aliAdd</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>aliCreate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>aliDelete</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>aliRemove</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>aliShow</td>
<td>Can be run on all FCS switches.</td>
</tr>
<tr>
<td>cfgAdd</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgClear</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgCreate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgDelete</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgDisable</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgEnable</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgMcdtmode</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgSaveActiveToDefined</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgRemove</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgSave</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgShow</td>
<td>Can be run on all FCS switches.</td>
</tr>
<tr>
<td>cfgSize</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgTransAbort</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>cfgTransShow</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>date</td>
<td>This command can be run on all switches to view the current date. You can only modify the date from the primary FCS switch.</td>
</tr>
<tr>
<td>defZone</td>
<td>defzone --show can be run on all switches. All other options must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>msPlClearDB</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>msPlMgmtActivate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>msPlMgmtDeactivate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>msTdDisable</td>
<td>msTdDisable &quot;ALL&quot; must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>msTdEnable</td>
<td>msTdEnable &quot;ALL&quot; must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyAbort</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyActivate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyAdd</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyCreate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyDelete</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyDump</td>
<td>Can be run on all FCS switches.</td>
</tr>
<tr>
<td>secPolicyFCSMove</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyRemove</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicySave</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>secPolicyShow</td>
<td>Can be run on all FCS switches.</td>
</tr>
<tr>
<td>snmpConfig</td>
<td>Can be run on all FCS switches.</td>
</tr>
<tr>
<td>tsClockServer</td>
<td>Can be run on all switches to view the NTP server's IP address. You can only modify the NTP server's IP address on the primary FCS switch.</td>
</tr>
<tr>
<td>zoneAdd</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneCreate</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneDelete</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneObjectCopy</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneObjectExpunge</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneObjectRename</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
<tr>
<td>zoneRemove</td>
<td>Must be run from the primary FCS switch.</td>
</tr>
</tbody>
</table>
This chapter lists the commands available when logged in to the standby CP on a Brocade 48000 or DCX Backbone. The full set of commands for your user role is available on the active CP.

## Commands supported on the standby CP

The following commands are supported when logged into the standby CP.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aptPolicy</td>
<td>Displays the Advanced Performance Tuning (APT) policy. You cannot modify the parameters on s standby CP.</td>
</tr>
<tr>
<td>date</td>
<td>Displays or sets the system date and time.</td>
</tr>
<tr>
<td>dbgShow</td>
<td>Displays current values of debug and verbosity levels of the specified module.</td>
</tr>
<tr>
<td>errClear</td>
<td>Clears the error log.</td>
</tr>
<tr>
<td>errDump</td>
<td>Displays the error log (no page breaks).</td>
</tr>
<tr>
<td>errModuleShow</td>
<td>Displays all defined error log modules.</td>
</tr>
<tr>
<td>errShow</td>
<td>Displays the error log.</td>
</tr>
<tr>
<td>fastboot</td>
<td>Reboots the standby CP bypassing POST. This command does not reboot the switch from standby.</td>
</tr>
<tr>
<td>firmwareCommit</td>
<td>Commits the firmware to nonvolatile memory.</td>
</tr>
<tr>
<td>firmwareDownload</td>
<td>Downloads the firmware onto switch.</td>
</tr>
<tr>
<td>firmwareDownloadStatus</td>
<td>Displays the progress and status of a firmware download.</td>
</tr>
<tr>
<td>firmwareKeyShow</td>
<td>Displays the keys used to check firmware signatures.</td>
</tr>
<tr>
<td>firmwareKeyUpdate</td>
<td>Manages the keys used to check firmware signatures.</td>
</tr>
<tr>
<td>firmwareRestore</td>
<td>Restores the firmware on the switch.</td>
</tr>
<tr>
<td>firmwareShow</td>
<td>Displays firmware versions.</td>
</tr>
<tr>
<td>h</td>
<td>Displays shell history.</td>
</tr>
<tr>
<td>haDump</td>
<td>Dumps High Availability debug data.</td>
</tr>
<tr>
<td>haShow</td>
<td>Displays High Availability status.</td>
</tr>
<tr>
<td>help</td>
<td>Displays the list of available commands.</td>
</tr>
<tr>
<td>ifModeSet</td>
<td>Sets the link operating mode for a network interface.</td>
</tr>
<tr>
<td>ifModeShow</td>
<td>Displays the link operating mode for a network interface.</td>
</tr>
<tr>
<td>killTelnet</td>
<td>Terminates Telnet/serial login sessions interactively.</td>
</tr>
<tr>
<td>login</td>
<td>Logs in as new user.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>logout</td>
<td>Logs out from a Telnet, rlogin, or serial port session.</td>
</tr>
<tr>
<td>memShow</td>
<td>Displays memory usage in the system.</td>
</tr>
<tr>
<td>myid</td>
<td>Displays the current login session details.</td>
</tr>
<tr>
<td>more</td>
<td>Displays command output with page breaks.</td>
</tr>
<tr>
<td>netStat</td>
<td>Displays network connections and statistics (UNIX command. No Fabric OS help page.)</td>
</tr>
<tr>
<td>pdShow</td>
<td>Displays information from panic dump file.</td>
</tr>
<tr>
<td>ping</td>
<td>Displays the link operating mode for a network interface. (UNIX command. No Fabric OS help page.)</td>
</tr>
<tr>
<td>ping6</td>
<td>Displays the link operating mode for a network interface. (Linux command. No FOS help page.)</td>
</tr>
<tr>
<td>reboot</td>
<td>Reboots the standby CP.</td>
</tr>
<tr>
<td>setModem</td>
<td>Enables or disables modem dial-in to a control processor (CP). Not supported on the Brocade DCX.</td>
</tr>
<tr>
<td>supportSave</td>
<td>Saves support information for RASLOG, TRACE, and supportShow.</td>
</tr>
<tr>
<td>switchName</td>
<td>Displays this switch's name.</td>
</tr>
<tr>
<td>switchViolation</td>
<td>Displays policy violations recorded in RAS log.</td>
</tr>
<tr>
<td>tsTimeZone</td>
<td>Displays time zone.</td>
</tr>
<tr>
<td>upTime</td>
<td>Displays how long the switch has been online.</td>
</tr>
<tr>
<td>version</td>
<td>Displays firmware version.</td>
</tr>
</tbody>
</table>
This appendix explains how a command is validated when it is typed at the command prompt.

Command validation checks

Before a command is executed, it is validated against the following checks:

1. **Active or Standby availability**: on enterprise-class platform systems, checks that the command is available on the Control Processor (CP).

2. **Role Based Access Control (RBAC) availability**: checks that the invoking user’s role is permitted to invoke the command. If the command modifies system state, the user’s role must have modify permission for the command. If the command only displays system state, the user’s role must have observe permission for the command. Some commands both observe and modify system state and thus require observe-modify permission. The following RBAC permissions are supported:
   - O = observe
   - OM = observe-modify
   - N = none/not available

3. **Admin Domain availability**: checks that the command is allowed in the currently selected Admin Domain. For information on Admin Domain concepts and restrictions, refer to the Fabric OS Administrator’s Guide.
   
   Admin Domain Types are one or more of the following. If more than one AD type is listed for a command, the AD type is optio-specific. Display options may be allowed, but set options may be subject to Admin Domain restrictions.
   - SwitchMember = Allowed to execute only if the local switch is part of the current AD.
   - Allowed = Allowed to execute in all ADs.
   - PhysFabricOnly = Allowed to execute only in AD255 context (and the user should own access to AD0-AD255 and have admin RBAC privilege).
   - Disallowed = Only allowed to execute in AD0 or AD255 context, not allowed in AD1-AD254 context.
   - PortMember = All control operations allowed only if the port or the local switch is part of the current AD. View access allowed if the device attached to the port is part of the current AD.
   - AD0Disallowed = Allowed to execute only in AD255 and AD0 (if no ADs are configured).
   - AD0Only = Allowed to execute only in AD0 when ADs are not configured.

4. **Command-specific**: checks whether the command is supported on the platform for which it is targeted.
Command RBAC permissions and AD types

Refer to Table 1 for the RBAC and Admin Domain availability of all Fabric OS commands.

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Operator</th>
<th>Switch Admin</th>
<th>Zone Admin</th>
<th>Fabric Admin</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaConfig</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>ad</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>O/OM</td>
<td>Allowed/Physical Fabric only</td>
</tr>
<tr>
<td>ag</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>N/A, Allowed, SwitchMember</td>
</tr>
<tr>
<td>agShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>aliAdd</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>aliCreate</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>aliDelete</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>aliRemove</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>aliShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>aptPolicy</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>auditCfg</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>authUtil</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>Allowed, SwitchMember</td>
</tr>
<tr>
<td>bannerSet</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
</tr>
<tr>
<td>bannerShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
</tr>
<tr>
<td>bcastInfoShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>bcastShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>bladeBeacon</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>bladeDisable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
<td></td>
</tr>
<tr>
<td>bladeEnable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
<td></td>
</tr>
<tr>
<td>bladeReset</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
<td></td>
</tr>
<tr>
<td>bladeVerShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
<td></td>
</tr>
<tr>
<td>burninErrClear</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
<td></td>
</tr>
<tr>
<td>burninErrShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
<td></td>
</tr>
<tr>
<td>burninStatus</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
<td></td>
</tr>
<tr>
<td>cfgActvShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>cfgAdd</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>cfgClear</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>cfgCreate</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>cfgDelete</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
</tbody>
</table>
TABLE 1  RBAC availability and admin domain type

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Switch Admin</th>
<th>Zone Admin</th>
<th>Fabric Admin</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfgDisable</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
</tr>
<tr>
<td>cfgEnable</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
</tr>
<tr>
<td>cfgMcdtMode</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
</tr>
<tr>
<td>cfgRemove</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
</tr>
<tr>
<td>cfgSave</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
</tr>
<tr>
<td>cfgSaveActiveToDefined</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
</tr>
<tr>
<td>cfgShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
</tr>
<tr>
<td>cfgSize</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
</tr>
<tr>
<td>cfgTransAbort</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
</tr>
<tr>
<td>cfgTransShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
</tr>
<tr>
<td>chassisConfig</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>chassisName</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>chassisShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>cliHistory</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>O</td>
<td>OM</td>
</tr>
<tr>
<td>configDefault</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>configDownload</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>configList</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>configRemove</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>configShow</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>configUpload</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>configure</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dataTypeShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>date</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
</tr>
<tr>
<td>dbgShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>defZone</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
</tr>
<tr>
<td>diagClearError</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>diagDisablePost</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>diagEnablePost</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>diagHelp</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OM</td>
</tr>
<tr>
<td>diagPost</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>diagRetry</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>diagSetBurnin</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>diagSetCycle</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
</tr>
</tbody>
</table>
Command RBAC permissions and AD types

### TABLE 1  RBAC availability and admin domain type

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Operator</th>
<th>Switch Admin</th>
<th>Zone Admin</th>
<th>Fabric Admin</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagShow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>diagSkipTest</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>diagStopBurnin</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>distribute</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>N</td>
<td>ADODisallow</td>
</tr>
<tr>
<td>dlsReset</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>dlsSet</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>dlsShow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>dnsConfig</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>enclosureShow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>errClear</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>errDelimiterSet</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed/</td>
</tr>
<tr>
<td>errDump</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>errFilterSet</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>errModuleShow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>errShow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fabPortShow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>fabRetryShow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fabricLog</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fabricPrincipal</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>fabricShow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fabStatsShow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fabSwitchShow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fanDisable</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>fanEnable</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>fanShow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fastBoot</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fastWriteCfg</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcipHelp</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fcipPathTest</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcUnQuery</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>fcPing</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fcpLogClear</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcpLogDisable</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>Command Name</td>
<td>User</td>
<td>Admin</td>
<td>Operator</td>
<td>Switch Admin</td>
<td>Zone Admin</td>
<td>Fabric Admin</td>
<td>Basic Switch Admin</td>
<td>Security Admin</td>
<td>Admin Domain</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>fcpLogEnable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcpLogShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcpProbeShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fcpRlsShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fcrBeastConfig</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>0</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcrChipTest</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcrConfigure</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcrFabricShow</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fcrIsanCount</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcrIsanMatrix</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcrPathTest</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcrPhydevShow</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fcrProxyConfig</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fcrProxyDevShow</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fcrResourceShow</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fcrRouterPortCost</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed/SwitchMember</td>
</tr>
<tr>
<td>fcrRouteShow</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fcrXlateConfig</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fdccfg</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>fdmiCacheShow</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>fdmiShow</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>ficonClear</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>ficonCupSet</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>ficonCupShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>ficonHelp</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>OM</td>
</tr>
<tr>
<td>ficonShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fipsCfg</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>firmwareCommit</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>firmwareDownload</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>firmwareDownloadStatus</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>firmwareKeyShow</td>
<td>O</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>firmwareKeyUpdate</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>firmwareRestore</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>firmwareShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
</tbody>
</table>
### Command RBAC permissions and AD types

#### TABLE 1  RBAC availability and admin domain type

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Operator</th>
<th>Switch Admin</th>
<th>Zone Admin</th>
<th>Fabric Admin</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>foscConfig</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>Allowed/SwitchMember/Disallowed</td>
</tr>
<tr>
<td>fruReplace</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fspfShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fwAlarmsFilterSet</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fwAlarmsFilterShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fwClassInit</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fwConfigReload</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fwConfigure</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fwFruCfg</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fwHelp</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>fwMailCfg</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fwPortDetailShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>fwSamShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fwSet</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>fwSetToCustom</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fwSetToDefault</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>fwShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>h</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>haDisable</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>haDump</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>haEnable</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>haFailover</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>haShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>haSyncStart</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>haSyncStop</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>help</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>historyLastShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>historyMode</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>historyShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>httpcfgShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>i</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>iclCfg</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>ifModeSet</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>ifModeShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
</tbody>
</table>
### TABLE 1  RBAC availability and admin domain type

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Operator</th>
<th>Switch</th>
<th>Zone</th>
<th>Fabric</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>interfaceShow</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>interOpMode</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>Allowed/SwitchMember</td>
</tr>
<tr>
<td>iodDelayReset</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>iodDelaySet</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>iodDelayShow</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>iodReset</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>iodSet</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>iodShow</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>ipAddrSet</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>ipAddrShow</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>ipFilter</td>
<td>0</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>iscsiCfg</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>iscsiChipTest</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>iscsiHelp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>iscsiPathTest</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>iscsiPortCfg</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>iscsiSessionCfg</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>iscsiSwCfg</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>ls1Show</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>isnsCfg</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>killTelnet</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>ldapCfg</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>licenseAdd</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>licenseHelp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>licenseIdShow</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>licensePort</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>SwitchMember</td>
<td></td>
</tr>
<tr>
<td>licenseRemove</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>SwitchMember</td>
<td></td>
</tr>
<tr>
<td>licenseShow</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>linkCost</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>login</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>logOut</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>lsanZoneShow</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>LSdbShow</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>memShow</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
</tbody>
</table>
### TABLE 1  RBAC availability and admin domain type

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Operator</th>
<th>Switch Admin</th>
<th>Zone Admin</th>
<th>Fabric Admin</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>miniCycle</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>msCapabilityShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>msConfigure</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>msPlatShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>msPlatShowDBCB</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>msPIMgmtActivate</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>msPIMgmtDeactivate</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>msTdDisable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>msTdEnable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Disallowed</td>
</tr>
<tr>
<td>msTdReadConfig</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>myId</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>nbrStateShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>nbrStatsClear</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>netstat</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td>nodeFind</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>nsAliasShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>nsAllShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>nsCamShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>nsShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>nsZoneMember</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>passwd (when run with username argument)</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>OM</td>
</tr>
<tr>
<td>passwd (when run without username argument)</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>passwdCfg</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>OM</td>
</tr>
<tr>
<td>pathInfo</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>pdShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfAddEEMonitor</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfAddIPvMonitor</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfAddReadMonitor</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfAddRWMonitor</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfAddSCSIMonitor</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfAddUserMonitor</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfAddWriteMonitor</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
</tbody>
</table>
### TABLE 1  RBAC availability and admin domain type

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Operator</th>
<th>Switch Admin</th>
<th>Zone Admin</th>
<th>Fabric Admin</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>perfCfgClear</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfCfgRestore</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfCfgSave</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfDelEEMonitor</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfDelFilterMonitor</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfHelp</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OM</td>
</tr>
<tr>
<td>perfMonitorClear</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfMonitorShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfSetPortEEMask</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>perfShowAlpaCrc</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>perfShowPortEEMask</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>perfTTmon</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>pkiCreate</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>OM</td>
</tr>
<tr>
<td>pkiRemove</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>OM</td>
</tr>
<tr>
<td>pkiShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>OM</td>
</tr>
<tr>
<td>ping</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>policy</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>portAlpaShow</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>portBufferShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>portCamShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>portCfg</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>portCfgAlpa</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>portCfgCreditRecovery</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>PortMember</td>
<td></td>
</tr>
<tr>
<td>portCfgDefault</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>PortMember</td>
<td></td>
</tr>
<tr>
<td>portCfgEport</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>PortMember</td>
<td></td>
</tr>
<tr>
<td>portCfgExport</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>PortMember</td>
<td></td>
</tr>
<tr>
<td>portCfgQport</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>PortMember</td>
<td></td>
</tr>
<tr>
<td>portCfgISLMode</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>PortMember</td>
<td></td>
</tr>
<tr>
<td>portCfgLongDistance</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>PortMember</td>
<td></td>
</tr>
<tr>
<td>portCfgLport</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>PortMember</td>
<td></td>
</tr>
<tr>
<td>portCfgNPort</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>PortMember</td>
<td></td>
</tr>
<tr>
<td>portCfgNPIVPort</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>PortMember</td>
<td></td>
</tr>
<tr>
<td>portCfgPersistentDisable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>OM</td>
<td>PortMember</td>
<td></td>
</tr>
</tbody>
</table>

Fabric OS Command Reference
53-1000599-02
## Command RBAC permissions and AD types

### TABLE 1: RBAC availability and admin domain type

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Operator</th>
<th>Switch Admin</th>
<th>Zone Admin</th>
<th>Fabric Admin</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>portCfgPersistentEnable</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed/PortMember</td>
</tr>
<tr>
<td><code>portCfgQos</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td><code>portCfgShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td><code>portCfgSpeed</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td><code>portCfgTrunkPort</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portCfgVExport</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td><code>portCmd</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portDebug</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portDisable</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portEnable</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portErrShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>portFlagsShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>portLedTest</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portLogClear</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portLogConfigShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portLogDisable</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portLogDump</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>portLogDumpPort</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td><code>portLogEnable</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portLogEventShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>portLoginShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td><code>portLogPdisc</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portLogReset</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portLogResize</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portLogShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>portLogShowPort</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td><code>portLogTypeDisable</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portLogTypeEnable</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portLoopbackTest</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>portMirror</code></td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td><code>portName</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td><code>portPerfShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>portRouteShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td><code>portShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
</tbody>
</table>
### TABLE 1  RBAC availability and admin domain type

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Operator</th>
<th>Switch Admin</th>
<th>Zone Admin</th>
<th>Fabric Admin</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>portStats64Show</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>portStatsClear</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>portStatsShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>portSwap</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>portSwapDisable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>portSwapShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>portTest</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>portTestShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>portTrunkArea</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>PortMember</td>
</tr>
<tr>
<td>portZoneShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>powerOffListSet</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>powerOffListShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>psShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>reboot</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>routeHelp</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>OM</td>
</tr>
<tr>
<td>secActiveSize</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secAuthSecret</td>
<td>N</td>
<td>OM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secCertUtil</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secDefineSize</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secGlobalShow</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secHelp</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>secPolicyAbort</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secPolicyActivate</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secPolicyAdd</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secPolicyCreate</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secPolicyDelete</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secPolicyDump</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secPolicyFCSMove</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secPolicyRemove</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secPolicySave</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secPolicyShow</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>Allowed/ADODisallowed</td>
</tr>
<tr>
<td>secStatsReset</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>secStatsShow</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
</tbody>
</table>
### TABLE 1  RBAC availability and admin domain type

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Operator</th>
<th>Switch Admin</th>
<th>Zone Admin</th>
<th>Fabric Admin</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensorShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>setDbg</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>setModem</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>setVerbose</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>sfpShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>PortMember</td>
</tr>
<tr>
<td>shellFlowControlDisable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>shellFlowControlEnable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>slotPowerOff</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>slotPowerOn</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>slotShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td>sITest</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>snmpConfig</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>Allowed/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SwitchMember</td>
</tr>
<tr>
<td>spinFab</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>sshutil</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>OM</td>
<td>ADODisallowed</td>
</tr>
<tr>
<td>statsClear</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>stopPortTest</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>supportFfdc</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>supportFtp</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>supportSave</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>Disallowed</td>
</tr>
<tr>
<td>supportShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>Disallowed</td>
</tr>
<tr>
<td>supportShowCfgDisable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>supportShowCfgEnable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>supportShowCfgShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>switchBeacon</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>switchCfgPersistentDisable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>switchCfgPersistentEnable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>switchCfgSpeed</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>switchCfgTrunk</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>switchDisable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>switchEnable</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td>switchName</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>Allowed/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SwitchMember</td>
</tr>
<tr>
<td>switchShow</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>OM</td>
<td>O</td>
<td>O</td>
<td>Allowed/Disallowed</td>
</tr>
<tr>
<td>switchStatusPolicySet</td>
<td>O</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>N</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
</tbody>
</table>
### TABLE 1  RBAC availability and admin domain type

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Operator</th>
<th>Switch Admin</th>
<th>Zone Admin</th>
<th>Fabric Admin</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switchStatusPolicyShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>switchStatusShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>switchUptime</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>switchViolation</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>syslogdFacility</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>syslogdIpAdd</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>syslogdIpRemove</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>syslogdIpShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>sysShutdown</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>systemVerification</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>tempShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>timeOut</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Allowed/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>topologyShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>traceDump</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>trackChangesHelp</code></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>OM</td>
</tr>
<tr>
<td><code>trackChangesSet</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>trackChangesShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>trunkDebug</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>trunkShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>tsClockServer</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>tsTimeZone</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>turboRamTest</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>uptTme</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>N</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>uRouteConfig</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>uRouteRemove</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>SwitchMember</td>
</tr>
<tr>
<td><code>uRouteShow</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
<tr>
<td><code>usbStorage</code></td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>O</td>
<td>OM</td>
</tr>
<tr>
<td><code>userConfig</code></td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>(for the <code>--help</code> and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>--show</code> options)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>userRename</code></td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>OM</td>
</tr>
<tr>
<td><code>version</code></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>Allowed</td>
</tr>
</tbody>
</table>
### Command RBAC permissions and AD types

**TABLE 1**  
RBAC availability and admin domain type

<table>
<thead>
<tr>
<th>Command Name</th>
<th>User</th>
<th>Admin</th>
<th>Operator</th>
<th>Switch Admin</th>
<th>Zone Admin</th>
<th>Fabric Admin</th>
<th>Basic Switch Admin</th>
<th>Security Admin</th>
<th>Admin Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>wwn</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>OM</td>
<td>Allowed/Member</td>
</tr>
<tr>
<td>zone</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>Allowed</td>
</tr>
<tr>
<td>zoneAdd</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>Allowed</td>
</tr>
<tr>
<td>zoneCreate</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>Allowed</td>
</tr>
<tr>
<td>zoneDelete</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>Allowed</td>
</tr>
<tr>
<td>zoneHelp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>Allowed</td>
</tr>
<tr>
<td>zoneObjectCopy</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>Allowed</td>
</tr>
<tr>
<td>zoneObjectExpunge</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>Allowed</td>
</tr>
<tr>
<td>zoneObjectRename</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>Allowed</td>
</tr>
<tr>
<td>zoneRemove</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>Allowed</td>
</tr>
<tr>
<td>zoneShow</td>
<td>0</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>OM</td>
<td>OM</td>
<td>0</td>
<td>0</td>
<td>Allowed</td>
</tr>
</tbody>
</table>
Index

A
AAA services, 6
access levels, 1, 2
account lockout policy, 377
active CP
  in firmwaredownload, 209
Admin, 282, 283, 285, 492, 501
Admin Domain restrictions, 412
Advanced Zoning, 78
  Advanced Zoning commands, xxiv
agtCfgShow, 40
AL_PA
  in fcrResourceShow, 180
  in perfClearAlpaCrc, 400
  in zoneAdd, 707
portAlpaShow, 423
portAlphaShow, 423
switchShow summary, 642
aliShow, 36
and fcipPathTest, 149
AP blade, 661
APT, 37, 382, 719
arbitrated loop parameters, 94, 400, 411, 423
ASIC, 105, 149, 162, 172, 173, 342, 426, 456, 512
turboRamTest, 682
authentication
  SNMPv3, 607
authentication configuration, 40
authentication type, 516
authUtil, 40
  authInit, 40

B
bannerSet, 44
bannerShow, 45
BB credit, 91, 92
beacon
  and switchBeacon, 634
BIST test, 162
bladeDisable, 48
Bloom-based platform, 456, 505
Brocade 200E switch, 644
Brocade 4100 switch, 140, 141, 143, 146, 149, 151,
  154, 155, 156, 157, 160, 162, 164, 166, 173, 644
Brocade 48000 director, 644
Brocade 4900 switch, 140, 141, 143, 146, 149, 151,
  154, 155, 156, 157, 160, 162, 164, 166, 173
Brocade 7500 switch, 146, 149, 162, 173
bscastShow, 46
buffer usage, 424
burn-in
  and system verification, 662
burninErrClear, 51
burninErrShow, 52
burninStatus, 54

C
CAM, 426
CAM utilization, 426, 427
cfgClear
  zoning, 57
cfgDisable
  zoning, 60
cfgDisable, 60
cfgEnable
  zoning, 61
cfgTransShow, 71
chassis name, 74
chassisConfig, 72
clock server, 677, 678
command line interface, 1
commands supported on the active CP, 719
commands supported on the standby CP, 719
Condor-based platform, 456, 505
configDefault, 78
configure, 91
Control Processor, 721
  and RBAC, 721
CSR
certificates, 559, 563
deleting certificates, 562

d
default zone
activating, 100
defZone, 100
deskew, 675
DH-CHAP
and authUtil, 42
diagDisablePost, 103
diagnostics, 149
and burninLevel, 53
and diagDisablePost, 103
and diagPost, 106
and systemVerification, 663
diagPost, 106
diagRetry
burn-in script, 107
diagSetBurnin, 108
diagStopBurnin, 112
DID used, 426, 427
DLS, see dynamic load sharing
dMA test, 162
domain name service, 119
dual CP system
active CP and supportFTP, 625
dynamic load sharing, 37, 116, 117, 118, 685

e
E_D_TOV
and configDownload, 81
and configure, 91
and portCfgEXPort, 446, 473
E_Port, 117, 129, 131, 137, 275, 424, 449, 451, 452,
465, 483
and active ISLs, 330
and bcastShow, 46
and fabStatShow, 137
and fwConfigure, 230
and interfaceShow, 275
and portCfgGPort, 448
and portFlagsShow, 483
and portLogShow, 499
and switchShow, 644
and trunkDebug, 674
and uRouteConfig, 684
EE mask, 409, 410, 412
dend-to-end monitor, 388, 389, 401, 403, 404, 407
errDelimiterSet, 122
error log
and errDelimiterSet, 122
and errShow, 126
and trackChangesSet, 672
errShow, 126
exclusive primary FCS commands, 717
expiration policy, 377
Extended Fabrics, 92, 451, 452
extended-edge PID, 686

F
F_Port, 93, 158, 424, 448, 456, 499, 644, 684, 685
fabric log, 132
Fabric OS Command Line Interface, 2, 722
fabric parameter, 445, 447, 472, 474
fabric port information, 128, 130
Fabric Watch, 72, 225, 226, 227, 228, 229, 231, 234,
235, 236, 238, 241, 243, 244, 247, 250, 268, 269,
272, 280, 284, 289, 291, 292, 298, 305, 307, 308,
311, 313, 316, 320, 324, 326, 651
fabStatShow
zoning, 137
fabStatsShow, 137
failover
and haDump, 255
and haFailover, 258
FA-MIB, 608
fastwrite, 511
FA-TRAP, 609
FC Router, 162, 164, 165, 172, 173, 174, 175, 176,
178, 179, 180, 181, 184, 185, 334, 570, 642
FC4-16 port blade, 603
FC4-32 port blade, 603
FCAP, 40, 42
FCIP, 146, 149, 365, 420, 464, 466, 476, 532, 534, 644
fcipPathTest, 149
FCP, 158, 159, 198, 200, 363, 364, 365, 368, 371, 372, 391, 392, 396
FCP, see Fibre Channel Protocol
FC-PH, 365, 498
fcPing
display zoning, 152
FDISC, 362, 366, 369, 492
FDMI, 189, 190
Fibre Channel Extended Link Service, 152, 499, 539
Fibre Channel Protocol, 158, 159
FICON, 98, 191, 192, 194, 196, 197, 200, 202, 459, 608, 609, 629, 631, 632, 633, 644
FICON-MIB, 608, 609
FICON-TRAP, 609
field replaceable unit, see FRU
filter-based monitor, 395, 402, 403, 404, 408
firmware download, 206, 208, 212, 213
firmware version, 190, 219, 696
FL_Port, 158, 159, 230, 250, 308, 423, 445, 448, 497, 498
FLOGI, 362, 366, 369, 492
FPGA, 146, 149, 162, 172, 173
FR4-16IP blade, 603
FR4-18i blade, 146, 149, 162, 173, 213, 214, 603, 620, 661
FRU, 75, 197, 198, 202, 222, 234, 235, 236, 237, 264, 266, 662
FSPF, 223, 224, 275, 276, 277, 330, 336, 357, 358, 382, 554, 667, 686
FTP, 80, 82, 87, 88, 211, 562, 623, 624, 625, 626, 627
full-duplex, 454
fwConfigure
   AL_PA, 230

G

G_Port, 424, 448, 455, 457, 465, 483, 644
gateway, 78, 288, 289, 348
Gbe, see gigabit Ethernet
GBIC, 643
gigabit Ethernet, 146, 149, 475, 476, 532, 533, 534
GigPHY, 146

H

HA, see high availability
haDump, 255
haFailover, 258
   active CP, 258
HA-MIB, 608, 609
hardware statistics, 527, 528, 530, 531, 532
haShow, 259
HA-TRAP, 609
HBA, 189, 190, 198, 200
help, 263
help commands, 134, 263, 380, 403, 539, 541, 613, 621, 663, 682, 711
high availability, 123, 126, 131, 139, 207, 209, 254, 255, 257, 258, 259, 261, 262, 387, 456, 608, 609, 651, 660, 661
history, 251, 253, 264, 265, 266, 377, 378, 379, 380, 381
history policy, 377

I

idle timeout value, 276, 541, 665
ifModeSet
   active CP, 272
in-order deliver, 285, 286, 287, 613
interfaceShow, 275
Inter-Switch Link, 406
IOD, see in-order delivery
ISL
   Inter-Switch Link, 406
ISL Trunking, 471, 638
ISL, see interswitch link

J

Java, 268, 348
### L

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_Prot</td>
<td>424, 454, 455, 457, 465, 644</td>
</tr>
<tr>
<td>LED</td>
<td>47, 452, 480, 481, 483, 634, 639, 640</td>
</tr>
<tr>
<td>license</td>
<td>325</td>
</tr>
<tr>
<td>license keys</td>
<td>78</td>
</tr>
<tr>
<td>licenses</td>
<td>72</td>
</tr>
<tr>
<td>Advanced Zoning</td>
<td>78</td>
</tr>
<tr>
<td>Fabric Watch</td>
<td>72, 225, 226, 227, 228, 229, 231, 234, 235, 236, 238, 241, 243, 244, 247, 250, 268, 269, 272, 280, 284, 289, 291, 292, 298, 305, 307, 308, 311, 313, 316, 320, 324, 326, 651</td>
</tr>
<tr>
<td>ISL Trunking</td>
<td>471, 638</td>
</tr>
<tr>
<td>Management Server</td>
<td>72, 98, 192, 194, 345, 346, 348, 349, 350, 351, 352, 353, 354, 355, 459</td>
</tr>
<tr>
<td>Trunking</td>
<td>674</td>
</tr>
<tr>
<td>link state record</td>
<td>276, 336, 337</td>
</tr>
<tr>
<td>logical SAN</td>
<td>334</td>
</tr>
<tr>
<td>login</td>
<td>332</td>
</tr>
<tr>
<td>LSAN</td>
<td>see logical SAN</td>
</tr>
<tr>
<td>lsanZoneShow</td>
<td>334</td>
</tr>
<tr>
<td>LSR</td>
<td>see link state record</td>
</tr>
</tbody>
</table>

### N

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name Server</td>
<td>92, 119, 122, 174, 178, 236, 360, 362, 363, 364, 365, 366, 368, 497</td>
</tr>
<tr>
<td>nbrStateShow</td>
<td>357</td>
</tr>
<tr>
<td>non-secure mode</td>
<td>187, 417, 418, 569, 572</td>
</tr>
<tr>
<td>NPIV</td>
<td>93, 456, 457, 465</td>
</tr>
<tr>
<td>NR_Prot</td>
<td>180, 184</td>
</tr>
<tr>
<td>NTP Server address</td>
<td>677</td>
</tr>
</tbody>
</table>

### P

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>passwdCfg</td>
<td>379</td>
</tr>
<tr>
<td>password</td>
<td>and login, 332</td>
</tr>
<tr>
<td></td>
<td>and SNMPv3, 608</td>
</tr>
<tr>
<td></td>
<td>and supportFTP, 623</td>
</tr>
<tr>
<td></td>
<td>and supportSave, 625</td>
</tr>
<tr>
<td></td>
<td>expiration policy, 377</td>
</tr>
<tr>
<td></td>
<td>password info, 379</td>
</tr>
<tr>
<td>perfAddEEMonitor</td>
<td>388</td>
</tr>
<tr>
<td>perfClearAlpaCrc</td>
<td>400</td>
</tr>
<tr>
<td>perfSetPortEEMask</td>
<td>AL_PA, 409</td>
</tr>
<tr>
<td>perfShowAlpaCrc</td>
<td>411</td>
</tr>
<tr>
<td>ping</td>
<td>153, 476, 477</td>
</tr>
<tr>
<td>PKI</td>
<td>see public key infrastructure</td>
</tr>
<tr>
<td>PLOGI</td>
<td>92, 492</td>
</tr>
<tr>
<td>port configuration</td>
<td>72, 92, 424, 443, 445, 464, 472, 473</td>
</tr>
<tr>
<td>port ID</td>
<td>93, 152, 174, 178, 184, 371, 445, 447, 456, 472, 474, 515, 642</td>
</tr>
<tr>
<td>port log</td>
<td>95, 485, 486, 487, 488, 489, 491, 494, 495, 496, 500, 501, 502, 503</td>
</tr>
<tr>
<td>port name</td>
<td>363, 364, 366, 367, 368, 371, 372, 510</td>
</tr>
<tr>
<td>port type</td>
<td>198, 199, 200, 202, 424, 483, 539, 541</td>
</tr>
<tr>
<td>portAlpaShow</td>
<td>423</td>
</tr>
<tr>
<td>portCamShow</td>
<td>426</td>
</tr>
<tr>
<td>portCfgEXPort</td>
<td>446, 473</td>
</tr>
<tr>
<td>portLogShow</td>
<td>499</td>
</tr>
<tr>
<td>portswap feature</td>
<td>536, 537, 538</td>
</tr>
<tr>
<td></td>
<td>disabling, 103</td>
</tr>
<tr>
<td></td>
<td>power-on self-test, see POST</td>
</tr>
</tbody>
</table>
primary FCS, 32, 33, 34, 35, 36, 56, 57, 58, 59, 60, 61, 63, 64, 68, 70, 71, 81, 350, 351, 352, 353, 354, 516, 568, 569, 579, 581, 586, 588, 607, 677, 707, 708, 710, 712, 713, 714, 715, 718
public key infrastructure, 72, 417, 418, 419, 558, 567

Q
QuickLoop, 33, 35, 707

R
R_A_TOV, 81, 91, 92, 445, 446, 472, 473, 474
RADIUS, 5, 8
RASLOG, 626, 627
RCS, 100, 345, 565
read link status, 159
register test, 146
RLS, see read link status
root certificate, 417, 418, 419
routing loops
  E_Port, 46
routing tables, 382, 512, 513
RSCN, 94, 95, 362, 368, 369, 465, 480, 481, 497, 641

S
SCSI, 158, 362, 365, 366, 368, 369, 371, 391, 392, 393, 396, 403
secAuthSecret, 556
secCertUtil, 561
secGlobalShow, 565
secPolicyActivate, 569
secPolicyAdd, 570
secPolicyFCSMove, 579
secStatShow, 588
secure mode, 32, 33, 34, 35, 36, 98, 417, 516, 568, 569, 577, 579, 607, 608, 708, 710, 712, 713, 714, 715, 716
secure telnet commands, 573
security, 40, 44, 56, 57, 58, 59, 60, 61, 63, 64, 68, 70, 71, 72, 78, 80, 81, 123, 126, 129, 137, 230, 232, 236, 237, 251, 346, 350, 351, 352, 353, 354, 418, 555, 564, 575, 577, 581, 583, 612, 629, 631, 632, 633, 677, 693, 708, 715
and secGlobalShow, 565
and secPolicyAdd, 570
and secPolicyCreate, 573
and secStatShow, 588
and secStatsReset, 587
and zoneObjectExpunge, 713
and zoneObjectRename, 714
and zoneShow, 716
security policy, 569
SERDES, 173, 341, 342, 343, 505
serial port, 127, 320, 333, 356, 592, 599, 600
setModem
  active CP, 593
SFP, 149, 229, 232, 236, 237, 238, 250, 308, 483, 595, 596, 597
shellFlowControlEnable
  active CP, 600
shutdown
  from the active CP, 661
SID used, 426, 427
SNMP, 72, 78, 95, 480, 481, 483, 606, 607, 608, 609, 610, 672, 673
SRAM BIST test, 162
SSH, 209
standby CP, 210, 213, 214, 255, 258, 259, 272, 593, 599, 600, 651, 660, 661
static route, 684, 685, 686
statsClear, 620
strength policy, 377
SW-EXTTRAP, 609
switch certificate, 418, 419
switch configuration, 80, 87
switch model, 91, 263, 642
switch name, 81, 123, 126, 165, 570, 571, 573, 581, 641
switch speed, 637
switchBeacon, 634
switchShow, 644
SW-TRAP, 609
syslog, 122, 655, 656, 659
sysShutdown
  active CP, 660
system services, 95, 679
system time zone, 679
systemGroupConfiguration parameters, 609
systemVerification, 662, 663
T

tape pipelining, 511
temperature readings, 664
This, 517
time zone, 98, 679, 680
timeout value, 276, 541, 665
topology, 276, 286, 353, 354, 355, 445, 666, 667, 684
trace, 385, 623, 626, 627, 670
track-changes feature, 671, 672, 673
trackChangesSet, 672
trunkDebug, 674
Trunking, 674
turbo SRAM logic test, 682
turboRamTest, 682

U

U_Port, 424, 465
unicast routing, 512, 513, 686
uRouteConfig, 684
user accounts, 72, 377, 690
user port, 318, 424, 484, 515

V

VC_RDY, 452
VEX_Port, 472, 473, 474
virtual channel settings, 92, 93

W

WAN_TOV, 81, 91, 92
Web Tools, 268, 406

Z

zone, 699
zone configuration
  and cfgActvShow, 55
  and zone, 699
  clearing, 57
  inaliShow, 36
  zoneObjectRename, 714
zoneRemove, 715
zoneShow, 716
zoning
  Advanced Zoning commands, xxiv
  and configDefault, 78
  and configDownload, 81
  and IsanZoneShow, 334
  clearing zoning configurations, 57
  disabling, 60
  display in fabStatShow, 137
  displayed in fcPing, 152
  zoning transaction
    aborting, 70